Текст книги "Юный техник, 2005 № 04"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 5 (всего у книги 6 страниц)
ФОТОМАСТЕРСКАЯ
Какую выбрать фотокамеру?
Близится лето – пора долгожданных каникул и время, когда многие берут в руки фотоаппарат. Некоторые это делают впервые, другие вспоминают навыки, освоенные в прошлом году. Однако далеко не всегда эти навыки – лучшие. А многие и просто не знают, что их «мыльница» способна на большее.
Итак, давайте вспомним, что на свете нет ничего практичнее хорошей теории, и попробуем подготовиться к новому съемочному сезону как следует.
В данной рубрике мы намерены поговорить о различных жанрах, методах и способах фотосъемки, с которыми приходится иметь дело фотолюбителю. Начнем же с ответа на вопрос, вынесенный в заголовок данной статьи.
Какая камера лучше? Что купить в магазине, где глаза разбегаются от обилия выставленной фототехники?
Во-первых, лучшей фотокамеры нет по определению, иначе выпускали бы только ее. А, во-вторых, как бы ваши глаза ни разбегались, выбор придется остановить на одном из фотоаппаратов, который вам по карману. И все-таки кое-что при выборе камеры знать следует.
Прежде всего, все богатство современной фототехники делится на два больших класса – пленочные и электронные фотоаппараты.
Пленочный аппарат, как правило, дешевле электронного. И снимки, полученные им, тоже дешевле. Если один отпечаток размерами 10x15 см стоит в мастерской порядка 3 руб., то печать электронного снимка оценивается вдвое дороже.
Кроме того, электроника еще не достигла того качества, которое способна дать пленка. Поэтому многие профессионалы высокохудожественной фотографии продолжают работать с пленкой. Тем более что ныне возни с ее обработкой уже никакой. Все взяли на себя многочисленные пункты по обработке цветной пленки, которые есть не только в городах, но и во многих селах.
Самые простые, а значит, и дешевые среди пленочных аппаратов – так называемые «мыльницы», прозванные так за внешнее сходство. Они же и самые простые в использовании.
Схематический «портрет» средней мыльницы выглядит так. Она имеет объектив с так называемым свободным фокусом, встроенную фотовспышку и автоматическую зарядку пленки. Некоторые конструктивные особенности каждой модели указаны в прилагаемом к ней описании.
Вы же должны иметь в виду следующее. Лучше, если линзы в объективе камеры стеклянные, а не из пластика. Стекло пока дает более качественное изображение, хотя и стоит дороже.
Лучше, когда камера имеет автоматическую наводку на резкость, а не просто сфокусирована за счет глубины резкости так, что все объекты, находящиеся при съемке от вас на расстоянии от 2 м до бесконечности, будут болеe-менее четкими.
Лучше, когда камера оборудована объективом с переменным фокусным расстоянием (так называемым «зумом»). Но за все это, конечно, придется платить: камеры с зумом и наводкой на резкость стоят примерно вдвое дороже обычных «мыльниц».
Так что на первых порах можно остановить свой выбор и на более дешевом аппарате. Тем более что век «мыльницы» обычно недолог и ремонту она не подлежит. Но удовольствие от первых снимков, сделанных собственноручно, вы успеете получить.
Но почему все-таки все большее количество фотолюбителей переходят от пленочных фотокамер к электронным, хотя разница в ценах все еще составляет 2–3 раза?
Электронная техника хороша тем, что вы покупаете оборудование один раз, и все – тратиться на пленку вам уже не придется. Для человека, снимающего примерно 300 пленок в год, такая техника окупает себя уже за 365 дней. Особенно удобна она для репортеров-профессионалов.
Современная техника позволяет ему на месте просмотреть полученные снимки. Если что-то не получилось – немедленно переснять и тут же переслать снимки в редакцию по телефонной сети.
Есть преимущества и для любителя. Когда он снимает довольно много, то вскоре у него образуется куча альбомов, которые занимают довольно много места в квартире. Причем найти нужный снимок среди сотен, а то и тысяч других бывает весьма непросто.
Цифровые же снимки записываются на компакт-диски, которые занимают совсем немного места. Кроме того, уменьшенные копии оригиналов заносят прямо на винчестер компьютера и они служат своеобразным каталогом. При такой системе найти нужный снимок на том или ином диске не составляет особой проблемы. Кроме того, электронные снимки можно поместить на сайт в Интернете. Они послужат своеобразной рекламой вам и вашему фотоискусству.
Технически же цифровой аппарат отличается от пленочного прежде всего тем, что в нем в качеств носителя изображения применяется электронная матрица. В большинстве бытовых аппаратов она имеет меньшие размеры, чем стандартный кадр 24x36 мм. А если размер «негатива» составляет всего 1/8 пленочного кадра, это позволяет резко уменьшить габариты самого аппарата, объективов к нему и т. д. В итоге аппаратура получается весьма компактной при сохранении качества изображения.
Качество матрицы определяется ее разрешением. Она измеряется в пикселях – точках на единицу площади. Так, скажем, для журнальной обложки среднего качества требуется, чтобы изображение было в пределах 3 млн. пикселей.
Если вам нужно изображение размеров не А4, а А2, то есть вы собрались печатать глянцевый многокрасочный календарь, то необходимо уже 10–12 млн. пикселей. Причем количество чувствительных точек на матрице, вообще-то говоря, неявно связано с ее собственными размерами. Даже при площади в 1/8 обычного кадра пикселей может быть 3 млн. и более.
Правда, увеличение размеров самой матрицы, как правило, повышает чувствительность каждого элемента. Если, скажем, при мини-формате максимальная чувствительность около 400 ед. АСА, то при размерах матрицы в 1/2 стандартного кадра чувствительность повышается до 1600 ед. АСА. Но чувствительность можно повысить и другими способами.
Обычные пленки высокой чувствительности имеют довольно сильное зерно, искаженную цветопередачу, в общем, при съемке на такую пленку никогда толком не знаешь, что у тебя получится. Электроника же дает возможность проводить съемки в ночном городе, и кадры получатся резкими, без обычной в таких случаях «шевеленки». Кроме того, уже в процессе печати такой снимок нетрудно подвергнуть компьютерной ретуши, внести в него необходимые цветовые эффекты.
Фотолюбитель постигает возможности цифровой камеры куда быстрее, чем обычной. На обучение уходят недели, но не годы.
Цены цифровых аппаратов, повторим, пока высоки. Приличный цифровой фотоаппарат типа «мыльницы» стоит примерно 300 долларов. За 400 долларов – вы уже выбираете, какие «примочки» должна иметь ваша камера. За 700—1000 долларов можно купить зеркальный цифровой полупрофессиональный фотоаппарат. Однако цены на эту технику падают очень быстро.
Кроме того, появляется все больше сотовых телефонов, которые одновременно снабжены и фотоаппаратами. Качество изображения, получаемое ими, конечно, далеко не профессиональное, зато налицо масса преимуществ.
Например, полученное фото можно тут же переслать по каналам связи друзьям, пусть и они полюбуются запечатленными вами сюжетами. Сам же по себе фотоаппарат не занимает никакого места – все равно мобильник всегда с собой. И наконец, человек сразу начинает привыкать именно к электронной технике, за которой будущее…
Виктор ЧЕТВЕРГОВ
ПОЛИГОН
Суперконденсатор
Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке. Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.
Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы – Юпитера.
Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.
Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!
Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор – 86 400 Дж – в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.
Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий.
А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1–2 л на 100 км.
Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.
Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов – ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.
По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой.
Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.
На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см 3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них – десяти фарад!
На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.
При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой – с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.
Чтобы этому домешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25 %-ный раствор поваренной соли либо 27 %-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)
В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. После этого прикасаться к ним пальцами не стоит.
Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.
При первом испытании пластины с прокладкой из бумаги кладут одна на другую, после этого попробуем его зарядить. Но здесь есть тонкость. При напряжении более 1 В начинается выделение газов Н 2, О 2. Они разрушают угольные электроды и не позволяют работать нашему устройству в режиме конденсатора-ионистора.
Поэтому мы должны заряжать его от источника с напряжением не выше 1 В. (Именно такое напряжение на каждую пару пластин рекомендовано для работы промышленных ионисторов.)
Подробности для любознательных
При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Это интересный прибор, тоже состоящий из активированного угля и двух электродов. Но конструктивно он выполнен иначе (см. рис. 2).
Рис. 2
Обычно берут два угольных стержня от старого гальванического элемента и обвязывают вокруг них марлевые мешочки с активированным углем. В качестве электролита употребляется раствор КОН. (Раствор поваренной соли применять не следует, поскольку при ее разложении выделяется хлор.)
Энергоемкость газового аккумулятора достигает 36 000 Дж/кг, или 10 Вт-ч/кг. Это в 10 раз больше, чем у ионистора, но в 2,5 раза меньше, чем у обычного свинцового аккумулятора. Однако газовый аккумулятор – это не просто аккумулятор, а очень своеобразный топливный элемент. При его зарядке на электродах выделяются газы – кислород и водород. Они «оседают» на поверхности активированного угля. При появлении же тока нагрузки происходит их соединение с образованием воды и электрического тока. Процесс этот, правда, без катализатора идет очень медленно. А катализатором, как выяснилось, может быть только платина… Поэтому, в отличие от ионистора, газовый аккумулятор большие токи давать не может.
Тем не менее, московский изобретатель А.Г. Пресняков успешно применил для запуска мотора грузовика газовый аккумулятор. Его солидный вес – почти втрое больше обычного – в этом случае оказался терпим. Зато низкая стоимость и отсутствие таких вредных материалов, как кислота и свинец, казалось крайне привлекательным.
Газовый аккумулятор простейшей конструкции оказался склонен к полному саморазряду за 4–6 часов. Это и положило конец опытам. Кому же нужен автомобиль, который после ночной стоянки нельзя завести? Однако дальнейшие опыты Преснякова (о них мы расскажем отдельно) говорят за то, что этот недостаток можно устранить.
И все же «большая техника» про газовые аккумуляторы не забыла. Мощные, легкие и надежные, они стоят на некоторых спутниках. Процесс в них идет под давлением около 100 атм, а в качестве поглотителя газов применяется губчатый никель, который при таких условиях работает как катализатор. Все устройство размещено в сверхлегком баллоне из углепластика. Получились аккумуляторы с энергоемкостью почти в 4 раза выше, чем у аккумуляторов свинцовых. Электромобиль мог бы на них пройти около 600 км. Но, к сожалению, пока они дороги.
А. ИЛЬИН
Рисунки Ю. АНТОНОВА
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Трансформатор цвета
Светодиоды, вы, наверное, знаете, потребляют в десятки раз меньший ток, чем лампы, да еще способны загораться и гаснуть в тысячные доли секунды. Так что использовать их для гирлянд гораздо интереснее.
Но вот цветовая гамма светодиодов пока скромна: красный, оранжевый, желтый и зеленый, да еще белый. Можно, конечно, окрасить бесцветные прозрачные корпуса чисто белых светодиодов цветными лаками. Но тогда гирлянда со светодиодами принципиально ничем не будет отличаться от привычной и гораздо более дешевой – на лампочках.
Однако способность новых источников света быстро загораться и гаснуть позволяет получить интересный эффект. Представьте себе, что гирлянда состоит из матовых белых шариков, которые не только светятся, но и плавно меняют свой цвет и яркость.
Это можно сделать, соединяя разноцветные светодиоды в компактные группы и подавая на них импульсы тока различной длительности и скважности. Так получаются «лампы переменного цвета». В основе их инерция зрения, явление, на котором построена кинопроекция. Длительность неподвижного показа каждого кинокадра 1/25 секунды, а инерция нашего зрения удерживает зрительное впечатление о нем 1/10 секунды. Появляющийся в этом промежутке следующий кадр, отличающийся формой или цветом объекта, отпечатает в глазу свой зрительный образ, который совместно с предыдущим создает некоторый новый вариант исходного.
При большой частоте смены кадров возникает зрительная иллюзия плавного перетекания очертаний и расцветок изображения. Если свечение пары близко посаженных светодиодов с красным и зеленым свечением (еще лучше – двухцветный однокристальный излучатель) модулировать поочередно с частотой 100…200 герц, наш глаз воспримет это как некоторое новое свечение. Цветом его можно управлять, изменяя скважность включенных состояний. Таким образом, располагая двумя исходными – красным и зеленым – цветами, можно получить четыре, с дополнительными оранжевым и желтым, занимающими в радужном спектре промежуточные положения.
На рисунке 1 схематически изображено одно из возможных воплощений электронного «трансформатора цветов».
На логических ячейках DD1.1 и DD1.2 типа 2И-НЕ построен самовозбуждающийся мультивибратор, симметрию которого можно изменять с помощью регулируемой цепочки обратной связи VD1, Rl, VD2, R2, управляемой переменным резистором R3. Изменяя положение его ползунка, можем варьировать в значительных пределах длительность полупериодов мультивибратора. Выход последнего через буферные ячейки DD1.3, DD1.4 управляет работой двухтактного ключевого каскада на транзистрорах VT1, VT2.
Рассмотренная схема предназначена в основном для показа принципа «трансформации» цвета излучения; чтобы построить практическую конструкцию, например, электронно-оптической броши либо карнавальной короны, понадобится управлять группами параллельно включенных светодиодов. При указанном на рисунке 1 типе транзисторов количество излучателей в каждой группе может быть порядка пяти.
Поскольку при этом емкости и габариты конденсаторов С2, С3 существенно возрастут, целесообразно видоизменить выходной каскад устройства, как показано на рисунке 2.
Заметим, что введенные в схему стабисторы VD3, VD4 обеспечивают запирание цепей светодиодов при соответствующих полупериодах мультивибратора (на рис. 2 условно не показанного). Для получения более мощного излучения было бы заманчиво использовать вместо светодиодов компактные люминесцентные лампы с резьбовым цоколем.
Сделать конструкцию интереснее можно, если автоматизировать изменения асимметрии мультивибратора, а также разнообразить цветовые пары, включая в них синий (окрашенный белый) и красный цвета, создающие фиолетовое свечение с оттенками.
Ю.ПРОКОПЦЕВ
ЧИТАТЕЛЬСКИЙ КЛУБ
Вопрос – ответ
Слышал, что человек, у которого выпадают зубы, в то же время теряет и память. Неужто это правда? Какая взаимосвязь между зубами и памятью?
Андрей Колошенко,
г. Ставрополь
Действительно, шведские ученые обнаружили удивительную взаимосвязь между стоматологическими заболеваниями и… функцией памяти. Как оказалось, чем меньше у человека зубов, тем хуже его способности к запоминанию. Профессор из университета города Умеа Ян Бедхал выяснил, что зубные нервы напрямую связаны с нервными центрами, отвечающими за работу мозга. Из-за удаления зубов функции нервных волокон нарушаются, и нейроны в зоне мозга, отвечающей за память, начинают стремительно разрушаться. Этот процесс способен серьезно повлиять на способность к запоминанию, особенно на так называемую «короткую память», например, когда человек пытается и не может вспомнить нужное слово. Причем если зуб расшатался и выпал сам по себе, к примеру, в результате болезни десен, – это еще полбеды. Наибольший урон памяти наносит его насильственное удаление. В результате экспериментов на приматах было доказано, что одновременное удаление сразу нескольких зубных нервов может привести к полной амнезии.
Результаты открытия поразили даже самих ученых: кто бы мог подумать, что, садясь в кресло стоматолога, чтобы избавиться от больного зуба, мы каждый раз лишаемся части памяти и медленно разрушаем свой мозг! По данным врачей, именно в удаленных коренных зубах кроется причина возрастного слабоумия и многих других болезней, связанных с работой мозга. Для их развития достаточно отсутствия пяти зубов, при этом неважно, будут они потом протезированы или нет. Так что доктора настоятельно рекомендуют заботиться о здоровье зубов.