Текст книги "Юный техник, 2005 № 04"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 2 (всего у книги 6 страниц)
ВОЗВРАЩАЯСЬ К НАПЕЧАТАННОМУ
Воздушный шарик в космос все-таки взлетит…
Мы уже рассказывали вам о том, как юные техники из п. Гусино, что в Смоленской области, предложили создавать космические корабли наподобие мыльных пузырей (см. подробности в «ЮТ» № 2 за 2004 г.). Там же мы упомянули и о том, как эту же идею начали разрабатывать специалисты НАСА и других зарубежных космических агентств. Теперь с гордостью можем сообщить, что российские специалисты не остались в стороне…
Зеркала антенн и телескопов, стены и перегородки космической станции, панели солнечных батарей, даже дома для Луны или Марса – все это позволяет создать технология, разрабатываемая российскими учеными из Научно-производственного объединения имени С.А. Лавочкина. Вот что рассказал журналистам представитель разработчиков, руководитель проекта, главный специалист Научно-исследовательского центра имени Г.Н. Бабакина при НПО имени Лавочкина Сергей Иванов.
Сегодня доставка в космос килограмма полезной нагрузки стоит от 10 до 20 тыс. долларов. Понятно, специалисты стараются максимально экономить, делая свои конструкции как можно более легкими и компактными. Но что на свете может быть легче мыльного пузыря? Тем более что для его получения необходимо самое простейшее оборудование. Эта простота и подкупила космических специалистов.
Они, конечно, не собираются прямо на Земле выдувать некие, особо прочные, мыльные пузыри, которые смогут подниматься до космических высот. Нет, операция будет выглядеть куда прозаичнее. На космодром доставят что-то вроде невзрачных влажных мешков в плотных пакетах.
На одном, например, будет написано – перегородка номер такая-то жилого отсека. На другом, может быть, – рабочий стол. На третьем – зеркало телескопа…
Вариантов масса, и как это будет выглядеть наверняка – пока не так уж существенно. Важно то, что на орбите каждую заготовку надуют с помощью баллончика со сжатым газом. И уже через несколько часов ткань превратится в жесткую прочную конструкцию в форме стола, перегородки или зеркала.
Более того, из пневматических отверждающихся конструкций наши инженеры предлагают строить отсеки космических станций, а также будущих лунных и марсианских баз.
«Вспомните, – продолжал свой рассказ Сергей Иванов, – чтобы построить МКС, пришлось перевезти в космос сотни тонн груза, потратив на это более 5 лет времени и уйму денег. И станцию до сих пор еще не достроили»…
По новой же технологии космическое строительство намного упрощается. Оболочку раскраивают, шьют и клеят в специализированных мастерских на Земле. Здесь же пропитывают специальным составом и пакуют до поры до времени в герметичную оболочку. Пакет достигнет своего рабочего объема уже непосредственно в космосе. Здесь же из состава, которым пропитана оболочка, улетучится и растворитель. И пропитанный материал превратится в прочный, негорючий «панцирь».
Как это делается, Сергей Иванов продемонстрировал на макете. Взял тонкую трубу из специального синтетического материала и полил ее водой. Через несколько минут материал стал мягким и гибким, труба легко складывается в маленькую гармошку. Именно она и отправится космос. А там достаточно вдуть в нее сжатый газ, и гармошка расправится, отвердеет и снова станет трубой.
Способны помочь подобные конструкции и при освоении Марса. Чтобы добраться до Красной планеты, космическому кораблю потребуется очень много энергии. Брать такое количество топлива с собой с Земли – немыслимо. Целесообразней черпать энергию по дороге, если можно так выразиться, из самого космоса. Скажем, можно установить на борту корабля солнечную электростанцию мощностью в несколько мегаватт.
Однако такая станция будет представлять собой гигантское сооружение площадью около 60 тысяч кв. м – десять футбольных полей. Представляете, сколько потребуется запустить «Протонов» и «Шаттлов» с элементами конструкции, чтобы собрать такую электростанцию на орбите?
Пневмоконструкции позволят сократить число рейсов на порядок. Долговечность же их, по утверждениям специалистов, не меньше, чем у металлических – около 15 лет.
Вскоре ракета «Волна» выведет на орбиту спутник, где предусмотрен небольшой контейнер для солнечных батарей. Если разместить в нем «мягкие» конструкции, то можно будет развернуть в космосе две солнечные батареи по 12 кв. м каждая. Это позволит получить мощность в 2400 ватт. Батарея же на жестком каркасе имеет площадь всего 0,5 кв. м, а мощность лишь 50 ватт. Более того, выигрыш в массе в 10 раз!
К сказанному остается добавить, что новая технология создается при поддержке Международного научно-технического центра, а также в тесном взаимодействии с европейскими партнерами. Кстати, на ракете «Волна» будут проверены два способа развертывания конструкции в космосе – российский и европейский. Какой лучше – покажет эксперимент.
В. ЧЕРНОВ
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Скафандр точно по фигуре
Футурологи давно утверждают, что наступят такие времена, когда мы каждое утро будем облачаться в новую одежду. И делать это будет проще простого. Глянул на уличный термометр, и в соответствии с погодой опрыскал себя тем или иным аэрозолем, подождал минуту-другую, пока он затвердеет, образуя мягкую, эластичную, приятную на ощупь пленку заказанного заранее цвета, и готово – можно отправляться на улицу. Однако даже фантасты не предполагали, что подобной пленочной одеждой вскоре начнут пользоваться… космонавты. Тем не менее, это так.
Все началось с того, что несколько лет тому назад НАСА заказало нескольким фирмам проекты скафандров для экспедиций, которые готовятся к отправке на Луну, а затем и на Марс. Ныне уже предложено несколько вариантов – I-Suit, H-Suit, D-Suit…
Главная новинка состоит в том, что каждый такой многослойный скафандр снабжен мощным компьютером, который управляет всей системой жизнеобеспечения, выводит на дисплей множество параметров. Причем в одном из вариантов в качестве такого дисплея предлагается использовать непосредственно сетчатку глаза астронавта. Но при этом оставалась неразрешенной главная проблема – скафандр все равно получается громоздким и тяжелым.
Вес американского скафандра SAFERна МКС, например, составляет 136 кг, и сделать его легче без ущерба для безопасности не удавалось. Тогда-то заказчики и обратили внимание на одну из разработок знаменитого МТИ – Массачусетского технологического института, сотрудники и студенты которого предлагают так называемый биоскафандр ( Bio-Suit).
Свое название этот скафандр получил из-за того, что конструкция и технологические особенности позволяют считать Bio-Suitкак бы продолжением тела, на которое будут напылять быстро затвердевающий полимерный аэрозоль.
Поначалу специалисты не отнеслись всерьез к этой фантастической на первый взгляд технологии. Но все же решили ее испробовать. И неожиданно для себя выяснили, что современные полимерные пленки отличаются высокой прочностью, полной герметичностью, упругостью, позволяя в то же время рукам и ногам свободно двигаться. Причем плотность прилегания биоскафандра обеспечивается электростатическим зарядом между волокнами полимера и кожей человека. А поскольку воздушной прослойки между телом и скафандром нет, сама же пленка создает противодавление, не позволяющее астронавту заболеть кессонной болезнью в разреженной атмосфере Марса или даже в космическом вакууме. Причем в зависимости от конкретной необходимости можно наносить не один слой геля, а несколько различных, получая таким образом костюм на все случаи жизни.
Лишь перчатки, ботинки и шлем сохранят пока традиционную конструкцию с подачей воздуха по специальным трубкам. Правда, некоторые специалисты полагают, что и перчатки можно тоже делать пленочными. Но вот на ботинки и шлем пока никто не замахивается.
И конечно, на спину придется повесить ранец с системой жизнеобеспечения. А чтобы было куда положить необходимые инструменты, к костюму добавляется специальный жесткий жилет, наподобие тех, что носят спецназовцы. Заодно такой жилет обеспечивает и дополнительную защиту жизненно важных органов.
Еще интересная деталь: при повреждениях скафандр легко починить, прыснув на порванное место из баллончика. А можно сделать полимерные пленки и самозатягивающимися. А если поверх всего этого обмундирования надеть экзоскелетон с приводами-усилителями, астронавт будет способен поднимать до 500 кг груза.
Напыленный скафандр можно снять, использовав для этого специальные застежки на молниях и липучках. Не исключено, что биоскафандр для теплоты придется надевать на специальное белье, в которое будет встроена система терморегуляции. И еще: наконец-то каждый астронавт получит скафандр, созданный точно по его фигуре.
На оригинальную разработку уже потрачено 75 000 долларов. А теперь НАСА для продолжения работ выделило МТИ еще 400 000 долларов, ожидая, что через дна года можно будет оценить первый прототип оригинального устройства.
Специалисты всего мира, в том числе и наши, с нетерпением ждут этого момента.
С.НИКОЛАЕВ
Кстати…
НЕВИДИМАЯ ПЕРЧАТКА
– Не зря иногда говорят, что новое – это хорошо забытое старое, – начал свой рассказ руководитель международной лаборатории «Сенсорика» Валентин Пряничников. – В данном случае наша невидимая биоперчатка представляет собой новое претворение известной идеи.
Если предстоит работать с какими-то агрессивными растворами – щелочами, кислотами, – то опытные химики наносят на руки специальную смазку.
Смазок таких придумано великое множество, но наша, как я полагаю, одна из лучших. Она представляет собой полимерный комплекс на основе янтарной кислоты и оказывает не только защитное, но и косметологическое воздействие на кожу. А кроме того, может быть использована в качестве заживляющего средства при ожогах, порезах и других травмах конечностей.
Занялись же мы ее разработкой для тех, кто обслуживает промышленных роботов. Им довольно часто приходится работать в среде, неблагоприятной для человека – химически агрессивной, радиоактивной… Когда робот возвращается из зоны, его нужно привести в порядок.
Люди надевают на тело специальные комбинезоны, но работать удобнее голыми руками, чем в перчатках. А им тоже нужна защита…
И вот на руки «надевают» невидимые перчатки, которые тоньше даже хирургических резиновых, совершенно не мешают работать и в то же время эффективно защищают в течение суток, а то и двух: нанесенный на кожу специальный крем полимеризуется и образует тонкую, прочную пленку.
Испытания, проведенные в ряде научных учреждений страны, показали, что такая защита в 60 раз эффективнее других подобных, совершенно безвредна для кожи и снимается как бы сама собой – по мере естественного отшелушивания кожи с руки.
В. БЕЛОВ
УДИВИТЕЛЬНО, НО ФАКТ!
Сколько звезд на небе?
Это наверняка уже подсчитано. Природой.
Компьютеры – это не только красивые коробки на столе и чипы размером с ноготь. Океаны, облака, планеты и черные дыры тоже регистрируют и обрабатывают информацию. К такому неожиданному выводу пришли два физика – создатель первого в мире квантового компьютера, профессор Сет Ллойдиз Массачусетского технологического института и его коллега из Университета Северной Каролины Джек Энджи, который занимается изучением квантовой природы пространства-времени.
Поначалу, сообщает журнал Scientific American, физики задумались вот над чем. Теория относительности утверждает, что вся материя, попадающая в черную дыру, уже не может вырваться обратно. Однако в 70-х годах прошлого века профессор Стивен Хокинг из Кембриджского университета показал, что квантовая механика допускает наличие излучения из черных дыр.
В ходе анализа, проведенного Хокингом, выяснилось, что излучение носит случайный характер и не несет никакой информации о том, что попало в дыру.
Если бы туда провалился, к примеру, слон, возникло бы некое количество энергии, по которой, впрочем, нельзя было бы определить, что именно попало в дыру.
Столь очевидную потерю информации объяснить трудно, поскольку по законам квантовой механики она не может исчезнуть бесследно. И, как мы уже писали (см. «ЮТ» № 12 за 2004 г.), недавно сам Хокинг признал ошибочность своих прежних взглядов. Сейчас он, как и другие ученые, полагает, что на самом деле испускаемое черными дырами излучение носит не случайный характер, а представляет собой результат информационной обработки попавшего внутрь вещества.
И этот результат поддается анализу.
Подсчитано даже минимальное время, необходимое для такой операции. Согласно теореме Марголуса – Левитина, названной в честь пионеров теории обработки информации Нормана Марголуса из Массачусетского технологического института и Льва Левитина из Бостонского университета, подобный «компьютер», или, как его еще называют, «предельный ноутбук», способен выполнять до 10 51 операций в секунду. (Сравните: скорость современного компьютера составляет примерно 3∙10 9 операций в секунду.)
Источником питания для него служит вещество Вселенной, преобразуемое в энергию, согласно известной формуле Эйнштейна Е = mс 2, например, с помощью реакции аннигиляции (соединения вещества с антивеществом) или термоядерной реакции.
В общем, как пишут Лдойд и Энди, «килограммовый кусок вещества, полностью преобразованного в энергию, – это научное описание 20-мегатонной водородной бомбы». Ну, а черная дыра, получается, представляет собой нечто вроде природного процессора, перерабатывающего информацию с невероятной скоростью.
Такой процессор не может не интересовать специалистов, уже столкнувшихся с тем, что наращивать скорость обычных чипов практически некуда.
Но как воспользоваться черной дырой для вычислений?
Действительно, как бы мог работать подобный природный, или, как его именуют ученые, сингулярный, компьютер для пользы людей? Ввод данных трудности не составит: их нужно лишь закодировать в виде вещества, а еще проще – энергии и послать в дыру, пишут они.
Это специалисты умеют. Кодируют же сейчас в виде нулей и единиц движение облаков, вспышки на Солнце или, к примеру, химические реакции, чтобы их обсчитал компьютер.
Готовя должным образом материал, который попадает в дыру, теоретически можно программировать ее работу так, чтобы производить любые вычисления.
Это пока, конечно, лишь теория. Тем не менее, исследователи полны осторожного оптимизма, полагая, что если не мы, так наши потомки смогут во всем разобраться и «предельные ноутбуки» можно будет купить в магазине где-то к середине XXIII века, хотя множество проблем придется разрешить прежде, чем такие устройства из мечты превратятся в явь.
Прежде всего, необходимо будет научиться четко фиксировать черные дыры. Некоторые физики полагают, что вокруг нас их видимо-невидимо, причем самых различных размеров, вплоть до самых миниатюрных, диаметром 10 -27 м, как раз такие подойдут для «предельного ноутбука».
Непонятно пока и то, как поместить черную дыру в некое подобие корпуса. Ведь экспериментаторы уже полвека работают с термоядерной плазмой, но управлять ею как следует так и не научились. Тем не менее, сами Ллойд и Энджи прямо-таки излучают оптимизм, полагая, что рано или поздно все проблемы будут утрясены, разложены по полочкам. И «предельный ноутбук» заработает.
Публикацию подготовил Максим ЯБЛОКОВ
У СОРОКИ НА ХВОСТЕ
В КИТАЕ КТО МЕНЬШЕ, ТОТ ЖИВЕТ ДОЛЬШЕ?Китайские специалисты подсчитали, что с увеличением роста на 5 % поверхность кожи увеличивается на 10 %. В такой же пропорции возрастает и длина кровеносных сосудов. А вес повышается на 16 %. Все это увеличивает нагрузку на сердечно-сосудистую систему и как следствие приводит к сокращению продолжительности жизни.
«Именно рост в 140 см позволил Гончу Лапничжу прожить 101 год, – утверждают китайские медики. – А вес его был около 40 кг. Другой рекордсмен-долгожитель – 122-летний Хон-Джа – имел рост всего 123 см при весе 30 кг». Даже бывший руководитель КНР Дэн Сяопин, проживший более 90 лет, имел рост около 140 см. В общем, статистика показывает, что свыше половины китайских долгожителей были ростом менее полутора метров, а весили не более 40 кг.
ХОББИТЫ ОКАЗАЛИСЬ НИ ПРИ ЧЕМ?Некоторое время назад многие издания обошло сообщение о том, что на одном из островов Индонезии обнаружены скелеты маленьких людей, ростом чуть более метра. «Неужели найдены останки легендарных хоббитов?!» – заволновалась пресса. Однако волнения эти оказались напрасными. Как показал дальнейший анализ, маленький рост людей на данном острове объясняется редкой наследственной болезнью, которая превращала людей в карликов. Так что сенсации не получилось.
ХОЛОДНЫЙ ТЕРМОЯД ВОЗМОЖЕН?Несколько лет тому назад Руд Тайлархан и его коллеги из Окриджской национальной лаборатории сообщили, что им удалось на новом уровне воспроизвести эксперименты по низкотемпературной термоядерной реакции. Однако тогда исследователям мало кто поверил, скептики потребовали повторных экспериментов и доказательств. И вот та же команда предоставила в редакцию журнала «Физикал ревью» статью, в которой подробно описаны все стадии эксперимента. По словам исследователей, в емкости с ацетоном были возбуждены ультразвуковые колебания определенной частоты. Кроме того, дополнительно емкость непрерывно облучали потоком нейтронов.
Датчики отметили, что количество нейтронов вокруг не уменьшается, как это можно было бы предположить в случае, если бы часть их просто поглощалась жидкостью, а, напротив, возросла! По мнению ученых, это могло случиться лишь в том случае, если в жидкости началась реакция синтеза атомов, приведшая к выбросу дополнительного количества тепловых нейтронов. То есть, говоря проще, в данном случае пошла некая разновидность термоядерной реакции синтеза элементов.
Теперь очередь за проверкой данного эксперимента в других лабораториях. Если дело пойдет на лад, возможно, человечество в ближайшем будущем все-таки получит источник энергии, который позволит ему забыть об угле, нефти и прочих традиционных видах топлива.
КОЛЛЕКЦИЯ ЭРУДИТА
Тайна Мертвого моря
Возможно, описанные в Библии древние города Содом и Гоморра некогда существовали. Но погибли они, скорее всего, не так, как принято считать. Израильские ученые, изучающие Мертвое море, заметили, что начинают сбываться неутешительные предсказания известного российского океанолога Александра Городницкого. А тот еще несколько лет тому назад обратил внимание, что дно этого водоема постепенно проседает. И как следствие этого море все дальше отступает от своих былых берегов.
Сначала полагали, что такое происходит потому, что сток реки Иордан, пополнявшей море, резко уменьшился за последние годы – всю воду разбирают окрестные поля и сады для полива.
Однако на деле все оказалось и того хуже. Городницкий, например, полагает, что через всю территорию Израиля проходит подземный разлом, из которого время от времени выделяются сероводород и метан. Во время одного из землетрясений, когда выброс сероводорода был очень уж сильным, море и стало мертвым. А города, стоявшие на побережье, были уничтожены мощным взрывом газа.
Сейчас ученые, которые занимаются проблемами Мертвого моря, опасаются, что, если рост трещины будет продолжаться, дело может кончиться тем, что при очередной серии подземных толчков Мертвое море сольется с Красным. Огромная волна цунами накроет 80 процентов территории Израиля. И последствия для страны будут еще ужаснее, чем описанные в Библии.
Конечно, это все пока лишь предположения. Однако ученые внимательно наблюдают за поведением Мертвого моря, надеясь хотя бы предсказать заранее возможность наступления глобальной катастрофы.
С ПОЛКИ АРХИВАРИУСА
Судьба «Титаника» могла быть иной…
… если бы англичане вняли совету русского инженера
Я слышал, что судьба «Титаника» была предсказана заранее. Некий писатель описал всю трагедию еще за несколько лет до того, как гигантский корабль был спущен на воду. Как такое могло случиться?
Антон Снегов,
г. Рязань
Действительно, в 1898 году американский писатель-фантаст Морган Робертсон описал крушение гигантского судна. Этот воображаемый корабль, непотопляемый дворец водоизмещением 70 тыс. т, имел 245 м в длину и перевозил 3000 пассажиров. В апрельскую ночь, во время своего первого рейса, он наткнулся в тумане на айсберг и затонул. Корабль назывался «Титан».
Однако по выходу в свет на это произведение никто особо не обратил внимания. Интерес, любопытство, недоумение по поводу повести появились лишь спустя почти пятнадцать лет, в 1912 году, когда недалеко от берегов Америки затонул в результате столкновения с айсбергом пассажирский лайнер «Титаник».
Морской колосс 250 м длины, считавшийся непотопляемым, тем не менее, ушел на дно примерно через час после того, как столкнулся с айсбергом во время первого же рейса. Причем так же, как и в повести, на его борту оказалось недостаточно спасательных средств. А потому из 2000 пассажиров спастись удалось лишь примерно пятистам…
Реакция общественности на такие совпадения оказалась весьма необычной. Писателя подвергли травле и хотели даже судить, поскольку, дескать, это он все напророчил. Бедняге мало помогло и то, что в свое оправдание он рассказал прессе, будто идею повести ему подсказал журналист У. С. Стед, который – вот судьба! – сам оказался среди погибших пассажиров «Титаника».
И на фоне этой шумихи как-то никто не вспомнил еще об одном предсказании судьбы «Титаника». Между тем, русский корабельный инженер Владимир Костенко в 1909 году, будучи в Англии, наблюдал, как строится гигантский корабль. Ознакомившись с его чертежами, инженер сразу увидел грубые ошибки в проекте: главные поперечные переборки не были доведены до главной водонепроницаемой палубы! Кроме того, все палубы прорезались широкими шахтами и люками…
Костенко предупредил главного строителя «Титаника», именитого Томаса Эндрюса, о возможных последствиях, но тот дал понять, что русскому инженеру бестактно учить его – лучшего кораблестроителя Англии.
«Поймите, одна небольшая пробоина, и «Титаника» не станет», – убеждал Костенко. Но создатели плавучего дворца так были уверены в его надежности, что ходовые испытания лайнера продолжались всего 8 часов!
Увы, действительность подтвердила инженерный прогноз русского специалиста. Кстати, сам Томас Эндрюс во время первого плавания находился на борту «Титаника» в качестве наблюдателя и сразу оценил всю серьезность ситуации после столкновения лайнера с айсбергом.
Но никто уже никогда не узнает, вспомнил ли в последние минуты своей жизни Томас Эндрюс предупреждение русского инженера.
В. КОТОВ