355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2009 № 06 » Текст книги (страница 5)
Юный техник, 2009 № 06
  • Текст добавлен: 29 сентября 2016, 05:49

Текст книги "Юный техник, 2009 № 06"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 5 (всего у книги 5 страниц)

НАУЧНЫЕ ЗАБАВЫ



БЕГУЩИЕ МЫЛЬНЫЕ ПЛЕНКИ

Приготовь для опыта: стеклянную трубку конической формы, мыльный раствор.

Мыльная пленка всегда стремится занять такую форму, чтобы поверхность ее была возможно меньше. Постарайся добыть стеклянную трубку конической формы, такую, чтобы один конец у нее был уже, чем другой.

Смочи мыльным раствором всю внутреннюю сторону стекла и дай воде стечь. Затем широким концом опусти трубку в воду, держа ее вертикально. Осторожно вынь трубку из раствора. Мыльная пленка, как видно, затянула отверстие. Держи теперь стекло горизонтально, и ты увидишь, что пленка сдвинется с места и побежит к узкому концу трубки.

Если ты будешь окунать стекло в раствор раз за разом, пленки побегут одна за другой, будто стараясь догнать друг дружку.



ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Усилители класса  D

Окончание. Начало в предыдущем номере.

Ключевые методы усиления класса D

Из первой части статьи мы узнали, что ток, а следовательно, и мощность в нагрузку УЗЧ поставляет источник питания, а транзисторы лишь регулируют этот ток в соответствии с входным звуковым сигналом. Регулировка должна быть строго пропорциональной, чтоб не было искажений. Такие усилители называют аналоговыми, как и всю электронику, основанную на пропорциональном управлении. КПД аналогового усилителя принципиально не может достигать 100 %, поскольку в процессе работы транзистор почти все время открыт лишь частично и на нем выделяется мощность, которая затем превращается в тепло и рассеивается радиатором.

Потери мощности на транзисторе могут отсутствовать при двух условиях: либо транзистор должен быть заперт и ток через него равен нулю, либо полностью открыт и напряжение между коллектором и эмиттером равно нулю (напомним, что мощность, рассеиваемая на транзисторе, равна току через него, помноженному на напряжение коллектор-эмиттер). Транзистор при этом подобен выключателю, который либо замкнут, либо разомкнут. При этом он может коммутировать огромные мощности, сам нагреваясь мало. Описанный режим работы транзистора назван ключевым.

Известен он очень давно и широко применяется в силовой электронике для управления освещением, электромоторами. Причем управление может быть и плавным, если включать и выключать транзистор с большой частотой, такой, чтобы за период между импульсами включения нити ламп не успевали остыть, а моторы – заметно изменить свою скорость. Регулировка же происходит изменением длительности импульсов, или, как говорят, скважности – отношения периода следования импульсов к их длительности. Процесс изменения длительности (ширины) импульсов называется широтно-импульсной модуляцией (ШИМ).

Принцип ключевого усиления с успехом применим и в УЗЧ, если частоту следования импульсов выбрать ультразвуковой – выше самой верхней частоты звукового спектра, на практике – от 30 кГц и выше. Этот способ усиления и отнесен к классу D.

Структурная схема усилителя класса D приведена на рисунке 1.


Он содержит генератор импульсов, ШИМ-модулятор, ключевой усилитель КУ, выходной фильтр нижних частот ФНЧ и нагрузку – динамическую головку громкоговорителя ГР или АС.

ШИМ обычно получают следующим образом: преобразуют импульсы в треугольные или используют специальный генератор импульсов треугольной (пилообразной) формы – генератор «пилы» и подают его колебания на один вход компаратора (Комп). На другой его вход поступают звуковые колебания (график 1справа на рис. 1).

Компаратор же работает так: выдает на выходе максимальное положительное напряжение, если на входе со значком «+» потенциал выше, чем на входе со значком «-», и максимальное отрицательное напряжение в противном случае. Компаратор легко выполнить на операционном усилителе или на цифровом логическом элементе.

На графике 2показаны формы сигналов на входах компаратора, а на графике 3– на его выходе – прямоугольные импульсы с ШИМ. Усиленный звуковой сигнал (плавная линия на графике 3) содержится в среднем значении импульсов с ШИМ, которое удается выделить, пропустив импульсы через фильтр нижних частот (ФНЧ). Фильтр пропускает без ослабления все частоты звукового спектра, скажем, до 10 или 20 кГц (в зависимости от требований к усилителю), но «срезает» колебания более высоких частот, в том числе и частоту повторения импульсов. Сглаженный звуковой сигнал поступает на громкоговоритель Гр.

В простейшем случае фильтром может служить и сама динамическая головка громкоговорителя – из-за инерционности она просто не может воспроизводить импульсный сигнал с высокой частотой.

К ФНЧ есть одно важное требование: он обязательно должен начинаться с индуктивности, то есть не иметь емкостей, подключенных к выходу ключевых транзисторов. В противном случае для перезаряда этих емкостей через ключи должны будут протекать большие токи, время переключения увеличится, а КПД упадет. Часто в качестве ФНЧ используют обычный дроссель (катушку индуктивности), реактивное сопротивление которой увеличивается с частотой, и она служит препятствием прохождению высокочастотного импульсного тока.

На рисунке 2 изображена схема простейшего УЗЧ класса D, которому не нужен отдельный генератор.


С выхода усилителя на его входы устроены две цепи обратной связи: положительная (ПОС) через резисторный делитель R3R2 и отрицательная (ООС) через интегрирующую цепочку R4C1. Пусть в какой-то момент времени напряжение на выходе усилителя возросло. Это изменение цепью ПОС передается на неинвертирующий вход (+) операционного усилителя (ОУ) и приводит к дальнейшему лавинообразному увеличению напряжения на выходе, пока оно не достигнет максимума, почти напряжения питания. Теперь начинается зарядка конденсатора С1 положительным напряжением с выхода через резистор R4. Когда напряжение на инвертирующем входе (-) станет больше, чем на неинвертирующем входе, ОУ быстро переключится в другое состояние, и напряжение на выходе станет также максимальным, но отрицательным. Конденсатор С1 будет перезаряжаться в отрицательной полярности, и цикл повторится. На выходе появятся симметричные прямоугольные импульсы (со скважностью 2) максимальной амплитуды, а выходные транзисторы ОУ будут работать в ключевом режиме. Период повторения импульсов определяется постоянной времени цепочки ООС, равной R4C1.

Ситуация несколько изменится, если на вход подать сигнал ЗЧ. При его положительной полярности зарядка конденсатора при положительном импульсе будет происходить быстрее, а при отрицательном – медленнее, то есть произойдет модуляция ширины импульсов – ШИМ, в полном соответствии с графиками, показанными на рисунке 4.

Остается лишь профильтровать полученную последовательность импульсов (это делает дроссель Др) и подать усиленный сигнал на громкоговоритель. Экспериментируя с самыми распространенными и дешевыми логическими КМОП микросхемами, автору удалось построить крайне простой усилитель класса D (см. рис. 3).


Его основа – генератор прямоугольных импульсов, собранный на элементах DD1.1 и DD1.2. Работа генератора была описана в статье «Сверхэкономичный индикатор», ЮТ – 2008, № 2, с. 74–77. Частота генерируемых импульсов достигает 60 – 100 кГц. Два других элемента микросхемы соединены параллельно для увеличения отдаваемого тока и использованы как ключевой выходной каскад.

Дросселя ФНЧ не потребовалось, его роль с успехом выполняет индуктивность первичной обмотки выходного трансформатора Тр1, согласующего низкое сопротивление головки ВА1 (обычно 4–8 Ом) со значительно большим выходным сопротивлением усилителя. На входе усилителя установлен регулятор громкости R1. Все эти элементы вместе с корпусом удобно взять от ненужного старого трансляционного громкоговорителя. Микросхемы подойдут серий К174 и К561, типов ЛA7 и ЛE5. Расположение их выводов одинаковое.

Усилитель получился исключительно экономичным: потребляемый ток от шестивольтовой батареи не превосходит 0,2–0,3 мА. Несколько громче усилитель звучит при напряжении питания 9 В. Отдаваемая звуковая мощность, разумеется, невелика и не превосходит 10–20 мВт. Это неизбежная плата за экономичность, но никто не мешает вам подобрать или сконструировать АС высокой чувствительности, громко звучащую и при такой мощности.

Получив столь высокую экономичность, автор просто не мог не попытаться использовать этот усилитель в громкоговорящем детекторном приемнике, уже более 10 лет верой и правдой прослужившем на даче. В нем уже был аналоговый мостовой усилитель класса АВ, собранный на двух транзисторах МП37 и двух МП41. Памятуя хорошее правило – не ломать уже сделанных вещей в надежде на лучшее, я просто собрал новый приемник с усилителем класса D (рис. 4).


Колебательный контур приемника образован емкостью антенны (луч 12 м) и индуктивностью катушки L1 (150–200 витков), настраиваемой стержнем от ферритовой антенны. Постоянная составляющая про детектированного диодом VD1 сигнала, сглаженная дросселем Др1 и накопительным конденсатором большой емкости С4, служит для питания усилителя. Ток и напряжение питания контролируются стрелочными приборами – головкой индикатора записи от магнитофона с током полного отклонения 0,3 мА и обычным вольтметром на 25 В, сделанным из головки на 50 мкА с добавочным сопротивлением 500 кОм.

Переменная составляющая продетектированного сигнала ЗЧ через регулятор уровня R1 и разделительный конденсатор С2 поступает на вход усилителя, описанного выше. Четвертый элемент МС не использован для уменьшения потребляемого тока. Дросселем Др1 послужила первичная обмотка такого же трансформатора от трансляционного громкоговорителя, как и Тр1. Хорошие результаты получаются также с малогабаритными сетевыми трансформаторами («силовичками») от старых блоков питания 220/9 или 220/12 В.

При настройке на радиостанцию «Маяк» 549 кГц приемник заработал даже чуть громче, чем прежний аналоговый, приборы показали 6 В при токе чуть больше 100 мкА, но звук явно носил «цифровой» оттенок. К тому же стал прослушиваться шум в паузах (в аналоговом усилителе его вообще не было), но это удается заметить лишь в полной тишине. В целом, конструкция оказалась вполне работоспособной, и ее можно рекомендовать для экспериментов и дальнейшего улучшения.

В. ПОЛЯКОВ, профессор

ЧИТАТЕЛЬСКИЙ КЛУБ


Вопрос – ответ


Говорят, скоро подросткам до 14 лет запретят появляться на улице после 22 часов без сопровождения взрослых. А что делать, если у меня по вечерам тренировки?

Никита Самусев,

г. Краснодар

Действительно, депутаты Госдумы приняли в первом чтении законопроект, согласно которому детям до 14 лет в ночное время будет закрыт доступ в общественные места – бары, ночные клубы, Интернет-кафе и т. д. без сопровождения взрослых.

Видимо, будут милиционеры интересоваться, что делают подростки в столь поздний час и просто на улице, в общественном транспорте. В таком случае надо четко отвечать, кто вы такой, откуда и куда следуете. Неплохо при себе иметь ученический билет, а также справку от родителей, в которой будут указаны ваше полное имя, домашний адрес и мобильные телефоны родителей с указанием их имени и отчества, чтобы милиция могла быстро навести все необходимые справки.


Мама не рaзрешает мне подолгу смотреть телевизор. Говорит, что от него человек устает не меньше, чем от работы за компьютером. Но ведь телевизор – это, вообще-то говоря, средство развлечения, большую часть времени он показывает кинофильмы, концерты, юмористические передачи и т. д.

Наташа Камолова,

г. Воронеж

И все-таки мама права. Как показали исследования наших и зарубежных психологов, телевидение перегружает мозг и нервную систему. Люди, проводящие многие часы у телевизора, особенно в юном возрасте, потом плохо спят по ночам, им снятся кошмары. Кроме того, длительный просмотр телепередач отрицательно влияет на зрение. А если смотреть телевизор еще и во время еды, то вы рискуете заполучить и нарушение процессов пищеварения, приводящее к избыточному весу.

Примерно то же можно сказать и о человеке, который подолгу сидит за монитором, играя в компьютерные игры или «бродя» по Интернету.


Говорят, в стране сокращается число военных училищ, которые готовят офицеров. Не слышали ли вы, какая судьба ждет в таком случае знаменитое Рязанское воздушно-десантное училище?

Александр Строгов,

г. Калуга

Как сообщил журналистом статс-секретарь – заместитель министра обороны генерал армии Николай Панков, с 1 февраля 2009 года на базе 6 военных вузов, в том числе в Военно-космической академии, Московском высшем общевойсковом командном училище, Рязанском воздушно-десантном училище, Военном институте физкультуры и Омском десантном училище, теперь будут готовить сержантов-профессионалов. Срок их обучения меньше, чем у офицеров – 2 года и 10 месяцев.

Это связано с тем, что число офицеров, необходимое Российской армии, в последние годы резко сократилось. Если в советское время ежегодно выпускали 60–65 тыс. лейтенантов, то ныне, поскольку численность наших войск уже сократилась вчетверо, стало требоваться 15–17 тысяч. А вскоре их станет и того меньше – не более 7–7,5 тыс. офицеров взводного и ротного звена в год.

Соответственно, все военные вузы будут сведены в 16 высших учебных центров. К 2013 году в армии намечено оставить всего 3 учебно-научных центра, 6 академий и 1 университет. В их состав и войдут нынешние профильные высшие военные училища, военные институты и НИИ. Сейчас же офицеров готовят 65 военных вузов.

Переход к новой системе будет осуществляться постепенно. Кого именно будут готовить в том или ином военном учебном заведении, каков будет набор, можно узнать в военкомате по месту жительства.

ДАВНЫМ-ДАВНО


Вероятно, первым мостом когда-то послужило дерево, случайно упавшее через ручей. Дерево по соотношению веса к прочности превосходит лучшую сталь, но оно недолговечно. Этруски, а вслед за ними и римляне научились строить арочные мосты из камня. Они могут простоять сотни и сотни лет, однако построить каменный мост с пролетами для прохода судов невозможно, да и возведение их трудоемко.

Долгое время удачно построенный мост был делом искусства и опыта мастера и приобретался нелегко. Так, например, в 1745 г. английский каменщик-самоучка Уильям Эдвардс построил мост через реку Тэфф. Через три года мост смыло, и Эдвардс построил его заново. И опять неудачно. Лишь с третьей попытки ему удалось поставить мост, который простоял более двухсот лет.

Эпоха железных мостов началась в конце XVIII века, когда в Англии упал спрос на железо. Чтобы использовать накопившиеся запасы, в 1779 г. инженеры Дерби и Уилкинсон возвели железный мост вблизи Кольбрукдейла. Высота его пролета достигала 72 м, а высота – 29 м, что позволяло проходить любым парусным судам.

Мост получился удачным, но это было дело случая. Рассчитывать мосты тогда не умели, да и стандартов на металл не было. Поэтому из выбранного материала строили и испытывали модель, а уж потом приступали к строительству моста в натуральную величину. Первую надежную теорию расчета мостов и строительных сооружений ввел в практику русский инженер Дмитрий Иванович Журавский (1821–1891).

И все же, по неписаному кодексу чести русских инженеров, главный конструктор «встречал» первый поезд, стоя под мостом.

ПРИЗ НОМЕРА!


Наши традиционные три вопроса:

1. Почему на обычной железнодорожной колее трудно, а то и невозможно пускать вагоны большой грузоподъемности? Ведь их можно нарастить, скажем, в высоту и в длину, а не только в ширину?

2. Представьте себе, вы посылаете одного автоматического разведчика на Марс, а другого – на Луну. Каким легче управлять по радио? Почему?

3. Почему мыльные пузыри в конической трубке «бегут» к ее тонкому концу?

ПРАВИЛЬНЫЕ ОТВЕТЫ НА ВОПРОСЫ

«ЮТ» № 1 – 2009 г.

1. Сжиженные газы имеют низкую температуру, поэтому для предотвращения их испарения важно иметь сосуд с минимальной площадью поверхности. При заданном объеме площадь поверхности сферического сосуда минимальна из всех возможных.

2. Сила Архимеда получается как разность между силами, действующими на тело сверху и снизу. Если подводная лодка лежит на мягком грунте, то направленная вверх сила давления воды на ее дно не действует. Остается лишь действующая сверху сумма сил давления, которая не дает ей всплыть.

3. При электросварке обмазка электродов плавится и заливает шов, предотвращая его окисление.

* * *

Поздравляем с победой Владимира ПЕТРОВАиз г. Санкт-Петербурга. Он получает приз – универсальный стрелочный тестер.

Близки были к победе Михаил Бахтиниз с. Елховка Самарской обл. и Костя Кашицыниз п. Ферзиково Калужской обл.

* * *

А почему?Как нам пробраться в наномир? Почему гора Эльбрус считается одним из главных чудес России? Какими были первые детские игрушки? Как ученым удалось разгадать секрет клинописи – древнейшей письменности человечества? На эти и многие другие вопросы ответит очередной выпуск «А почему?».

Школьник Тим и всезнайка из компьютера Бит продолжают свое путешествие в мир памятных дат. А читателей журнала приглашаем заглянуть в берлинский Музей техники.

Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики.

ЛЕВША В 1915 годк «Комитет сухопутных кораблей» Англии завершил постройку бронированного трактора «Маленький Вилли». Каким был первый в мире танк, вы узнаете из статьи в журнале и сможете выклеить модель танка «Mark I» для своего музея на столе.

Юные электронщики познакомятся с простой, но надежной схемой УКВ-приемника на одной микросхеме.

Любители механики построят действующую модель катера для летних соревнований в открытых водоемах.

Владимир Красноухов опубликует очередную головоломку, и, как всегда, «Левша» познакомит вас с очередными итогами конкурса «Хотите стать изобретателем?» и даст несколько полезных советов.

* * *




    Ваша оценка произведения:

Популярные книги за неделю