355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2009 № 06 » Текст книги (страница 4)
Юный техник, 2009 № 06
  • Текст добавлен: 29 сентября 2016, 05:49

Текст книги "Юный техник, 2009 № 06"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

ПАТЕНТНОЕ БЮРО



В этом номере Патентного бюро мы расскажем об ускорителе космических аппаратов и устройстве, способном сократить расход газа при кипячении воды, В.И.Свиридоваиз г. Балашихи Московской области, а также о космическом реактивном двигателе Юрия Акашеваиз поселка Мамаевка Переволоцкого района Оренбургской области.


ПОЧЕТНЫЙ ДИПЛОМ

УСКОРИТЕЛЬ КОСМИЧЕСКИХ АППАРАТОВ…

…использующий малоизвестное физическое явление – эффект несохранения четности, – предлагает В.И. Свиридов, наш преданный читатель, открывший для себя журнал еще 53 года назад, когда вышел первый номер «ЮТ».

Эффект, который предлагает использовать Валентин Ильич, был открыт в 1957 г. физиком китайского происхождения, профессором Массачусетского университета By Цзянсюн. Суть его такова. By Цзянсюн охладила образец радиоактивного кобальта до температуры 0,03 Кельвина, поместила в сильное магнитное поле и обнаружила, что бета-частицы летят по направлению силовых линий магнитного поля и вылетают у полюсов.

По всем известным на тот момент законам физики ожидалось, что из каждого полюса должна была вылетать ровно половина частиц. Но в данном случае из одного полюса магнита вылетало 40 % частиц, а остальные 60 % – из другого. Это явление назвали эффектом несохранения четности. Объяснили же его два других китайских физика, также работавших в США, – Ли и Янг, удостоенные за это в 1960 г. Нобелевской премии.


Ву Цзянсюн(1912–1997).

Физическая суть явления сложна и требует отдельного рассмотрения. Для нас сейчас важно другое. Все новые открытия рано или поздно находят техническое применение.

В.И. Свиридов первый нашел для открытия By Цзянсюн практическое применение – он предлагает создать на его основе «ускоритель космических аппаратов», проще говоря, реактивный двигатель. Двигатель состоит из установленного на космическом аппарате термоса с охлажденным стержнем из кобальта 27Co 60. Стержень окружен сверхпроводящей обмоткой, по которой протекает ток. Она создает магнитное поле, необходимое для получения эффекта, наблюдавшегося в опытах By Цзянсюн.


Ускоритель космических аппаратов:

1– сверхпроводящая обмотка; 2– стержень из радиоактивного кобальта; 3– охлаждающая среда.

Поскольку количество испускаемых частиц различно, то различны и силы отдачи, действующие на каждый из концов стержня. А разность этих сил способна двигать космический аппарат, Валентин Ильич полагает, что при массе кобальта, равной массе аппарата, за период полураспада 27Со 60 равный 5,27 года, можно достичь скорости 15 км/с. Мы проверили его предположения путем расчета по формуле Циолковского: U = C∙ln (М нк)где U– скорость ракеты; С– скорость струи, вытекающей из двигателя; М н– масса ракеты в момент старта; М к– масса ракеты после выгорания топлива.

Опуская подробности вычислений, укажем, что изобретатель ошибся в цифрах. Ракета с таким двигателем за пять лет может разогнаться гораздо быстрее, чем он полагает, – до скорости более 100 км/с!

Экспертный совет присуждает Валентину Ильичу Свиридову Почетный диплом за его идею ускорителя космических аппаратов, использующего явление несохранения четности.


Разберемся не торопясь

ЗНАЧИТЕЛЬНО СОКРАТИТЬ РАСХОД ГАЗА…

…на кипячение воды в кофейнике предлагает тот же В.И. Свиридов. Для этого, считает он, кофейник следует зачернить и поместить в кожух-экран из нержавеющей стали. Поверхность кожуха должна быть зеркально отполирована изнутри и снаружи. В верхней его части проделаны отверстия для выхода продуктов сгорания. Снизу экран дополняется специальной решеткой, надетой на горелку, которая должна сконцентрировать тепло продуктов сгорания на донышке кофейника.

Вот как, по замыслу изобретателя, вся эта система должна работать. Обычно горячие продукты сгорания растекаются во все стороны, а их излучение в основном нагревает комнату. Но, как полагает автор идеи, полированная поверхность нержавеющей стали отразит около 97 % тепловых лучей обратно на поверхность кофейника. Поскольку она зачернена, тепловые лучи ею будут поглощены и нагреют кофейник. Таким образом потери тепла уменьшатся.

К этому, опять же по предположению изобретателя, добавится значительная доля тепла горелки, собранного на донышке кофейника при помощи решетки. В итоге расход газа на подогрев воды должен сократиться в 5 раз! Так ли это?


Схема кожуха, сберегающего тепло газовой горелки.

К сожалению, ответить на этот вопрос нелегко. Чтобы знать, как подействует решетка, установленная между горелкой и дном кофейника, нужно знать скорость и температуру проходящих через нее продуктов сгорания, характер их движения. При неправильно выбранных параметрах движения газов и размерах отверстий, решетка может не увеличить, а уменьшить приток тепла. Между тем В.И. Свиридов не идет далее самых общих рассуждений. Но и тут, например, уповая на роль излучения, отраженного от стенок экрана, он допускает ошибку. Основную часть теплового излучения, с длиной волны от 0,8 до 5 мк, нержавеющая сталь отражает не 97 %, а менее чем 50 %. Поэтому кожух слабо уменьшит потери на излучение. Несомненно, какая-то польза от его применения будет, но оценить ее без весьма трудоемких расчетов невозможно.


ПОЧЕТНЫЙ ДИПЛОМ

ЭЛЕКТРИЧЕСКИЙ РЕАКТИВНЫЙ ДВИГАТЕЛЬ

…описал в своем письме девятиклассник Юрий Акашев из поселка Мамаевка Переволоцкого района Оренбургской области. Двигатель состоит из вольфрамовой камеры, соединенной с источником высокого напряжения и играющей роль катода. В камеру подается водород. Затем его поток поступает в спиральный конический канал, где начинает вращаться с большой скоростью. Далее он попадает в разрядную камеру. Здесь под действием высокого напряжения на конце заостренного металлического стержня он ионизируется, а потом под действием все того же напряжения ускоряется.

Вообще говоря, после этого поток мог бы уже покинуть двигатель, создав за счет ускорения, вызванного электрическим полем, реактивную тягу. Но юный изобретатель пропускает его через канал в сердечнике электромагнита, где он «дополнительно нагревается до 25 тысяч градусов и приобретает скорость 10 км/с.

Стоит отметить, что при столь высоких температурах скорость струи водорода должна достигнуть не 10, как считает Юрий, а 30 и более км/с.


В целом письмо Юрия производит отрадное впечатление. Автор хорошо знает физику, знаком со сваркой в инертных газах. Описанное им устройство для ввода водорода в двигатель поразительно напоминает новейшую «электронную пушку» тлеющего разряда. Все это говорит о высокой эрудиции автора.

Экспертный совет присуждает Юрию Акашеву Почетный диплом за проект электрического реактивного двигателя.

Выпуск подготовил А. ИЛЬИН

* * *


НАШ ДОМ
Солнце под потолком



«Висит груша, нельзя скушать» – эта загадка про электролампочку уже устарела. Сегодня лампочки бывают не только грушевидной формы, но и шаровидные, в виде длинных трубок, а иногда те же трубки для компактности скручены в спираль…

Различаются лампочки и по принципу своей работы. В лампах накаливания источником света является раскаленная током спираль, в люминесцентных лампах светится инертный газ, а в светодиодах свечение дают полупроводниковые переходы…

Какой источник света выбрать? Каковы преимущества и недостатки того или иного светильника? Давайте попробуем разобраться.


Конечно, любой электрический светильник лучше факела, лучины, свечи, керосиновой лампы или газового рожка. Это люди поняли еще в начале XX века, отдав предпочтение электричеству.

Поначалу источником света служила электрическая дуга. Ею пользовались, например, в прожекторах. А вот для обычного освещения больше подошла лампа накаливания Эдисона. Американский изобретатель, проделав около 1000 опытов, не только нашел лучший материал для нити накаливания, но и организовал первое массовое производство электроламп. Скажем ему за это спасибо.

Лампы накаливаниясо времен Эдисона исправно служат и по сей день. Это самые дешевые источники света. Цена обычной электролампочки – от 9 рублей, а обещанное время горения – около 1000 часов. Немаловажное значение имеет и то обстоятельство, что промышленность ныне выпускает огромное количество самых разнообразных светильников именно для таких ламп.

Но есть, конечно, у этих ламп и недостатки. Прежде всего, они имеют КПД, как у паровоза, – на свет приходится всего около 5 % потребляемой энергии, а все остальное переводится в тепло. Для зимы это, может, и неплохо, а вот летом такая «грелка» ни к чему. Кроме того, лампы накаливания крайне чувствительны к повышению напряжения и могут сразу же перегореть. А вот если питать такую лампочку с недокалом, через понижающий реостат, она может гореть годами. Правда, не забывайте, что сам реостат тоже берет на себя часть энергии, так что экономия может оказаться иллюзорной.

Люминесцентные лампыдневного света потому и получили распространение примерно полвека тому назад, что имеют высокую светоотдачу. Например, люминесцентный светильник мощностью 23 Вт дает столько же света, сколько и 100-ваттная лампа накаливания. Кроме того, срок службы таких ламп – до 20 000 часов, и они практически не греются. Стоят тоже не так уж дорого – от 50 рублей.

Недостатки же таковы. Сами лампы имеют очень большие габариты. Для включения они требуют специальный пускорегулирующий блок. При работе довольно часто начинают мигать, что вызывает раздражение. Но даже если люминесцентная лампа и работает нормально, свет ее все же мерцает, что вызывает повышенную утомляемость глаз. Многим также не нравится слишком холодный, мертвенный свет, который дают такие светильники. Требовательны они и к стабильности напряжения – при пониженном могут не загореться, а при повышенном быстро выходят из строя. Кроме того, многие из таких светильников содержат ртуть, так что разбивать их нельзя, а по выходе из строя следует утилизировать специальным образом…

Галогенные лампынакаливания имеют КПД почти вдвое выше обычных лампочек. Время работы – до 4000 часов. Однако такие лампы требуют специального светильника и блока питания, поскольку их рабочее напряжение – 12 В, в то время как в стандартной электросети обычно 220 (или 127) В. Для питания лампочек, встроенных, например, в подвесной потолок, такой блок стоит от 400 руб. Кстати, модуль питания должен входить в комплект поставки светильника.

Еще одна особенность: браться за поверхность стекла лампы пальцами нельзя. Она работает при очень высокой температуре, и отпечатки пальцев приводят к тому, что стекло треснет. Если вы случайно коснулись рабочей части колбы, тщательно смойте отпечатки пальцев до включения лампы в сеть. Непривычен и спектр света такой лампы. Он не желтоватый, как обычно, а скорее с фиолетовым оттенком.


1.  Нить лампочки накаливания.


2.  Современная люминесцентная лампа.


3.  Галогенная лампа.


4.  Плазменная лампа.

Энергосберегающие лампы все больше входят в обиход. КПД у них достигает 20 %, срок работы – до 10 000 часов. Вот только стоят они дороговато – от 100 рублей. Но цена, если верить рекламе, с лихвой себя окупит продолжительностью эксплуатации.

Однако практика показала, что, во-первых, такие лампы загораются в полную силу не сразу, а через 1–2 минуты после включения. Во-вторых, из-за своих габаритов они помещаются далеко не во всякий светильник. В-третьих, рабочий ресурс такой лампы резко снижается при частых включениях-выключениях. В-четвертых, эти лампочки в зависимости от цветовой температуры дают свет разного оттенка – от желтоватого до мертвенно-белого, даже синеватого, чего многие не любят.

Наконец, в-пятых, сами лампочки – неженки; они не переносят холода и при температурах ниже 0 градусов Цельсия быстро выходят из строя. Так что делайте выводы сами…

Мы же к сказанному выше добавим, что освещение в доме зависит не только от типа лампочки и светильника, но и от их расположения. Это раньше комнату освещала одна-единственная лампочка, которую размещали под потолком в центре комнаты и прикрывали абажуром. Сейчас дизайнеры предлагают наряду с общим освещением использовать зоновое. Например, если вы сидите за рабочим столом, то включайте настольную лампу; ложитесь спать – используйте прикроватный светильник, расположенный на стене.


Такие лампы не всегда экономят деньги.


Особый уют придают лампочки в матовых или молочных колбах, дополнительно прикрытые плафоном белого или зеленоватого цвета. Удобно, когда домашняя электросеть имеет регулятор накала. Тогда вы можете регулировать яркость освещения; кроме того, лампы, горящие вполнакала, служат дольше.

Имейте также в виду: одна лампочка мощностью, например, в 100 Вт, дает световой поток больше, чем две лампочки по 50 Вт. Так что многорожковые люстры себя, по большому счету, не оправдывают.

Публикацию подготовил С. КАЛУГИН


Кстати…

«ВЕЧНЫЕ» ЛАМПОЧКИ

О том, что некоторые лампочки накаливания могут гореть если не вечно, то очень долго, вовсе не анекдот. У одного из сотрудников нашей редакции такая лампочка прослужила четверть века. И служила бы, наверное, еще, если бы ее случайно не разбили при переезде.

А вот у англичанки Роуз Ален такая лампочка исправно служит и по сей день, уже 66 лет. Она купила 40-ваттную лампочку в 1943 году в универмаге «Вулворт». Лампочка пережила и Вторую мировую войну, и сам универмаг, который разорился сравнительно недавно.

Самое интересное, специалисты не могут сказать, почему эти лампочки оказались долговечнее других. Ведь они сделаны точно по той же технологии, как и остальные, срок службы которых редко превышает год.

КОЛЛЕКЦИЯ «ЮТ»


Винтовка СВД – снайперская винтовка Драгунова – была разработана в 1958 году, а в 1963 году поступила на вооружение Советской армии и используется по настоящее время.

По принципу действия СВД отчасти напоминает автомат Калашникова, похожа у них и форма затвора. Ударный механизм – куркового типа, с такой же формой боевой пружины, как у АК-47. Центр тяжести заряженной винтовки располагается почти точно на уровне магазина. Для удобства прицеливания на приклад крепится регулируемая «щека». Для рукопашного боя к СВД может крепиться штык-нож. Магазин вмещает десять патронов, расположенных в шахматном порядке.

В конце восьмидесятых годов прошлого века появился вариант СВД со складывающимся прикладом – СВД-С а в 90-х гг. – модификация СВУ (снайперская винтовка укороченная).

Кроме стран бывших республик СССР, снайперская винтовка Драгунова состоит на вооружении ряда других стран. В Румынии, Китае и Ираке производили или производят собственные варианты СВД. От российского образца они отличаются незначительно.


Тактико-технические характеристики:

Длина оружия… 1225 мм

Длина ствола… 620 мм

Калибр… 7,62 мм

Патрон…7,62x54R

Масса без патронов…4,30 кг

Скорострельность… 30 выстрелов/мин

Прицельная дальность… 1200 м

Начальная скорость пули… 830 м/с

Емкость магазина… 10 патронов


Спортивное купе Nissan Zбыло впервые представлено публике в 1966 году и выпущено с тех пор в количестве почти миллион экземпляров. А в 2002 году место на конвейере заняло новое поколение этой модели – Nissan 350Z.

Резкие очертания, длинная колесная база и широкий кузов в сочетании с вертикальными ксеноновыми фарами создают впечатление агрессивности, а шестицилиндровый мотор мощностью 260 л.с., 6-ступенчатая механическая коробка передач (может быть установлен, правда, 5-диапазонный автомат) и особая тормозная система говорят о спортивном характере автомобиля. Даже выхлопная система настроена таким образом, чтобы подчеркнуть низкий рев мотора.

Основные материалы внутри салона – кожа и алюминий. Сиденья имеют ярко выраженный спортивный профиль. Педали сделаны из перфорированного алюминия; они жестче и информативнее, чем у обычного автомобиля.


Технические характеристики:

Длина автомобиля… 4,315 м

Ширина… 1,815 м

Высота… 1,325 м

Дорожный просвет… 110 мм

Колесная база… 2,650 м

Снаряженная масса… 1537 кг

Допустимая полная масса… 1820 кг

Объем двигателя 3498 см 3

Мощность двигателя… до 358 л.с.

Максимальная скорость… 250 км/ч

Объем топливного бака… 80 л

Диаметр разворота… 11 м

Время разгона до 100 км/ч… 6 с

Средний расход топлива… 11,7 л/100 км

ЗА СТРАНИЦАМИ УЧЕБНИКА
О чем рассказала старая книга

Наука и техника так быстро шагают вперед, что иногда без внимания остаются поистине удивительные находки ученых. В редакцию попала редкая книга, написанная семьдесят восемь лет назад. Автор ее, наш старейший и уважаемый академик Абрам Федорович Иоффе. Для того, кто сможет в ней разобраться, эта книга читается, как приключенческий роман.

Физики в то время все делали сами: электронные лампы, источники питания, измерительные приборы. Без помощи электроники они измеряли тысячные доли вольта приборами с потрясающими даже по современным меркам параметрами. Сами делали очень легкие высоковольтные конденсаторы, которые при включении в высокочастотную цепь начинали вести себя как громкоговорители, управляли многоамперными токами посредством токов в миллионы раз меньших и делали это при помощи очень странных устройств. Вот одно из них.

Представьте: закругленная пластина из шифера, литографского камня или агата толщиною около 10 мм. С плоской стороны к ней приклеена медная обкладка, а с другой, закругленной, закреплена гибкая тонкая фольга из алюминия или бронзы.

При подаче постоянного напряжения 220 В на этот своеобразный конденсатор листок фольги прижимался к диэлектрику с силой порядка одного килограмма! Попробуйте посчитать эту силу через формулы из учебника, и у вас получится сила примерно в миллион раз меньше!


Академик А. Ф. Иоффе(1880–1960).

Комментируя это удивительное устройство, академик писал: «Мы не можем останавливаться… на причинах этого весьма интересного явления, заметим только, что эти силы могут быть объяснены тонким, плохо проводящим переходным слоем между полупроводником и металлом, на который и «садится» все напряжение…»

Агат, типографский камень и шифер в то время называли полупроводниками. Но смысл в это слово вкладывали совсем не тот, что сегодня. Тогда он означал лишь то, что электрическое сопротивление этих веществ меньше, чем у изоляторов, но больше, чем у металлов.

Но вернемся к описанию устройства. Получаемая в нем сила применялась для замыкания контактов, через которые могли проходить токи порядка нескольких ампер. Получалось реле, которое потребляло не более 0,00011 Вт.

На подобном принципе работало и другое реле. На металлический вал надевали цилиндр из литографского камня, а сверху легко прижимали к нему гибкую стальную ленту. Цилиндр вращали от электромотора, и при обычных условиях сила трения ленты о цилиндр была очень мала. Но стоило подать напряжение, как она возрастала в сотни раз, и электромотор начинал тянуть ленту. Такое устройство могло переключать токи в сотни ампер, но этим его возможности не исчерпывались.


Сверхчувствительное конденсаторное реле, использующее необычный эффект в камне:

Y– верхний контакт; I– гибкая пластина из фольги; Н– слой камня; II– нижняя обкладка; J– нижний контакт.


Реле с механическим усилением мощности:

J– металлический вал; I– агатовый цилиндр.

Как выяснилось, сила трения здесь была пропорциональна приложенному напряжению и могла изменяться с частотой в несколько килогерц. В одном из экспериментов стальную ленту соединили с диффузором, и получился громкоговоритель. Звучал плохо, но очень громко. Это был фактически механический усилитель низкой частоты.

Тем, кто хотел бы повторить опыты академика Иоффе, поясним: шифер, примененный в конденсаторе, это совсем не тот знакомый нам волнистый кровельный материал из асбоцемента. В опыте применялся минерал с тем же названием – широко распространенный в природе продукт кристаллизации глины. Добытый из земли природный шифер в наши дни разрезают на плитки и ромбики, предназначенные для покрытия полов и крыш. Так что его можно недорого купить на строительных рынках.

Типографский камень – это особый вид твердого мелкозернистого известняка. Ранее его применяли в типографском деле, но заменили металлами и пластмассами. Сегодня твердый известняк идет на производство щебня и строительных плит.

Наконец, агат – это разновидность халцедона. Основная же масса его представляет собою поликристаллический кварц. Его в природе достаточно много, а обрабатывать сравнительно легко.

А. ВАРГИН

Рисунки автора

ПОЛИГОН
Строим дископлан


В 1956 г. жители юго-запада Москвы неоднократно видели бесшумно проплывавший в небе диск. Это был первый российский планер-дисколет, который после многих лет работы создал бывалый летчик и опытный авиаконструктор М.С. Суханов. Несколько позже более простой дископлан построил студент МАИ Анатолий Гремяцкий.

Летательные аппараты с дисковым крылом отличаются устойчивостью, простотой пилотирования и компактностью. Так, одноместный планер Гремяцкого имел крыло диаметром всего 3,5 м. Крыло обычного типа имеет сложный каплевидный профиль, что значительно усложняет его изготовление, дисковое же крыло значительно проще.

Каркас его напоминает велосипедное колесо, состоящее из обода, внутри которого, подобно спицам, натянуты стальные проволочные расчалки, закрепленные на центральном стержне. Чтобы вся конструкция стала прочной, обод должен находиться в одной плоскости.

Такую конструкцию несложно выполнить в натуральную величину, но точно сбалансировать крыло небольшой модели практически невозможно. Поэтому тем, кто решит сделать модель дископлана, советуем сделать крыло из ватмана. Оно состоит из двух конических поверхностей, соединенных между собой при помощи пенопластовых ребер – стрингеров. Выкройки поверхностей показаны на рисунке, там же изображен и стрингер.

Крыло собирается в определенном порядке. Вначале склеиваете его нижнюю и верхнюю части. Затем вырезаете из пенопластовых лотков стрингеры и приклеиваете их двухсторонним скотчем к нижней поверхности крыла. Затем смазываете верхние ребра стрингеров водорастворимым клеем, например ПВА, и сажаете на них верхнюю поверхность. После этого края поверхностей крыльев точно совмещаете, прихватываете кусочками скотча и промазываете клеем на нитрооснове – применение клея, содержащего воду, может привести к короблению кромки крыла. В качестве фюзеляжа, как это часто делают на схематических моделях планеров, используйте сосновую рейку 10x10 мм с грузом и хвостовым оперением. Соединение крыла и фюзеляжа – при помощи колодки с крючками из алюминиевой проволоки. Их можно присоединить к крылу скотчем. Колодка крепится к рейке при помощи резиновых колец. Изгибая крючки, можно менять угол атаки крыла, чтобы прочувствовать его влияние на полет модели.

Передвигая колодку, вы добьетесь наибольшей устойчивости полета.



Подробности для любознательных

Планер-дископлан отличается исключительной простотой пилотирования. В отличие от М.С. Суханова, сам А. Гремяцкий летать не умел. Казалось бы, следует пойти в аэроклуб и там пройти основательную школу. Но нет, он попросту сел на свой планер и после нескольких проб научился летать в совершенстве. Это стало возможно только потому, что крыло в форме диска гораздо устойчивее в полете, чем крыло обычного типа.

Дело в том, что полет на крыле большого удлинения требует очень строгого соблюдения угла атаки – угла встречи крыла с набегающим на него потоком воздуха. Если этот угол чуть меньше, чем нужно, теряется подъемная сила, а с нею и высота. Чуть больше – подъемная сила возрастает, но с ней растет и сопротивление. А если угол атаки увеличить еще больше, подъемная сила катастрофически падает. И, даже вернув угол атаки в прежнее положение, восстановить подъемную силу удается не сразу. Нужно время, пока крыло сможет развить свою полную подъемную силу и сможет держать аппарат в воздухе, как и прежде. Если все эти перемены происходят на малой высоте при заходе на посадку, то вполне возможно врезаться в землю.

В отличие от обычного, крыло, имеющее форму диска, создает подъемную силу даже при углах атаки более 45°. Поэтому на планере с таким крылом и может летать даже начинающий. Для посадки планеру-дископлану достаточно дорожки длиной 10–15 м. В момент приближения к земле, когда высота полета становится равна диаметру крыла, возникает «динамическая воздушная подушка» и посадка происходит исключительно мягко.


    Ваша оценка произведения:

Популярные книги за неделю