Текст книги "Юный техник, 2005 № 03"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 5 (всего у книги 5 страниц)
СДЕЛАЙ ДЛЯ ШКОЛЫ
Чуткое пламя
Когда ученые поняли, что звук – это не что иное, как колебания воздуха, им сразу же захотелось найти этому непосредственное подтверждение. В наши дни это просто: подключил микрофон к осциллографу – и смотри себе на экране во всех подробностях графическую зависимость амплитуды от времени. Раньше такой возможности не было. Но.
На первых порах применяли песок. Насыпали его в трубку и создавали в ней звук. Сначала песчинки беспорядочно прыгали. Но как только частота звука приближалась к резонансной, они выстраивались правильными рядами в узлах стоячих волн. Это, конечно, было подтверждением колебательной природы звука, но подтверждением неполным. Ряды песчинок ничего не говорили о зависимости амплитуды колебаний от времени.
В 1858 г. американский физик Д.Леконт обратил внимание на способность пламени газовой горелки реагировать на звук. Произошло это на концерте небольшого оркестра. В то время широко применялось освещение газом. Из кирпичной стены близ рояля выступали две газовые горелки. И когда зазвучала музыка, пламя одной из них начало пульсировать. Особенно это было заметно, когда раздавались сильные тона виолончели. Какова же чувствительность пламени? Она оказалась очень велика. И вы можете в этом убедиться в школьной лаборатории.
Возьмите широкую трубку, диаметром примерно 25 мм (рис. 1).
Торцы ее закройте, на концах просверлите два одинаковых отверстия диаметром 2 мм, а точно посередине между ними сделайте отвод и присоедините шланг к школьной газовой сети. Включите газ и зажгите его возле отверстий. Если трубка горизонтальна, то высота язычков пламени одинакова. Но стоит ее наклонить, и язычок пламени, оказавшийся ниже, станет длиннее, чем тот, что наверху. Объясняется это известной зависимостью атмосферного давления от высоты. Расчет показывает, что пламя здесь реагирует на давление, составляющее всего 0,00001 от давления в комнате. Столь чуткого и одновременно столь же простого прибора техника еще не знает!
С трубкой диаметром 50–80 мм и длиною около метра можно поставить другой опыт. По прямой линии просверлите вдоль нее через каждые 100 мм двухмиллиметровые отверстия, сделайте подвод для газа. Один из торцов закройте жестяной крышкой, другой – упругой резиновой пленкой. Подайте газ и зажгите его возле каждого отверстия. Появятся спокойные, одинаковые по длине язычки пламени. Приблизьте к торцу, закрытому пленкой, громкоговоритель, соединенный со звуковым генератором. Установите на нем частоту, которой соответствует длина звуковой волны, равная длине трубки. Часть звуковых волн начнет отражаться от закрытого торца трубки, возвращаться назад и складываться со звуком, приходящим от громкоговорителя. Так образуется стоячая звуковая волна. Язычки пламени вдоль всей трубки изменят свою длину (рис. 2).
Объясняется это просто. Амплитуда колебаний волны, а значит, и давление воздуха на концах трубки посередине – в узлах волны – близки к нулю. При малом давлении газа в этих точках огоньки могут даже погаснуть. Там, где амплитуда звуковой волны должна быть максимальной, максимальна и высота язычков пламени. В целом хорошо видно, что они выстраиваются по синусоиде, и это убеждает нас в правильности теории. И хотя сегодня этот факт легко подтверждается при помощи электронной аппаратуры, описанный опыт из-за его наглядности демонстрируют во многих университетских лабораториях мира. При помощи чувствительных к пламени газовых горелок в начале XX века делали даже системы оптической телефонной связи. Передатчиком служила газовая горелка, к пламени которой при помощи резиновой трубки непосредственно подводился человеческий голос (рис. 3).
Приемник – вогнутое зеркало с установленными в его фокусе селеновыми фотоэлементами, соединенными с батареей гальванических элементов и телефоном (рис. 4).
Фотоэлементы изменяли свое сопротивление в зависимости от амплитуды падающего на них света. К сожалению, газовые горелки 99,5 % своей мощности излучают в инфракрасном диапазоне, а именно к нему-то селеновые фотоэлементы почти не чувствительны. Поэтому дальность передачи получалась небольшой – десятки метров. Система за свою простоту и наглядность применялась лишь в учебных целях.
Сегодня чувствительность датчиков теплового излучения в миллионы раз выше, чем у селеновых. Этого достаточно, чтобы с прежними горелками вести связь на десятки километров, если повысить мощность горелки и усилить звук голоса.
Н. АЛЕКСАНДРОВ
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Гори, гори, моя свеча!
Когда-то термоэлектрогенератор, работавший от керосиновой лампы, обеспечивал питание пяти-семи радиоламп приемника среднего класса. Предельно экономичный транзисторный приемник можно питать от термоэлектрогенератора, составленного из термопар, нагреваемых, например, свечкой. Принципиальная схема такого приемника изображена на рисунке 1.
Сигналы радиостанций улавливаются небольшой внешней антенной WA1 в виде гибкого монтажного провода, имеющего длину порядка 3…5 метров. Сигнал поступает на колебательный контур, состоящий из катушки индуктивности L1 и переменного конденсатора С2. Далее он попадает на транзистор VT1. Его переход база-эмиттер выполняет функцию детектирования. Ненужная далее высокочастотная несущая сигнала отводится «в землю» через конденсатор С3, а «звуковая» компонента сигнала выделяется на резисторе R1, усиливается транзистором VT2 и поступает на телефон BF1.
С помощью переключателя SA1 сигнал, циркулирующий в контуре L1, С2, можно брать полностью или частично; от этого зависит степень связи детектора с контуром и нагрузка последнего, влияющая на резонансные свойства. Если в зоне приема на близких частотах работают станции, прослушиваемые одновременно, уменьшение связи детектора с контуром улучшит его избирательность.
Чтобы повысить громкость приема, антенну следует поднять повыше, например, закинув на ветви дерева. Тому же способствует заземление – штырь, воткнутый в землю. Эффективность его, кстати, будет выше, если земля хорошо увлажнена.
В схеме один наладочный узел – резистор R1. Увеличение его номинала до некоторого уровня повышает громкость воспроизведения передачи, но дальнейший рост приводит к искажениям.
Катушку L1 намотайте на бумажном каркасе, надеваемом на стержень из феррита 600НН, имеющий размеры 115x20x3 мм. Для приема в диапазоне СВ катушка содержит 70 витков литцендрата ЛЭ7х0,7 с отводами от 30 и 15 витков, для диапазона ДВ – 220 витков провода ПЭВ-1 0,1 с отводами от 100 и 50 витков. Можно использовать также готовые магнитные антенны от портативных приемников, дополнив их катушками связи (для СВ – порядка 20 витков, для ДВ – 70 витков провода ПЭЛШО 0,15).
Катушки связи поместите на отдельные бумажные каркасы; перемещая их вдоль антенного стержня, можно менять степень связи контура с детектором.
На рисунке 2 показан вариант схемы входных цепей, оснащенных катушкой связи L2.
В качестве переменного конденсатора подойдет любой двухсекционный блок КПЕ с параллельно соединенными секциями. Прослушивание передач обеспечит чувствительный высокоомный телефон серий ТОН-2, ТА-56. Конечно, придется поэкспериментировать с комбинированным включением термопар, чтобы получить достаточно эффективный прием.
Ю. ПРОКОПЦЕВ
КНИЖНАЯ ПОЛКА
Прежде чем сесть на мотоцикл…
…Из травматологического отделения больницы звонят в магазин спорттоваров:
– Вы сколько мотоциклов сегодня продали?
– Шесть. А что?
– Значит, один еще где-то катается…
В этом анекдоте, как и в любой шутке, есть и доля истины, заключающаяся в суровой прозе жизни: далеко не всякая поездка на мотоцикле заканчивается благополучно…
Хотите, чтобы ваш байк приносил только удовольствие, но не ушибы, переломы, увечья?.. Тогда, прежде чем сесть за руль, не поленитесь прочесть две книжки одного автора. И хотя называются они довольно скучно – «Устройство и техническое обслуживание мотоциклов» и «Основы управления мотоциклом и безопасность движения», Иван Валентинович Ксенофонтов, сам мотоциклист с большим стажем, сумел написать о многих полезных вещах без лишнего занудства.
Знаете ли вы, например, какой мотоцикл лично вам лучше подходит – шикарный «Харлей» или «сумасшедшая табуретка»? Как правильно должен быть одет мотоциклист? Что он должен делать непременно всякий раз, прежде чем оседлать своего «железного коня»? Какой мотоцикл – двух-, трех– или четырехколесный – устойчивей на трассе?
Ответы на эти и многие другие вопросы вы найдете в не толстых, но очень насыщенных полезной информацией книжках.
В заключение остается лишь добавить, что они не только хорошо написаны, но и отменно проиллюстрированы – цветными фотографиями, рисунками, схемами, которые проясняют многое даже лучше, чем слова. А выпущены эти книжки в свет совместными усилиями издательств «За рулем» и «Академия».
В. ВИКТОРОВ
ЧИТАТЕЛЬСКИЙ КЛУБ
Вопрос – ответ
Нам с другом известно, что палки для обычных беговых лыж нужно подбирать так, чтобы верхний конец палки доставал до подмышки. А вот у горнолыжников палки короче. Насколько?
Сережа Канаков, 12 лет,
г. Мурманск
Если горнолыжник в лыжных ботинках выпрямится и сожмет в кулаке острие перевернутой палки, прижав локоть к туловищу, то его плечо и предплечье должны образовать прямой угол. Для справки: при росте 180 см, подойдут палки длиной 1,25 м. А уж какими они будут – прямыми или по последней моде несколько изогнутыми, – дело вкуса.
Расскажите, кто и когда придумал кассовый аппарат.
Саша Хлебников, 11 лет,
г. Видное
Первый механический кассовый аппарат сконструировал в 1878 году изобретатель Джеймс Ритти из американского города Дейтона. Надо сказать, что по своей профессии он был вовсе не технарем, а ресторатором. Однажды ему показалось, что бармен сдает вовсе не всю выручку. И Ритти стал думать, как бы навести порядок в отчетности.
С этими мыслями он и уехал в отпуск в Европу. И во время двухнедельного плавания на пароходе заглянул от нечего делать в машинное отделение, стал наблюдать за действием механизмов. Больше всего ему понравился счетчик оборотов винта. И тогда Джеймса Ритти осенило: ведь можно сделать прибор, который станет печатать чек для покупателя, делать запись на контрольной ленте и суммировать выручку за день. Вернувшись домой, Ритти разработал конструкцию, дав ей название «Неподкупный кассир Ритти», и стал выпускать первые кассовые аппараты.
Довелось слышать, что астрономы обнаружили в космосе какие-то необычные облака, которые к тому же и ведут себя довольно странно. Не могли бы вы сообщить какие-то подробности?
Алексей Сухарев,
г. Нижний Тагил
Действительно, на недавно полученных с космического телескопа «Хаббл» снимках околосолнечного пространства астрономы обнаружили газовые облака, которые движутся наперекор всем физическим канонам – навстречу «солнечному ветру». До сих пор считалось, что во внешних слоях атмосферы нашего светила для движения газа существует единственный путь – с огромной скоростью Солнце отбрасывает от себя частицы в окружающее пространство. А тут облака-нарушители, которые движутся наперекор…
«Когда я впервые увидел изображения этих несуразных облаков, я от удивления чуть дара речи не лишился, – вспоминает Бернард Флек, координатор Европейского центра космических исследований ЕСА. – Но затем задумался: почему такое возможно?»
В настоящее время исследователи зарегистрировали уже свыше 8000 газовых потоков, движущихся навстречу «солнечному ветру». И набрав статистику, исследователи Нейл Шили и Йи Минг Ванг из Морской исследовательской лаборатории США совместно со своими европейскими коллегами начали строить гипотезы относительно необычного поведения этих облаков. Одна из них предполагает, что облака в своем движении подчиняются невидимой, но мощной силе магнитных полей, образуемых светилом. Потоки солнечного ветра сильно вытягивают некоторые силовые линии этого поля и даже разрывают их. В итоге образуются две соседние области с противоположно направленными линиями силового поля. Между ними возникают напряженности, градиент которых направлен к поверхности Солнца. Они-то и увлекают за собой газовые облака.
ДАВНЫМ-ДАВНО
В конце XIX века, когда появились крупные быстроходные морские суда, стали нужны прожектора, свет которых был бы виден на десятки километров. Лампа накаливания оказалась для этих целей слабовата, и конструкторы обратились к дуговым источникам света.
На первых порах применяли электрическую дугу, горевшую между угольными электродами. Однако угли постепенно сгорали, расстояние между ними возрастало, и дуга гасла. Изобретатели долго ломали голову над регуляторами для их сближения и составом для электродов. Но решение задачи оказалось совсем иным.
В конце века шведский ученый Ароне предложил ртутную дуговую лампу, состоявшую из U-образной трубки, в концах которой налита ртуть. Лампу полагалось присоединить к сети, встряхнуть, и в ней вспыхивала дуга. Ртутные электроды «выгорали» быстрее угольных. Но ртуть испарялась, конденсировалась на холодных стенках и стекала с них обратно.
Постепенно создали лампы, которые загорались без встряхивания, от импульса высокого напряжения. Горели они не очень ярко, но зато излучали ультрафиолетовые лучи. Поэтому их начали применять в медицине и для… освещения улиц, поскольку на единицу мощности ртутные лампы давали все же больше света, чем лампы накаливания.
В конце 30-х годов прошлого века создали все же ртутную лампу сверхвысокого давления. Она состояла из кварцевой трубки размещенной в стеклянном сосуде, по которому для охлаждения протекала вода. Давление внутри кварцевой трубки, достигало 200 атм, а сила света – миллиардов свечей. Оснащенные ими прожектора были заметны в ясную погоду на сотни километров. Кто-то подсчитал, что если бы такой прожектор установили на Луне, то свет его можно было бы увидеть с помощью обычного театрального бинокля.
ПРИЗ НОМЕРА!
Наши традиционные три вопроса:
1. Почему просоленные продукты, например, рыба, хранятся дольше, чем несоленые?
2. Может ли возникнуть термоэлектрический ток в обычной электрической сети?
3. Ртутные лампы излучают не только видимый свет, но и вредные ультрафиолетовые лучи. Есть ли простые способы их задержать, не ухудшая яркости лампы?
Правильные ответы
на вопросы «ЮТ» № 10 – 2004 г.
1. Ученые считают, что электрические заряды движутся снизу вверх, хотя визуально молния ударяет сверху вниз.
2. Древнегреческий мыслитель и философ Платон считал, что мифический остров Атлантида находился в Атлантическом океане. Отсюда и его название.
3. Электростанцию с асинхронным электрогенератором нельзя запустить с помощью аккумулятора. В асинхронном двигателе отсутствует коллектор, поэтому ротор не будет вращаться.
* * *
Поздравляем с победой Игоря Имшинецкогоиз села Астраханка Приморского края. Правильно и обстоятельно ответив на вопросы конкурса «ЮТ» № 10 – 2004 г., он получает приз – книгу «История подводных лодок».
* * *
А почему?какие секреты таит обыкновенный воск? Как, где и когда наши далекие предки открыли для себя металлы и научились их обрабатывать? Кто из астрономов обнаружил знаменитые марсианские «каналы»? На эти и многие другие вопросы ответит очередной выпуск «А почему?».
Школьник Тим и всезнайка из компьютера Бит, постоянные герои «Нашего мультика», продолжат свое путешествие в мир памятных дат. А читателей журнала наш корреспондент пригласит побывать в далекой Монголии, в знаменитой пустыне Гоби.
Разумеется, будут в номере вести «Со всего света», «100 тысяч «почему?», встреча с Настенькой и Данилой, «Игротека» и другие наши рубрики.
ЛЕВШАНовая экспозиция «Музея на столе»: выпущенный КБ имени Ильюшина на рубеже эпох, в конце 80-х – начале 90-х годов, двухпалубный аэробус был задуман лишь как модификация своего предшественника. Однако конструкторы создали новую машину – Ил-96. Системы навигации и управления отечественного пассажирского лайнера впервые были полностью автоматизированы.
Юные моделисты познакомятся с конструкцией судна на воздушной подушке, а любителям логических игр предлагаем сделать кубические шахматы.
Электронщики смогут по опубликованным в журнале схемам собрать целых два антенных усилителя, изобретателей же ждут новые технические задачи и комментарии к решению старых на основе читательской почты.
* * *