355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юный техник Журнал » Юный техник, 2006 № 01 » Текст книги (страница 1)
Юный техник, 2006 № 01
  • Текст добавлен: 29 сентября 2016, 01:45

Текст книги "Юный техник, 2006 № 01"


Автор книги: Юный техник Журнал



сообщить о нарушении

Текущая страница: 1 (всего у книги 5 страниц)

ЖУРНАЛ «ЮНЫЙ ТЕХНИК»
НАУКА ТЕХНИКА ФАНТАСТИКА САМОДЕЛКИ
№ 1 январь 2006

Популярный детский и юношеский журнал.

Выходит один раз в месяц.

Издается с сентября 1956 года.


КУРЬЕР «ЮТ»
Мастера на все руки и… лапы

Робота-экскурсовода Сепульку знают все посетители Политехнического музея. Обычно он читает им лекции по истории робототехники. Однако на сей раз Сепулька сам стал экспонатом очередной, третьей по счету, Международной специализированной выставки-фестиваля роботов, недавно прошедшей па ВВЦ. Причем если Сепулька и другие его коллеги по Политехническому музею – шагоходы, старинные автоматы и даже «Роботесса с мотошутом» работы художника-дизайнера Л.В. Озерникова– представляли в основном историю робототехники, то остальные экспонаты выставки являли собой день сегодняшний и даже завтрашний.


Робот-экскурсовод Сепулька.


Танцуй, Aibo, танцуй!..

На этих собачек трудно было не обратить внимание. На зеленом ковре под собственную музыку лихо отплясывали роботы нового поколения Aibo Mind 3. Как пояснила представительница японской фирмы SonyЕлена Гудкова, в этой модели использованы новые стандарты искусственного интеллекта для развлекательных роботов.

В отличие от предыдущей, второй, модели здесь поставлено улучшенное математическое обеспечение, позволяющее перепрограммировать робота через персональный компьютер, а также управлять его поведением из любой точки мира посредством Интернета. Кроме того, теперь робот-собачка обладает способностью вести собственный виртуальный дневник, в который заносится все, что видит и слышит. Он запоминает также расположение других объектов вокруг себя и может извещать об их перемещении звонким лаем, выполняя функции сторожа.

Наконец, для развлечения хозяев собачка способна и станцевать, приседая и кланяясь. Вот только попытки погонять мячик выглядят у Aiboпока что не очень «уклюже», надо бы еще потренироваться.


Роботы-собачки Aibo.


«Робик» и его хозяева

– Р-р-р… Руками не трогать! Гав!..

Я даже ладонь отдернул от неожиданности.

– Да вы не бойтесь, он не кусается, – рассмеялся один из создателей киберсобачки Робика, старшеклассник из Орехова-Зуева Дмитрий Степанов. И рассказал такую историю.

Клуб, или центр досуга, «Родник» хорошо известен в городе, сюда после уроков приходят заниматься многие любители техники. Особенно популярна секция робототехники, где ребята под руководством М.В. Лазарева и Д.А. Добрынина создают всевозможные интеллектуальные устройства.

Скажем, в основу конструкции того же Робика положена система определения препятствий. Принцип тут такой: на один из светодиодов подается пачка импульсов с заданной амплитудой. Отраженный от препятствия светосигнал воспринимается фотоприемником. По мере уменьшения расстояния интенсивность отраженного сигнала возрастает, и, как только он превысит определенный порог, Робик начинает рычать, а потом и предупреждает человеческим голосом – не подходи…

А еще он умеет передвигаться по определенному маршруту, объезжая встречающиеся на пути препятствия, и приветливо вилять хвостом.

Кроме Робика, ребята из «Родника» построили еще серию разных интеллектуальных роботов. Один из них даже играет в шахматы.


«Робик» и его создатели.


Страж порядка

…Я чуть на него не наткнулся. Однако мобильный робот БОТ G-7, по виду напоминающий детский автомобильчик, вежливо притормозил, пропуская меня. А потом покатил дальше, строго следуя заранее указанному маршруту.

– Наш робот-видеолокатор предназначен прежде всего для охранной службы, – пояснил мне представитель ЗАО «Стилсофт» С.Е.Устинов. – В его основу положена разработанная ранее комплексная система обеспечения наблюдения «Видеолокатор». Подобные системы ныне появились во многих домах столицы и других городов страны. Однако стационарная камера может фиксировать появление тех или иных объектов лишь на ограниченном участке. Когда же ее поставили на колеса, появилась возможность обозревать значительно большие территории.

Заметив чужака на охраняемой территории, видеоробот фиксирует его облик видеокамерой, сообщает о нарушении на командный пункт и предупреждает с помощью громкоговорителя самого нарушителя, что он находится не там, где надо. Кроме того, видеолокатор способен реагировать на очаги возгорания, четко указывая их местонахождение. Одной зарядки аккумуляторных батарей ему хватает на 12 часов непрерывного патрулирования, а после их замены страж порядка снова готов к работе.


На маршруте – видеолокатор.


«Сапер» выходит на задание

Представьте себе: посреди выставочного комплекса на ковровом покрытии лежала… граната. Все опасливо ее сторонились, и лишь один смельчак неторопливо к ней приблизился, осторожно взял и столь же осторожно поместил во взрывобезопасный контейнер.

Народ на выставке облегченно вздохнул. Хотя многие и понимали, что для демонстрации возможностей робота «Сапер», созданного сотрудниками Курчатовского института, гранату взяли учебную.

– Это действительно муляж, – пояснил мне один из создателей «Сапера», Н.П. Скуратов. – Но и с настоящими гранатами наш робот обращается точно так же. И еще ни разу – тьфу-тьфу! – не подорвался. Причем аккуратность в обращении со взрывоопасными предметами – не единственное достоинство «Сапера». Как пояснил Николай Прокофьевич, этот многофункциональный робототехнический комплекс предназначен для проведения разведки, контроля радиоактивного заражения местности, идентификации взрывчатых веществ, разминирования или уничтожения прямо на месте всевозможных мин, растяжек и взрывпакетов.


«Сапер» старается не ошибаться.

В принципе, сегодня таких устройств достаточно много. И, тем не менее, «Сапер» нашел свою «экологическую нишу». Он представляет собой устройство промежуточного класса – между малыми и средними роботами.

– Практика показала, – продолжал свой рассказ Николай Прокофьевич Скуратов, – что роботы-малыши, способные проникнуть под днище автомобиля, зачастую не в силах вытащить оттуда взрывное устройство – силенок не хватает. Большие же роботы не могут проникнуть не то что под машину, но даже пробраться по проходу между сиденьями в автобусе, вагоне, самолете или ином транспортном средстве – габариты не позволяют. Вот мы и создали машину, которая способна заниматься такой работой.

Она умеет ездить по лестницам, способна ориентироваться на чердаках и в подвалах, проходит по узким проходам в транспорте. А там, где «Сапер» не может продвинуться сам, он выдвигает свою длинную механическую руку, оснащенную видеокамерами и схватами. На телеэкране оператор отчетливо видит, что именно обнаружил робот, и в зависимости от конкретной обстановки диктует ему ту или иную манеру поведения.

Скажем, ту же гранату «Сапер» аккуратно подхватил своими схватами и поместил во взрывобезопасный контейнер. А с безоболочечными взрывными устройствами он способен расправляться прямо на месте, с помощью гидропушки. Ведь, как известно, сильная водяная струя способна разрушить такое устройство, не вызывая взрыва.

Станислав ЗИГУНЕНКО, специальный корреспондент «ЮТ»

ИНФОРМАЦИЯ

ОГНЕТУШИТЕЛЬ ДЛЯ КОСМОСА.Этот огнетушитель вчетверо меньше обычного габаритами, выдает пены в 77 раз больше. При этом давление в его баллоне впятеро меньше традиционного. Такая уникальная разработка была сделана в подмосковном Королеве специально для космических кораблей и орбитальных станций, но очень удобна для каждой кухни или в автомобиле.

Конструкция, как все хорошо продуманное, сравнительно проста. Воздух под давлением 20 кг/см 2давит на эластичную ампулу с водой. Выходное устройство ампулы закрыто мембраной. Чтобы привести огнетушитель в действие, выдергивают чеку и прижимают рукоять ручного привода. Игла при этом протыкает мембрану, сжатый воздух сдавливает ампулу и выжимает из нее воду через трубку в форсунку, где образуется мелкая пена, которая тушит огонь намного эффективнее, чем просто водяная струя.

Все соединения деталей баллона и ампулы неразъемные, что обеспечивает герметичность, долговечность и надежность конструкции при минимальных весе и размерах.

НАЧАТЬ С ИГРУШЕКрешил бывший пилот, а ныне начинающий конструктор сверхлегких летательных аппаратов В.Ю. Евдошенко. Конструируя вместе с коллегами из спортивно-технического клуба станции Ухтомская Московской области одноместный автожир, он понял, что без специальных навыков очень трудно рассчитать основные параметры машины. Работа профессионалов стоит очень дорого.

И тогда Виктор Юрьевич вспомнил, как поступали в подобных случаях наши предки. Еще при Петре I российские корабелы прежде, чем строить полноразмерный корабль, создавали его уменьшенную модель и пускали плавать в пруду. А потом смотрели, как она ходит по ветру, преодолевает волну. Потом эту хорошую традицию переняли создатели первых российских летательных аппаратов.

Так же поступил и Евдошенко. Сначала он сделал куклу-манекен, параметры которой в 10 раз меньше, чем у среднего человека. Затем из тонких реек и проволоки начал строить для этой куклы персональный автожир. Конечно, конструктор понимает, что между моделью и большим аппаратом есть различия, законы подобия точны лишь до определенного предела. Тем не менее, моделирование уже позволило ему сэкономить немало денег и времени…

И ИГОЛКИ ГРЕЮТ…У большинства животных волосяной покров призван защищать от холода. Не зря же его зовут мехом. Ну, а как тогда не замерзают отечественные ежи и американские дикобразы, у которых пасть волос исторически преобразовалась в иглы? Заинтересовавшись этим вопросом, исследователи из Института проблем экологии и эволюции имени Северцова РАН провели ряд исследований по замерам теплопроводности волосяного покрова американского дикобраза и его колючих родственников. Оказалось, что и иглы сравнительно неплохо греют. Они обеспечивают поступление тепла к коже, и в то же время их внутренняя структура позволяет не терять тепло в холодное время года.

УДИВИТЕЛЬНО, НО ФАКТ!
Где искать драгоценности?

У этого редкоземельного металла – весьма необычная, даже экзотическая судьба. Поначалу он был никому не нужен. Потом стал дороже золота. А теперь его собираются добывать из самого что ни на есть бросового сырья.



Поймать неуловимого

Рений – один из немногих металлов, что стоят дороже золота. А все потому, что в земной коре его не просто мало, а очень мало – менее 0,7 мг на тонну. И в год вся мировая промышленность выдает не более 30 тонн рения. Он настолько редок, что раньше его разрешали использовать только по специальному постановлению правительства. Но в то же время можно вспомнить, что металлурги порой шутят: редким называется тот металл, который редко используют.

Поначалу рений действительно был редким потому, что его практически не использовали. Потом, когда выяснилось, что добавки рения существенно улучшают свойства многих сплавов, оказалось, что рения не просто мало, он еще и рассеян, распылен по различным минералам. Собственных минералов в промышленных количествах у него нет, разве что весьма редкий, различимый только в микроскоп минерал джезказганит. Поэтому обычно рений добывают из медной руды, в которой этого металла тоже мало – не больше 100 мг/т. Но зато руды много.

После распада СССР выяснилось, что большая часть промышленных месторождений меди оказалась за границей, на территории бывших союзных республик, независимых ныне государств ближнего зарубежья. Между тем, высокопрочные сплавы для космической и авиационной техники уже немыслимы без рения. Добавка всего от 4 до 10 % этого металла позволяет им выдерживать температуры в 2000 градусов и более без потери прочности. Именно из рениевых сплавов изготавливают ныне корпуса и лопасти турбин, сопла двигателей ракет и самолетов.

Кроме того, рений используют в нефтехимической промышленности – в биметаллических катализаторах при крекинге и риформинге нефти. Применяется он также в электронике и электротехнике – здесь из него делают термопары, антикатоды, полупроводники, электронные трубки.


Завод на вулкане?

И тут как-то нечаянно обнаружилось, что сульфида рения сравнительно много осаждается из фумарольных газов уникального вулкана Кудрявый (Курилы, остров Итуруп). В местах выхода вулканического газа нашли новый минерал – рениит, содержание рения в котором достигает 80 %! А технологически еще лучше и проще использовать в качестве сырья выходящий из-под земли газ – в нем содержится около одного грамма рения на тонну. За одни сутки вулкан выбрасывает в атмосферу около 50 тыс. т газов, за год – 20 т чистого рения. Этого с лихвой хватит всей нашей промышленности и даже еще останется.

Кроме того, ученые обнаружили, что в вулканических газах, кроме рения, содержится по меньшей мере десяток других редких элементов: германий, висмут, индий, молибден, золото, серебро…


Рений и схема его атомного строения.

В 1999 году наши специалисты запатентовали технологию извлечения рения, попытавшись имитировать природный процесс осаждения сульфида рения в местах выхода высокотемпературных вулканических газов. На пути газа они решили поставить улавливатели, на которых сульфид рения осаждался бы в виде тоненьких иголочек. В качестве носителей, адсорбирующих на себе сульфид рения, использовали природные минералы цеолиты, имеющие очень большую пористость – около 2 кв. м на 1 г цеолита. А довольно крупное месторождение цеолитов есть на Сахалине – не так уж далеко от вулкана.

Опытная проверка технологии в лаборатории показала, что она намного проще и дешевле традиционного способа извлечения рения из молибденовой руды.

В 2000 году экспериментаторы собрали деревянную пирамиду с площадью основания около 9 кв. м. Ею, словно воронкой, хотели накрыть одно из небольших фумарольных полей. Из вершины пирамиды в сторону будет отведена десятиметровая труба. А поскольку газ из вулкана выходит под очень низким давлением, для создания дополнительного напора в конце трубы планируется поставить вентилятор-дымосос. Газ под набором должен проходить через емкость со 100 кг цеолита. Далее цеолит будет промываться серной кислотой, которую тоже попытаются получать прямо на месте из чистой вулканической серы. Затем сернокислый раствор, содержащий рений, прогонят насосами через ионообменную смолу и получат концентрат, годный для промышленного использования.


Ищите в отвалах!

Однако, судя по всему, интерес к строительству завода на вулкане несколько поостыл. И не потому, что вулкан перестал выдавать «на гора» ценное сырье. Просто исследователи из Российского химико-технологического университета им. Д.И. Менделеева выяснили, что за рением ехать на край земли не обязательно.

Оказалось, что огромные залежи этого редкого металла у нас буквально валяются в промышленных отвалах – в пыли, шлаках – и в остаточных фракциях переработки нефти. Поначалу, чтобы найти новые источники уникального металла, химики РХТУ под руководством члена-корреспондента РАН Александра Чекмарева исследовали породы, которые традиционно считаются бесперспективными для получения рения: горючие сланцы, их древние аналоги – шунгитоносные породы Карелии, а также нефть.

Оказалось, что рения там действительно очень мало всего 70 – 200 мг/т. Правда, сырья этого немало. А главное – ренитовое сырье во многих случаях уже предварительно переработано.

Например, в ашальчинской нефти рения ничтожно мало – миллиграммы на тонну. Но почти весь редкий металл, до 96 %, концентрируется в тяжелых остаточных фракциях перегонки – можно сказать, в асфальте. Оттуда его можно вымыть бензином и сконцентрировать еще больше.

А при получении шунгитобетона (это бетон с пористым наполнителем – шунгизитом) щебень обжигают в специальных печах. При этом образуются газы и пыль. Так вот рения в пыли, которая остается после сухой чистки газа, уже не десятки миллиграммов» а граммы на тонну. Это отличный концентрат металла!

Если же такие породы используют в качестве шихты при выплавке литейного чугуна, то тогда, полагают авторы новой технологии, рений надо искать в колошниковой пыли – в тех кучах отходов, что получаются при очистке доменной печи.

И еще, как выяснили химики, рений можно выделять из горючих сланцев, вернее, из кокса или полукокса, где он концентрируется. Причем, разработанные и запатентованные технологии позволяют сравнительно недорого добывать не только ценный рений, но и другие, тоже редкие, уран и ванадий.

Виктор ЧЕТВЕРГОВ

ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
«Книга жизни» требует продолжения

Расшифровка генома человека – это, с одной стороны, величайшее научное достижение последних лет. А с другой…

Когда пять лет назад руководители проекта «Геном человека» начали публиковать результаты своих исследований, многие думали, что не сегодня так завтра, ознакомившись с содержанием «Книги жизни», мы сможем творить чудеса: победим все болезни, увеличим продолжительность жизни лет до 100, а может, и вообще обретем бессмертие.

А кончилось все итогом, который можно назвать оскорбительным для человечества. Согласно результатам расшифровки генома оказалось, что мы мало чем отличаемся от полевой мыши или лабораторной мухи дрозофилы. Все, впрочем, не так просто.


Генов в человеческом организме оказалось в несколько раз меньше, чем предполагалось ранее. Вместо 120–140 их насчитали не более 35 тысяч. И генетические отличия человека от кротов, мышей и мушек действительно оказались ничтожны – менее одного процента.

Ранее биологи полагали, что каждый ген отвечает за какой-то определенный признак в организме. Скажем, если поменять один ген на другой, то у будущего ребенка будут не карие глаза, а, к примеру, голубые.

После расшифровки генома стало ясно, что генный механизм не просто пишущая машинка, нажав одну клавишу которой получаешь букву «а», а с помощью другой – букву «б».

Вспомним, яйцо превращается в петуха или курицу. Гусеница – в куколку, а затем во взрослую бабочку. Разительно непохожие друг на друга внешне, они, тем не менее, представляют собой разные стадии одного и того же организма, содержа в каждой своей клетке набор одних и тех же генов. Всеми же жизненными процессами в организме, превращениями из одной стадии в другую командуют наборы белков-протеинов, а гены этими белками руководят.

К пониманию этого ученые пришли не сразу. Более того, сегодня они весьма приблизительно представляют себе, каким образом одни и те же гены в разных случаях могут выдавать различные команды. В первом приближении это может выглядеть, наверное, так, рассуждают исследователи. Даже в обычном языке одно и то же слово может означать совершенно разные вещи. Возьмите хотя бы слово «коса». Им обозначают и разновидность женской прически, и сельскохозяйственное орудие для кошения травы, и отмель реки.

О чем идет речь в каждом конкретном случае, определяет уже не само слово, а контекст – другие слова, фразы. То есть в каждом конкретном случае природа активизирует из всего набора генов лишь некоторые. И они, взаимодействуя в определенном порядке, выстраиваясь, словно слова в предложении, Армируют тот или иной приказ для действия протеинам.

Но как они «узнают», что в данном «предложении» необходимо именно это «слово»? Как расставляются эти «слова» в определенном порядке, от которого тоже в немалой степени зависит смысл «фразы»?.. Этого пока-никто не знает. Исследователи полагают, что именно в распознавании правил построения «фраз», то есть общих законов управления жизнью, будет заключаться третий, возможно, заключительный этап их исследований удивительной «пишущей» машинки, с которой сравнили некогда генотип. Пока же ученые сосредоточили свои усилия на изучении белков.

Вообще-то, протеины известны уже около 200 лет, их название происходит от греческого proteios– «первоначальный».

В русском языке протеины не случайно очень часто называют белками. Самый известный белок – яичный альбумин. Именно он белеет на горячей сковороде, когда вы жарите яичницу.

И вот «от яйца» ученые пришли к созданию целой науки – протеомики. Объем информации, который теперь им предстоит обработать, не имеет аналогов в истории. Ведь протеинов в человеческом теле в несколько раз больше, чем генов.

Первое предложение создать белковый атлас человека прозвучало еще в 1982 году. Оно исходило от известного американского биолога Лейфа Андерсона. Но тогда проект не получил развития из-за отсутствия финансирования – все средства были пущены на расшифровку генома. Многие полагали, что и этого будет достаточно для прочтения «Книги жизни».

Теперь же, когда выяснилось, что расшифровка генома мало что дала, протеомика обрела второе дыхание.

В 2001 году международный консорциум ученых, политиков и бизнесменов создал организацию HUPO ( Human Proteom Organization). В ее задачи входит изучение человеческих белков, что позволит со временем, будем надеяться, «нарисовать» белковый атлас человека.

Проект HUPO еще только складывается и, в отличие от предыдущего – HUGO ( Human Genome Organization), не имеет четко обозначенных сроков: слишком уж велика и сложна поставленная задача. Так, профессор Вернер Шнайдер-Мергенер, один из участников этого международного проекта, полагает, что в человеческом организме существуют сотни тысяч различных протеинов, которые выполняют назначенные им природой функции, взаимодействуя между собой в различных комбинациях.

Подсчеты других исследователей таковы. Каждый из 30–35 тысяч генов человеческого генома кодирует не менее десятка протеинов, полагают они. Таким образом, в нашем организме взаимодействуют не менее 300 000 протеинов. И далее в тельце крошечной мушки дрозофилы их может действовать не менее 100 000… (Согласитесь, по количеству белков в клетке человек все же заметно превосходит муху.)

К счастью для ученых, все эти соединения никогда не присутствуют в одной клетке одновременно. Напротив, набор белков в печени, например, весьма отличается от набора белков в клетке почки или в нервной клетке. Таким образом, белковая «фраза» в одном органе должна значительно отличаться от «фразы» в другом. И это должно облегчить расшифровку языка протеинов. Но все равно, повторим еще раз, изучение протеома – задача несравненно более сложная, чем анализ генома. Зато ее решение и сулит гораздо большую практическую пользу. Уже очевидно, что крупные открытия в области протеомики ожидают ученых в самое ближайшее время.

Скажем, создание полной базы данных по протеинам позволит совершить революционный прорыв в создании новых лекарственных препаратов. Именно это заставило сменить ориентиры и компанию «Селера дженомикс» – одного из лидеров в расшифровке генома. Вице-президент компании Самуэль Броудер сказал, что только знание всех тонкостей взаимодействия протеинов позволит создать по-настоящему эффективные препараты нового поколения. «Конечно, при этом мы будем активно привлекать данные, полученные при расшифровке генома человека», – подчеркнул вице-президент.

Тем не менее, никто уже не полагает, что составлением белкового атласа все и закончится. Скорее всего, это будет лишь означать, что, осилив азбуку и прочтя первые фразы из букваря, ученые по-настоящему только приступят к прочтению самой «Книги жизни».

С. НИКОЛАЕВ


Подробности для любознательных

ШИФР СЛОЖНЕЕ ШИФРА

Многие ученые сегодня пока сомневаются в возможности создания полной карты протеома человека – уж слишком грандиозна задача. Но вспомните, многие не верили и в возможность расшифровки генома человека.

На сей раз, правда, быстрых успехов никто не ждет. Если на расшифровку генома человека ушло 10 лет, хотя применялась в сущности одна-единственная технология – секвенирование, то есть разбивка генома на отрезки, то для изучения всего множества протеинов потребуются куда более сложные технологии и методики. И такая работа может продлиться, по крайней мере, лет 20–25.

Впрочем, некоторые подходы к ней просматриваются уже сегодня. Исследователи делят протеины на пептиды – фрагменты белков, удобные для анализа, – и впрыскивают в камеру масс-спектрометра. Таким путем определяется аминокислотный состав белков. А, выявив последовательность аминокислот, уже можно более-менее точно соотнести их с геномом и высказать предположение, какими генами те или иные белки кодируются.

Попятно, что это лишь весьма упрощенное описание методики. Кроме того, последовательность чередования аминокислот в пептидных цепях определяет лишь так называемую первичную структуру белка. Между тем ничуть не менее важную роль играют вторичная и третичная структуры, описывающие пространственную форму белковой молекулы.

Но и это еще далеко не все. Помимо аминокислотного состава и пространственной структуры белка ученым важно знать, когда он синтезируется, где и при каких условиях активен, насколько он активен и как взаимодействует с другими белками.

ЕСТЬ ПРОРОКИ И В НАШЕМ ОТЕЧЕСТВЕ…

Приятно отметить, что, несмотря на бедственное положение отечественной науки, нашли, что сказать по поводу протеомики, и российские исследователи. Так, по мнению члена-корреспондента РАН, заведующего лабораторией в Институте молекулярной биологии им. В. А. Энгельгардта Сергея Николаевича Кочеткова, создать каталог белков – задача хотя и сложная, но вполне осуществимая. Причем расшифровка уже первых протеомов показала, что белковая карта ни в одну книгу не поместится – только в компьютерную память, да и то не во всякую.

Действует она как электронный каталог – выдает весь набор связей белка с белками-соседями. Зная же его связи, медики получат возможность точнее диагностировать те или иные болезни, а фармакологи – создать новое поколение лекарств точного действия. Вполне возможно, что в будущем протеомика сможет, например, дать новые средства для борьбы со СПИДом.

В. ЧЕРНОВ


    Ваша оценка произведения:

Популярные книги за неделю