Текст книги "Юный техник, 2005 № 10"
Автор книги: Юный техник Журнал
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 4 (всего у книги 5 страниц)
НАШ ДОМ
«Лунодром» Саши Журавлева
Как утверждают уфологи, американские астронавты видели на Луне целый космодром с «летающими тарелками». Так это или нет, ответят новые космические экспедиции. А на «лунодроме» Александра Журавлева«летающие тарелки» уже заняли места на старте.
Живет Саша Журавлев в городе Курске и в свободное от школьных занятий время ходит в местный Центр технического творчества. Здесь, в кружке космического моделирования, он под руководством Виктора Анатольевича Жаткина и построил макет фантастического лунного комплекса, где есть не только космодром, но и целый комбинат по автоматизированной добыче полезных ископаемых.
«Телеуправляемые космические роботы, приземлившись или точнее, прилунившись на Луне, установят солнечные батареи, а затем станут резать лазером горные породы, бурить шахты и туннели, – рассказывает Саша. – Они же построят и автоматические заводы по выплавке особо чистых металлов. А полученную продукцию с помощью особой электромагнитной пушки станут переправлять на Землю».
Свой проект Саша Журавлев основывает на последних разработках отечественных ученых. «В частности, как показали исследования лунного грунта, доставленного когда-то на Землю космической станцией «Луна-16», на естественном спутнике Земли очень много изотопа гелия-3, который чрезвычайно перспективен в качестве горючего для термоядерных реакторов. Так что Луна может стать еще и источником дешевой энергии», – полагает он.
Продумав концепцию своего проекта и обсудив его со своими товарищами из кружка, Саша начал строить действующую модель этого комплекса. В ход пошли всевозможные подручные материалы – пенопласт от упаковок, микромоторчики от игрушек, солнечные батареи и другие детали старых радиоприемников и калькуляторов…
Саша Журавлеву своего «лунодрома».
По мнению Саши, каждый желающий может испробовать свои силы в постройке подобного комплекса. «Очень интересно было бы теперь построить еще и «марсодром», – полагает он. – Тем более что 8 журналах и в Интернете появились отличные фотографии марсианских ландшафтов, где можно разместить будущую колонию. Есть уже и детальные описания марсианских экспедиций»…
Постройку макета лучше всего начать с изготовления ящика-рамки с невысокими стенками из тонких дощечек или полос фанеры (см. рис.).
На рисунках (сверху вниз):макет марсодрома; схема устройства вулкана; реальные марсианские ландшафты, где можно разместить модели.
Для создания соответствующего ландшафта необходимо запастись глиной, гипсом, песком, мелкими камешками… Багровые тона марсианскому ландшафту удобнее всего придать с помощью аэрозольных красок.
Согласно последним научным данным, на Марсе могут функционировать вулканы. Сделать их на вашем макете тоже несложно. На «планете» расположите резервуар для воды и пещерку для сухого льда, кусочки которого можно попросить у продавцов мороженого. Горячая вода, соприкасаясь с сухим льдом (см. схему), образует густой туман-«дым», который прекрасно имитирует «курение» вулкана.
На «марсодроме», конечно, надо также разместить космические корабли, домики для колонистов, установки для переработки местных ископаемых, оранжереи…
Ю. ВАСИЛЬЕВ
КОЛЛЕКЦИЯ «ЮТ»
Як-130 – это двухместный двухдвигательный среднеплан с трехстоечным шасси. Его аэродинамическая компоновка. высокомеханизированное крыло с развитыми наплывами, цельноповоротный стабилизатор и расположение воздухозаборников позволяют выполнять маневры на больших углах атаки. Самолет может использовать для взлета и посадки короткие бетонные и даже грунтовые полосы.
Компоновка приборных досок и пультов близка к истребителям 4-го и 5-го поколений. Для размещения вооружения на самолете предусмотрены б внешних узлов подвески – по 3 под каждым крылом.
Техническая характеристика:
Длина самолета… 11,493 м
Высота… 4,76 м
Размах крыльев… 9,72 м
Тяга двигателей… 2x2200 кгс
Максимальная высота полета… 12 500 м
Дальность полета… 2000 км
Максимальная взлетная масса… 9000 кг
Скорость захода на посадку… 195 км/ч
Максимальная скорость… 2125 км/ч
Экипаж… 1–2 чел.
Citroen С3впервые был представлен в сентябре 2001 года на автосалоне во Франкфурте и сразу привлек внимание. По решению международного жюри модель С3 была номинирована как «Кабриолет 2003 года», в Португалии Citroen СЗвыбрали «Компактным автомобилем 2003 года», а Ассоциация хорватских автомобильных журналистов приняла решение о вручении СЗ приза за «Лучший дизайн 2002 года».
На рынок автомобиль поставляется как с бензиновыми инжекторными двигателями, так и с дизельными. СЗ могут быть оснащены системой SensoDrive– механической коробкой передач с электрическим переключением и джойстиком вместо рычага переключения передач. Джойстик при этом продублирован кнопками на руле. В режиме «авто» компьютер сам переключает передачи, учитывая скорость машины и положение педали газа.
Техническая характеристика:
Длина… 3,850 м
Ширина… 1,667 м
Высота… 1,519 м
База… 2,4460 м
Объем двигателя… 1,4/1,6 л
Мощность… 75/110 л.с.
Максимальная скорость…192 км/ч
Снаряженный вес… 1005 кг
Вместимость топливного бака… 54 л
Разгон до 100 км/ч… 10,7 с
Средний расход топлива… 6,5 л/100 км
ПОЛИГОН
Сделай мир немного чище
Об электромобилях весь мир мечтает уже многие десятилетия, но пока их используют лишь для перевозки небольших грузов на заводах или по утрам развозят продукты в некоторых странах.
Все дело в том, что электромобили могут проезжать без подзарядки лишь 60 – 100 км. А виной тому – аккумуляторы.
Например, при старте, когда якорь мотора электромобиля почти неподвижен, ток достигает сотен ампер и бесполезно тратится на нагрев аккумулятора. При движении по городу, из-за частых остановок и стартов, аккумуляторы электромобиля могут терять до половины энергии, полученной при зарядке.
Специальные исследования, проведенные в Германии в конце прошлого века, показали, что в городском цикле до колес электромобиля доходит лишь 10 % энергии, полученной от сети. (И несмотря на это, он и тогда был энергетически выгоднее автомобиля обычного, у которого до колес доходит лишь 7 % энергии бензина.)
Недостатки свинцового – самого распространенного аккумулятора – кроются в самой его конструкции, которая в сути своей не менялась больше ста лет. Его положительная пластина сделана из свинца, отрицательная представляет собою свинцовую решетку, ячейки которой заполнены диоксидом свинца РЬО 2. Пластины погружены в раствор серной кислоты.
Не вдаваясь в подробности протекающих химических процессов, обратим внимание на то, что электрический ток, как при зарядке, так и при разрядке аккумулятора, течет вдоль поверхности пластин, через их незначительную продольную площадь, по большому пути и встречает при этом большое сопротивление (см. рис. 1).
На протяжении ста лет стараются свинцу придать такую форму, при который вес и потери были бы минимальны. Но прогресс в этом деле пока ничтожен. Лишь в последнее время удалось найти такую геометрию, что аккумуляторы стали на десять процентов легче. Но это, похоже, уже предел.
Между тем, как показывают расчеты, удельная энергоемкость свинцового аккумулятора может быть повышена в семь раз. Но тут нужны принципиально новые решения. Так, например, пытаются сделать отрицательную пластину в виде решетки из углеродного волокна с ячейками из диоксида свинца. Это может снизить вес в 3–4 раза. Но за два десятилетия работы так и не удалось сделать эту конструкцию достаточно прочной и долговечной.
Возможно, настоящую революцию может произвести одно забытое изобретение Николая Теслы, относящееся примерно к 1935 году. Это так называемый биполярный аккумулятор. Он представляет собою стопу свинцовых пластин, разделенных прокладками из пластмассовой сетки и помещенных в раствор серной кислоты. Электричество при зарядке подводится, а при разрядке отводится от двух крайних пластин.
Вот что при этом происходит. При подаче напряжения на крайние пластины падение напряжения распределяется между пластинами промежуточными. Обращенная в сторону анода поверхность каждой пластины заряжается отрицательно, а в сторону катода – положительно (рис. 2).
Вся прелесть идеи Теслы прежде всего в том, что ток течет поперек промежуточной пластины. Ему предоставляется вся ее огромная площадь, а путь очень короток. Следовательно, сопротивление пластины ничтожно мало.
Что же касается крайних пластин, то они, чтобы не вызвать значительных потерь, могут быть достаточно массивны. Их только две, поэтому вес крайних пластин мало скажется на общем весе устройства и с ним удастся достичь предельно большой энергоемкости – около 170 ваттчасов на килограмм. Энергоемкость современного аккумулятора, напомним, составляет 24 ватт-часа на 1 кг.
Н. Тесла, как известно, далеко не все свои идеи довел до реального воплощения. Биполярный аккумулятор одна из них, и вы можете попытаться претворить в жизнь идею великого электротехника. Для этого нужен лишь вытяжной шкаф, авометр и набор постоянных сопротивлений величиной 5 – 10 Ом, применяемых для лабораторных работ. Все это можно найти в любой школе.
Еще вам понадобится примерно 100 г свинца. Его приобретем в пунктах приема утильсырья. Биполярный аккумулятор (БА) по существу является своеобразным вольтовым столбом, состоящим из цепочки последовательно соединенных аккумуляторов. Каждая пара его пластин дает напряжение около двух вольт. От такого устройства легко получить довольно высокое напряжение, например, 220 В. От такого напряжения смогут работать дешевые мощные и легкие электромоторы.
Однако для первых опытов нам следует ограничиться безопасным напряжением 12 В. Внутреннее сопротивление аккумулятора в момент включения составит доли ома. Поэтому возможен ток в десятки ампер. Это значит, что лучше брать напряжение от зарядных устройств, применяемых автомобилистами. Они на такие токи рассчитаны.
На рисунке 3 приведен эскиз экспериментального БА. Его корпус – упаковка от авторучки. Два крайних его электрода сделаны из кусочков свинца толщиной 3–4 мм (оболочка от кабеля). К ним припаяны отрезки предварительно залуженного медного провода диаметром 1–2 мм. Промежуточные пластины (пять штук) тоже свинцовые. Все они должны быть тщательно обезжирены кипячением в мыльном растворе и изолированы от соприкосновения друг с другом двумя слоями полиэтиленовой сетки от комаров. Когда все детали подготовлены, БА следует собрать, укрепить на доске и залить раствором аккумуляторной кислоты.
ВНИМАНИЕ:эту операцию следует производить в вытяжном шкафу в присутствии учителя! Работать следует в защитных очках и кислотостойких перчатках. И последнее: никогда не лейте воду в кислоту. Только наоборот!
Биполярный аккумулятор в своем первоначальном состоянии – это всего лишь комплект свинцовых пластин. Только после первого подключения к выпрямителю он приобретет способность накапливать электричество. При этом на положительно заряженных поверхностях образуется плотный слой диоксида свинца РЬО 2.
Как только он полностью покроет пластину, доступ кислоты к свинцу будет перекрыт. Дальнейшее пропускание тока бесполезно. Оно лишь приведет к нагреванию кислоты. После этого наш комплект из свинцовых пластин уже превратится в аккумулятор. От него можно получить ток, но очень кратковременный. Это связано с тем, что слой диоксида свинца получился тонким. Далее нужно приступить к формованию пластин. Оно заключается в том, что аккумулятор заряжают до начала кипения, затем разряжают и заряжают вновь, изменив при этом полярность зарядного напряжения. И так не менее десяти раз.
Отметим, что даже столь крохотный аккумулятор нельзя замыкать накоротко. Ток, который может на мгновение достичь сотен ампер, погнет пластины и сорвет с них слой диоксида свинца. Разряжать аккумулятор следует только через нагрузку, например, лампу!
Постепенно верхний слой свинца станет похож на губку, а толщина оксидного слоя достигнет примерно полумиллиметра. После этого ваш БА готов к употреблению.
На первом образце можно померить ЭДС и внутреннее сопротивление по известной методике, которую вы можете найти в учебнике. Но вспомним о нашей задаче. Нам с вами ведь очень важно померить энергоемкость аккумулятора. Это можно сделать, измеряя время горения лампы заранее известной мощности. Помножив мощность на время, вы получите работу (правда, не всю, а примерно 80 %), совершенную током аккумулятора во внешней цепи. Выразите ее в ватт-часах и разделите на вес аккумулятора в килограммах. Так вы получите энергоемкость, которая на первых порах не будет превышать 10 ватт-часов на кг.
Здесь-то и начнется самое интересное. Рассмотрите промежуточные пластины. Вы увидите, что толщина слоя свинца, а значит, его масса во много раз превосходит массу окисла. Это значит, что нужно далее уменьшать толщину свинца. Для этого нужно путем ковки свинца на наковальне заготовить более тонкие промежуточные пластины и собрать новый аккумулятор. Вновь подвергните его формованию и определите удельную энергоемкость; она должна возрасти. И так до тех пор, пока она не превысит 24 ватт-часа на кг – энергоемкость электромобильного аккумулятора. А после этого напишите нам.
А.ИЛЬИН
Рисунки автора
ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ
Верхом на чужой волне
В научно-фантастическом романе А.Казанцева «Пылающий остров» есть любопытное место. Советский летчик Матросов попадает в подвал с прикованными на цепях скелетами. Казалось бы, все, конец… Но находчивый летчик делает из цепей коротковолновый радиопередатчик, в котором нет ни ламп, ни каких-либо иных радиодеталей. Работает же он за счет энергии отраженных радиоволн. Матросов посылает сигнал SOS, и помощь приходит вовремя…
Неужели такое возможно?
В современном естествознании немало фактов, разъяснить которые наука бессильна. Работа антенны – один из них.
Поговорим о самой простой – штыревой. Какую часть от энергии, излучаемой радиостанцией, может принять простой металлический штырь? Казалось бы, только тех радиоволн, которые непосредственно на него падают. Если это так, штыревую антенну нужно делать как можно толще. Поскольку поперечник рельса, например, в тысячи раз больше, чем у медного волоска, то и энергии он должен принять в тысячи раз больше. Но если вы сделаете эксперимент с приемом на рельс и потом замените его самым тонким медным волоском такой же длины, то разницы в громкости приемника обнаружить не удастся. Это удивляет, не правда ли?
Поэтому в свое время ученые ввели для антенн понятие «эффективная площадь» и постановили считать ее математической абстракцией. Однако такую точку зрения приняли не все ученые.
Физическое объяснение принципа работы антенны выдвинул Р.Рюденберг, один из основателей теории антенн, еще в 1908 году. Затем это объяснение уточнили в 1947 году Чу и в 1981 году Хансен. Правда, эти работы опирались на крайне сложный математический аппарат, малодоступный даже для специалистов. Недавно профессору физики В.Т.Полякову удалось найти достаточно точное решение задачи методами элементарной математики.
Вот в чем, по его мнению, физическая суть работы приемной антенны.
Под действием приходящих радиоволн в ней возникают токи, создающие вокруг антенны собственное поле. Оно действует в непосредственной близости от нее, на расстоянии менее длины волны. Поэтому его называют ближним полем. Если антенна настроена в резонанс с частотой приходящих радиоволн, то ближнее поле как бы увеличивается в размерах, распухает и окутывает антенну. Антенна как бы многократно увеличивается в размерах.
Таким образом, антенна ловит радиоволны не самим проводником, а своим ближним полем, являющимся не чем иным, как полем движущихся по поверхности металла электронов.
Что же касается здравого смысла, то он здесь прекрасно работает. Надо лишь правильно его применять. Антенна, рельс или любой гибкий кусок металла в поле радиоволн всегда обретают ближнее поле, невидимое глазу.
Ненагруженная антенна, настроенная в резонанс с принимаемой волной, сбрасывает «лишнюю» мощность в окружающее пространство. Она переизлучает принятый сигнал по всем направлениям, в соответствии со своей хорошо известной диаграммой направленности – максимум на горизонт и нуль вверх.
Если антенну как-то нагрузить, например, соединить с землей, энергия принятой волны перейдет в тепло, никакого переизлучения не будет. На этом принципе можно осуществить передачу сигнала за счет энергии сигнала принимаемой станции. Опыты в этом направлении были сделаны в 1980 году одним радиолюбителем из Рязани.
К антенне, настроенной на частоту одной из радиовещательных станций, он присоединил один провод обычного угольного микрофона (рис. 1), другой конец которого был заземлен.
Этот микрофон в такт звуковым колебаниям меняет свое сопротивление, причем в тысячи раз. Когда оно максимально, антенна оказывается ненагружена и приходящую к ней радиоволну отражает, а с точки зрения стороннего наблюдателя как бы излучает.
Когда же сопротивление микрофона становится минимальным, то вся принятая ею высокочастотная энергия уходит в землю.
В этом эксперименте в паузах передач, когда станция передавала немодулированную несущую, можно было вести переговоры на частоте этой станции. Поскольку мощность, принятая антенной, составляла сотые доли ватта, то переговоры были слышны в пределах ста метров.
А теперь вернемся к роману «Пылающий остров». Вот как бы мог поступить летчик Матросов. Прежде всего он должен был бы взять два одинаковых отрезка металлической цепи, соединить изолятором и растянуть от стенки до стенки (рис. 2).
Так у него получилась бы антенна типа «симметричный вибратор», настроенная в резонанс на волну, длина которой вдвое больше длины цепей. Если в подвале достаточно сухо, то такая антенна начнет интенсивно переизлучать, отражать приходящие к ней волны в направлении, перпендикулярном цепям. Поэтому их желательно сориентировать так, чтобы излучение шло в направлении приемного центра.
Чтобы это излучение прекратилось, достаточно цепи разъединить или, если технически удобнее, подключить и отключить заземление, подавая сигналы азбукой Морзе. Сегодня на стандартный приемник службы радиоперехвата эти сигналы удалось бы принять за сотни километров.
Отправить сообщение азбукой Морзе можно, повесив вертикально кусок провода и касаясь им заземленного стержня. Тогда радиоволны отражались бы равномерно во все стороны и создавали бы помехи радиоприему на волне, в четыре раза превышающей длину провода.
Внимательные радиослушатели могли бы обнаружить периодическое изменение громкости принимаемой станции и опознать в нем текст сообщения. А вообще-то, судя по иллюстрациям из книги, «передатчик» Матросова мог бы работать на частоте, близкой к 25 МГц, вблизи радиовещательного диапазона 13 м.
А.ВАРГИН
О чем говорят звезды?
Не удивительно, что М.Ю. Лермонтов написал в свое время строки: «И звезда с звездою говорит…» – у поэтов ведь особенный слух. Но разговор звезд можно услышать, даже не обладая поэтическим даром. Тем более что есть сугубо физические основание предположить, что звезды и планеты подают нам голоса.
Вот, например, кольца Сатурна. Как недавно выяснилось, это – рой метеоритов, связанных между собою гравитационными и магнитными полями. Ведут они себя, как упругое тело. При ударе метеорита кольца звучат, как колокол, и модулируют по амплитуде и частоте отражаемый свет. И при помощи простейшего телескопа этот свет можно сфокусировать на фотоприемнике. Усилив его сигналы, мы сможем услышать гудение колец в громкоговорителе.
Схему усилителя вы видите на рисунке.
Фоторезистор R1 служит одним из плеч делителя напряжений, вторым плечом которого служит постоянный резистор R2. С него пока очень слабый, пульсирующий электрический сигнал поступает на вход 3операционного усилителя DA1. На его выходе 7стоит эмиттерный повторитель на транзисторе VT1, согласующий сравнительно высокое выходное сопротивление операционника с более низким входным сопротивлением усилительного каскада на транзисторе VT2. Этот каскад обеспечивает «раскачку» выходного каскада на транзисторе VT3, который посредством трансформатора Т1 нагружен на низкоомную пару наушников BF1, работающих в монофоническом режиме.
В качестве датчика R1 использован высокочувствительный фоторезистор типа СФЗ-2Б. Для согласования с ним применен операционный усилитель с входным сопротивлением около 30 МОм и высоким коэффициентом усиления по напряжению, достигающим значения KU = 5 x 104.
Для нормальной работы операционника необходимо, чтобы в отсутствие входного сигнала напряжение на его выходе 7имело нулевой уровень. Это достигается регулировкой резистором R6.
Если при наличии сигнала на входе возникает самовозбуждение, устраните его подбором емкости конденсатора С2. Фотодатчик смонтирован в центре, на дне пенала от фотопленки. Он одевается на окуляр телескопа после того, как тот уже наведен на объект.
Как видите, на уровне эскизного проекта наше устройство выглядит достаточно простым.
Питание устройства лучше производить от готового двуполярного источника, имеющего хорошую стабилизацию выходного напряжения. В схеме предусмотрены индивидуальные фильтры R3, С1 и R7, С4 в цепях питания делителя R1, R2 и микросхемы DA1. Их назначение – оградить указанные узлы от помех, могущих возникнуть на входе общего источника G1 при работе усилительных каскадов на транзисторах VT1…VT3.
Для нормальной работы этих каскадов их коллекторные токи должны иметь значения, близкие к указанным на схеме. Регулировать их можно подбором номиналов резисторов, стоящих в базовых цепях транзисторов.
В конструкции все постоянные резисторы могут быть взяты типа МЛТ мощностью 0,25 Вт, переменный резистор R6 – типа СП-0,4. Для упрощения подбора емкости конденсатора С2 на его месте удобно использовать подходящий по емкости керамический подстроечный конденсатор.
Трансформатор Т1 готовый, от любого переносного радиоприемника. Заметим, если в вашем распоряжении имеются парные высокоомные наушники типа ТОН-2 либо ТА-56, можно обойтись без трансформатора Т1, включив эти наушники на место его первичной обмотки. В таком случае коллекторный ток транзистора VT3 следует уменьшить до 1,5…2 мА.
Сборку устройства лучше выполнить на односторонне фольгированной плате из стеклотекстолита. По окончании монтажа протрите плату ватным тампончиком, смоченным в спирте – такая чистка монтажа позволит не только заметить лишние перемычки от затеков или разбрызгивания припоя, но и сведет к минимуму паразитные утечки тока, способные нарушить нормальную работу слаботочных цепей.
Закончив все подготовительные операции, можно приступить к поиску и прослушиванию сигналов, доносящихся из космического пространства.
Кстати, кроме Сатурна, кольца есть у всех дальних планет. Кроме того, возможно образование акустических волн на поверхности и в атмосфере Солнца и звезд. Таким образом, собрав электронную приставку к окуляру телескопа, вы, возможно, откроете для себя звучание звезд всей Вселенной.
Ю. ПРОКОПЦЕВ
Дорогие друзья!
В этом году мы писали о ядерной физике, энергетике, успехах механиков, связистов и, конечно, о работах ваших сверстников, любителей науки, техники, моделирования. Всего за год вы прочитали около 400 статей и заметок на самые разные темы.
Но о многом мы не успели написать.
В следующем, 2006 году наши читатели узнают:
– о людях, которые своими руками строили «летающие тарелки»;
– о том, как в Австралии сумели опровергнуть закон термодинамики;
– о школе, на уроках в которой учеников учат летать.
Вы прочтете также о том:
– зависит ли от вас судьба Вселенной;
– можно ли питаться солнечным светом;
– как превзойти Эдисона;
– стоит ли стрелять из пушки по генам;
– зачем металл превращают в стекло;
– когда скрестят капусту с альбатросом;
– понадобится ли компьютеру зеркальце и помада и о многом-многом другом.
Напоминаем! Наши подписные индексы – 71122 и 45963 (годовая) по каталогу агентства «Роспечать» и 99320 по каталогу Российской прессы «Почта России».