412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Юлия Касаткина » Я познаю мир. Ботаника » Текст книги (страница 2)
Я познаю мир. Ботаника
  • Текст добавлен: 29 сентября 2016, 02:17

Текст книги "Я познаю мир. Ботаника"


Автор книги: Юлия Касаткина


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 2 (всего у книги 15 страниц)

Выдающиеся химические способности

Всем живым организмам для поддержания жизни, развития и размножения требуется энергия. Энергию можно получать из разных источников. Самым «дешевым» и универсальным источником энергии является солнце. Его энергию используют организмы, способные к фотосинтезу, это – цианобактерии, растения и некоторые простейшие.

Грибы и часть бактерий, которые питаются по типу животных, получают энергию, разрушая готовые органические вещества, поступающие в организм с пищей. Кислород, поступающий в клетки в процессе дыхания, окисляет белки, жиры и углеводы до более простых соединений. Окисление – это химическая реакция, похожая на обычное горение, только очень медленное. Такое биологическое «горение» происходит внутри живых клеток, не повреждая их. Как и при горении, при окислении выделяется энергия. Часть ее расходуется на обогрев организма, а часть идет на построение новых «грибных» или «животных» белков, жиров и углеводов.

Гетеротрофное питание

Хемотрофное питание

Автотрофное питание

Итак, энергию можно получать от солнца или при разрушении органических веществ. Оба эти способа бактерии освоили задолго до того, как на Земле появились первые растения, животные и грибы (фотосинтез был «изобретен» бактериями еще за 1,9 млрд. лет до появления первых предков растений). Благодаря выдающимся «химическим способностям» бактерии освоили еще один способ добывания энергии: они единственные существа на планете, которые научились использовать энергию химических связей неорганических соединений.

Вы уже знаете, что при химических превращениях молекулы одного вещества разрушаются и преобразуются в молекулы другого вещества. Этот процесс может сопровождаться выделением энергии. Например, горение водорода с образованием воды сопровождается выбросом энергии такой силы, что происходит взрыв.

Точно такую же реакцию для получения энергии проводят водородные бактерии. Конечно, никакого взрыва внутри клетки не происходит, энергия высвобождается медленно и поэтапно. Важное отличие биохимических реакций от химических состоит в том, что в живых клетках реакции протекают не сразу, а в несколько этапов.

Своеобразная группа метанообразующих бактерий получает энергию в процессе получения метана (это тот самый газ, который горит у нас на кухне) из углекислого газа и водорода. Учеными доказано, что запасам метана в недрах земли мы обязаны деятельности метанообразующих бактерий, длящейся уже многие сотни миллионов лет.

Не менее интересна деятельность железобактерий, которые получают энергию, превращая различные соединения железа в гидрат оксида железа, или попросту – в ржавчину. Пятна ржавчины могут встречаться на болотах, в стоячих озерах и медленных ручьях – это следы жизнедеятельности железобактерий. Интересно, что в отличие от серобактерий, которые накапливают серу внутри клеток, железобактерии выделяют оксиды железа на поверхность клеток: в итоге вокруг клеток формируются своеобразные железные доспехи.

Железобактерии в чехле гидрата окиси железа

Серобактерии обеспечивают себя энергией, получая серу из сероводорода, при этом в местах постоянного выхода сероводорода (возле вулканов) образуются залежи самородной серы.

Другие серобактерии получают энергию, превращая серу в соли серной кислоты. Тем самым серобактерии оказывают огромную услугу растениям, которые могут усваивать необходимую для построения растительных белков серу только в виде растворимых в воде солей серной кислоты.

В непроглядной тьме подводных глубин, куда не попадает ни один лучик света, серобактерии обеспечивают энергией целое сообщество глубоководных организмов.

Это может показаться странным, но жизнь в необъятных океанских просторах нашей планеты сосредоточена в самых поверхностных слоях, а толща воды и дно представляют собой практически мертвую пустыню. Такое неравномерное распределение жизни в океане легко объяснимо. Растения, которые кормят все остальные организмы, могут расти только на свету, поэтому глубже 200 м вы не встретите ни одной водоросли – там для них слишком мало света. Те немногие организмы, которые все–таки выживают на глубинах, перебиваются остатками погибших растений и животных, постепенно оседающих на дно с поверхности водоемов. Сами понимаете, что на таком скудном рационе может выжить очень ограниченное число животных.

Но оказалось, что темные глубины океанов далеко не так бедны жизнью, как это представлялось раньше. В 70–х годах XX века на глубинах от 2600 до 6000 м в подводной «пустыне» были обнаружены настоящие «оазисы », где численность и биомасса живых организмов в 1000–10 000 раз превосходят обычные для таких глубин. Как образовались эти глубоководные «оазисы»?

Богатые очаги жизни на дне океанов находят вокруг действующих подводных вулканов, где температура воды может достигать +40°С (из–за страшного давления она не закипает) и где вместе с магмой из глубины Земли выбрасываются огромные количества сероводорода, метана и углекислого газа. Вот в таких, мягко говоря, неподходящих для ^кизни условиях обитают многочисленные жители глубоководных «оазисов».

Прежде всего бросаются в глаза заросли белых и коричневатых трубок длиной до 2,5 метра с торчащими из них ярко–красными султанами щупалец. Эти трубки строят гигантские черви вестиментиферы.

Вестиментиферы не имеют кишечника, и питанием их обеспечивают симбиотические серобактерии, живущие в особой пористой ткани, занимающей до 30% объема тела червя. Здесь серобактерии не испытывают недостатка в сероводороде и углекислом газе, которыми они питаются, и надежно защищены от резких перепадов температур. Перепады же температуры в таких местах просто фантастические: при удалении от жерла подводного вулкана на каждые 6–8 см температура падает на 60°С. На расстоянии метра от вулкана температура воды понижается от +400°С до всего лишь +2ºС!

Вестиментифера

Несмотря на свои гигантские размеры и защитные трубки, вестиментиферы становятся жертвами крупных крабов, которые обкусывают их щупальца. У подножия поселения вестиментифер скапливаются креветки и крабы–мусорщики, брюхоногие моллюски, мидии и различные рыбы, подъедающие остатки трапезы крабов. Поскольку трубки червей всегда покрыты «зарослями» бактерий, на них поселяются различные мелкие животные «соскабливатели», которые питаются этими бактериями и друг другом: различные ракообразные, моллюски, многощетинковые черви и другие животные.

И жизнь всех этих многочисленных и разнообразных животных зависит от невидимых серобактерий, ведь в темных глубинах океанов только эти микроорганизмы способны создавать органические вещества, которые затем словно по цепочке передаются вестиментиферам, хищным крабам, рыбам и многочисленным животным–мусорщикам.

Может быть, на других планетах и нет жизни, но подводные «оазисы» можно вполне назвать «другой планетой». Ведь мы привыкли, что источником пищи для животных являются растения, что свет – обязательное условие жизни создателей органических веществ.

А глубоководные серобактерии подводных вулканов способны в темноте создавать органические вещества только из сероводорода, углекислого газа и воды. Чтобы снабжать энергией целое сообщество живых организмов, этим бактериям не требуется ни солнечного света, ни готовой органики.

Возможности бактерий кажутся безграничными. Они способны вырабатывать сильнейшие яды и антибиотики; могут использовать энергию света, как растения, энергию готовых органических веществ, как животные и грибы; они единственные среди всех живых организмов умеют использовать энергию неорганических соединений. Трудно найти вещество, которое бактерии не смогли бы использовать в пищу.

Выдающиеся химические способности делают бактерий вездесущими и универсальными организмами. Попробуйте придумать условия, в которых бактерии не смогли бы выжить, и вы ответите на вопрос, почему они живут уже 3,5 млрд. лет и до сих пор являются самыми многочисленными обитателями Земли.

Лучшие друзья

Среди бактерий есть не только опасные паразиты и разрушители органики: некоторые бактерии способны к мирному и даже взаимовыгодному сожительству с другими организмам?

В желудке крупного рогатого скота и других жвачных животных обитают миллионы и миллиарды бактерий. Они питаются растительной массой, которой постоянно набит желудок жвачных животных, но при этом бактерии не только не объедают своих хозяев, а наоборот, помогают им переваривать пищу. Дело в том, что клеточная стенка растений состоит из целлюлозы – очень прочного вещества, переваривать которое организм коровы или буйвола не может. Бактерии–симбионты разрушают целлюлозную стенку до молекул сахаров, которые легко усваиваются организмом животного. Конечно, бактерии помогают перевариванию клетчатки не бескорыстно – часть питательных веществ они используют сами, но без их помощи животные просто погибли бы от голода.

Здоровье человека тоже зависит от бактерий. Кишечная палочка, населяющая наши с вами кишечники, вырабатывает витамины группы В и витамин К. Эти витамины не синтезируются организмом человека и могут быть получены только с продуктами питания или от бактерий. Если убить все бактерии, обитающие в желудочно–кишечном тракте, как это бывает, например, при длительном лечении антибиотиками, то ответом организма станет расстройство пищеварительной системы – дисбактериоз.

Выгоды, которые получают животные от сожительства с бактериями, очевидны. И для бактерий эти отношения тоже полезны. Во–первых, обитая в пищеварительном тракте животных, они постоянно находятся в стабильных благоприятных условиях. Во–вторых, животное–хозяин бесперебойно снабжает своих микроскопических помощников питательными веществами, да не просто травой и ветками, а разжеванной, размягченной, смоченной слюной пищей. В таких райских условиях симбиотические бактерии растут и плодятся как на дрожжах, поэтому даже то обстоятельство, что часть из них переваривается организмом хозяина вместе с пищей, не имеет значения по сравнению с выгодами, которые получают оставшиеся бактерии.

Друзья растений

Микробы поддерживают взаимовыгодные отношения не только с животными, но и с растениями.

Наиболее дефицитным элементом, необходимым для построения белков и нуклеиновых кислот растительных и животных клеток, является азот. Странно получается: с одной стороны, азот в атмосфере составляет порядка 78% (а жизненно необходимый кислород – всего 21%), с другой, его почти всегда не хватает. Дело в том, что газообразный азот, запасы которого в атмосфере действительно огромны, недоступен ни растениям, ни животным. Растенияспособны усваивать азот только в виде растворимых солей аммония, нитратов и нитритов из почвы. Животные получают азот, потребляя растительные белки. Останки животных и растений, разлагаемые бактериями и грибами, обогащают почву азотистыми соединениями, откуда вновь поступают в ткани растений.

Но количество доступных для растений азотистых соединений в почве часто недостаточно из–за того, что часть их разрушается и вновь попадает в атмосферу в виде газообразного азота. Процесс разрушения азотистых соединений почвы связан с особой группой бактерий, которых называют денитрифицирующими (приставка «де» означает отрицание, а нитрификация – процесс связывания атмосферного азота).

С проблемой снижения плодородия почв, вызванной в первую очередь нехваткой азотистых соединений, люди впервые столкнулись на заре развития земледелия. После непродолжительного использования почва на полях, где возделывались культурные растения, истощалась, и урожай падал. Приходилось бросать пашни и переходить на новые земли. Бывшие поля зарастали дикорастущими растениями, и спустя несколько десятилетий их плодородие восстанавливалось. Со временем люди стали замечать, что чем больше бобовых растений встречается на брошенных землях, тем быстрее они восстанавливают свое плодородие. Еще до наступления нашей эры о полезном влиянии бобовых на почвы писали древнегреческий философ Теофраст и римляне Катон, Варрон, Плиний и Вергилий. Французскцй агрохимик Жан Буссенго в 1838 году установил, что люцерна и клевер обогащают почву азотом, а зерновые и корнеплоды истощают.

Каким же образом бобовые растения способствуют накоплению в почве азота? Попробуйте выкопать с корнями обычное растение клевера. Внимательно рассмотрев корни, вы заметите маленькие шарообразные вздутия, отдаленно напоминающие клубни картофеля, растущие один из другого. Секрет связи плодородия почв и бобовых растений кроется в этих клубеньках. Ткани корня бобовых разрастаются не сами по себе – образование клубеньков происходит под действием особых бактерий, живущих и размножающихся внутри них. Эти бактерии получили общее название азотфиксирующих за способность превращать газообразный азот в доступные для растений соединения. В данном случае мы с вами имеем дело с классическим примером симбиоза: растение получает от клубеньковых бактерий азотистые соединения, а те обеспечиваются минеральными солями и сахарами. Усваивать газообразный азот могут не только клубеньковые бактерии, но и свободноживущие почвенные бактерии азотобактер и клостридиум Пастера (названный в честь выдающегося французского микробиолога). К сожалению, у свободноживущих азотфиксаторов усвоение азота происходит менее эффективно, чем у симбиотических клубеньковых бактерий. Это вполне объяснимо, учитывая, в каких «райских» условиях живут бактерии в клубеньках. Помимо бобовых, среди наших растений клубеньки на корнях образуют некоторые деревья: ольха и облепиха.

Круговорот, азота в природе

Растения (1) потребляют азот (N) в виде нитратов, нитритов и солей аммония и строят из них свои белки. Растительные белки усваиваются животными (2). После отмирания растительных и животных организмов гнилостные бактерии (3) переводят азот из состава белков в неорганические соединения. Клубеньковые бактерии (4) и свободноживущие азотфиксаторы усваивают недоступный растениям газообразный азот (Nг) и переводят его в доступные для растений формы. 5денитрифицирующие бактерии.

Клубеньки на корнях бобового растения

Растения, вступившие в симбиоз с азотфиксирующими бактериями, получили большие преимущества перед другими растениями. Теперь им не страшна нехватка азотистых соединений: благодаря своим невидимым помощникам бобовые растения могут вырасти на самых бедных почвах.

Лишайники, с которыми вы познакомитесь дальше, своей невероятной выносливостью тоже во многом обязаны бактериям. Расти на голых скалах, оползнях и камнях, где совершенно нет почвы, многие из них могут только благодаря цианобактериям, которые постоянно живут внутри тела лишайника. Эти бактерии тоже обладают способностью связывать атмосферный азот, что делает лишайники такими неприхотливыми в выборе места жительства.

Невидимые помощники человека

Среди бактерий есть немало помощников человека. С помощью молочнокислых бактерий получают сыр, сметану, кефир, ряженку, простоквашу, варенец, кумыс и многие другие кисломолочные продукты. Уксуснокислые бактерии превращают сахара и спирты в уксусную кислоту, раствор которой в быту называют уксусом.

Деятельность молочнокислых бактерий вы наверняка сами наблюдали не один раз. Стоит в теплый день оставить молоко на столе, как к вечеру оно уже приобретает кислый вкус. На следующие сутки или через день кислое молоко сворачивается, а под слоем густой простокваши скапливается жидкая сыворотка. Все эти превращения происходят из–за деятельности молочнокислых бактерий: в средних и северных широтах скисание молока вызывают молочнокислые стрептококки, а в более южных районах – болгарская палочка. И те, и другие микробы питаются молочным сахаром – лактозой, которая входит в состав молока. При этом образуется большое количество молочной кислоты и немного уксусной, янтарной, муравьиной кислот, спирта и других веществ^ придающих молочнокислым продуктам их особый вкус и аромат. Под влиянием кислот белок молока свертывается, и молоко превращается в простоквашу.

Каким образом молочнокислые бактерии попадают в молоко? Микробы содержатся в большом количестве даже в очень свежем молоке (в одном миллилитре от сотен тысяч до нескольких миллионов). Некоторое количество бактерий содержится и на вымени коровы и попадает в молоко во время дойки. Молоко, которое продается в магазинах, подвергается пастеризации, суть которой вы уже знаете, и не содержит бактерий. В этом случае они появляются в молоке, оседая на его поверхность из воздуха.

Нужно сказать, что в молоке содержатся отнюдь не только молочнокислые бактерии. Здесь же встречаются кишечная палочка, дрожжи, маслянокислые и разнообразные гнилостные микробы, вызывающие порчу молока. И все эти разнообразные микроорганизмы находят в молоке место жительства и питательную среду, бурно размножаются и взаимодействуют между собой.

Вот каким образом происходит взаимодействие между микробным населением, если молоко хранится при комнатной температуре. Вначале все группы бактерий развиваются независимо друг от друга, и гнилостные микробы иногда могут составлять до 90% от всей массы микроорганизмов. В результате жизнедеятельности молочнокислых бактерий в молоке постепенно накапливается молочная кислота. Ее концентрация постепенно растет и приводит к гибели сначала гнилостных, а затем и всех других групп микробов, в то время как количество молочнокислых бактерий продолжает расти. Вскоре молочного сахара, которым питаются бактерии, остается так мало, а молочной кислоты накапливается так много, что это задерживает рост самих молочнокислых бактерий, и их число постепенно уменьшается. Молочная кислота – продукт жизнедеятельности молочнокислых бактерий {как мочевина у млекопитающих) в этом случае выступает в роли природного консерванта, сдерживая развитие микроорганизмов.

Молочнокислые бактерии также принимают участие в процессе силосования кормов и квашения продуктов. Вырабатываемая ими молочная кислота определяет особый вкус и сохранность квашеной капусты и огурцов. Та же молочная кислота предохраняет от порчи и силосованное сено, идущее на корм скоту в зимнее время. Известны случаи хранения силоса до семи лет без потери его питательной ценности.

Существуют бактерии, которые способны вырабатывать различные антибиотики – вещества, оказывающие губительное влияние на другие бактерии, в том числе на болезнетворные (подробнее об антибиотиках рассказывается на с. 139). Среди бактериальных антибиотиков широко используются тиротрицин, бацитрацин, субтилин и грамицидин.

Последнее время ученые активно исследуют способность бактерий разрушать трудно разлагаемые искусственные вещества: красители, пластмассы и другие синтетические полимеры, пестициды, нефтепродукты. Все эти вещества человечество производит в таком огромном количестве, что после использования возникает проблема их переработки и уничтожения. Естественным путем многие искусственно созданные человеком материалы практически не разрушаются или разрушаются очень медленно. Например, обычный полиэтилен полностью перерабатывается бактериями и микроскопическими грибами только через 90–100 лет. Сжигание синтетических материалов – тоже не выход, поскольку при этом в воздух выделяется большое количество вредных соединений.

Выход предлагают бактерии. К настоящему времени обнаружено несколько групп микробов, которые способны быстро и эффективно разрушать синтетические материалы. Среди них уже упоминавшиеся бактерии, разрушающие нейлон. Используя эти микроорганизмы, генетики и микробиологи пытаются искусственно вывести такие «породы» бактерий, которые бы избирательно разрушали те или иные вещества. Есть надежда, что именно с помощью бактерий в ближайшем будущем человечеству удастся решить проблему переработки промышленных отходов и мусора.

Поведение бактерий

Хотя большинство бактерий состоит из одной клетки, они способны к активному передвижению и даже к простейшим формам поведения, которые носят названия таксисов. Таксис – это движение клетки к какому–либо раздражителю или от него. Так, у фотосинтезирующих цианобактерий проявляется положительный фототаксис, т.е. они движутся в сторону источника света. При этом выделяется большое количество слизи, по которой клетки цианобактерий перемещаются путем скольжения.

Кишечная палочка проявляет положительный таксис на 20 веществ (большинство из них – сахара) и отрицательный на 8 отпугивающих веществ–репеллентов. Для передвижения кишечная палочка использует многочисленные жгутики. Спирохеты передвигаются, ввинчиваясь в среду, подталкиваемые вперед единственным жгутиком, работающим наподобие корабельного винта.

Некоторые бактерии, обитающие в воде, способны ориентироваться в магнитном поле земного шара и постоянно плывут в одном и том же направлении. В Северном полушарии бактерии движутся на север, следуя линиям магнитного поля, которые направлены в глубь водоема. Перенесенные в Южное полушарие, те же бактерии будут двигаться на юг, также стремясь в толщу воды. Предполагается, что направленное движение «магнитных»» бактерий вдоль линий магнитного поля – магнитотаксис – способствует перемещению клеток в более богатые питательными веществами придонные слои воды.

Если цианобактерии своим внешним видом и образом жизни напоминают растения, то диктиобактер ближе к животным. Диктиобактер – уникальное явление в царстве бактерий – это не просто скопление клеток, а единый многоклеточный бактериальный организм, клетки которого способны к согласованному выполнению определенных действий. Второе название этого существа – хищная бактериальная сетка – отражает способ его питания. Все клетки хищной бактериальной сетки расположены в один слой, действительно напоминая пустую сеточку, покрытую слизью, которую выделяют все клетки колонии. Медленно перемещаясь по илистому дну водоема, диктиобактер «разыскивает» добычу.

Диктиобактер

Вот он встретил на своем пути какую–то живность из числа микроорганизмов, и начал наползать на свою жертву. Через некоторое время жертва оказывается внутри сетки, выбраться из которой она не может, поскольку все ячейки затянуты густым слоем слизи. Клетки, образующие эту своеобразную ловушку, сближаются и начинают выделять пищеварительный сок. Переваривание жертвы происходит внутри сеточки диктиобактера подобно тому, как переваривается пища в желудке многоклеточного животного!


    Ваша оценка произведения:

Популярные книги за неделю