355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Всеволод Беллюстин » Как постепенно дошли люди до настоящей арифметики [без таблиц] » Текст книги (страница 2)
Как постепенно дошли люди до настоящей арифметики [без таблиц]
  • Текст добавлен: 6 октября 2016, 01:05

Текст книги "Как постепенно дошли люди до настоящей арифметики [без таблиц]"


Автор книги: Всеволод Беллюстин



сообщить о нарушении

Текущая страница: 2 (всего у книги 15 страниц)

Счетные приборы

Всякій отдѣльный человѣкъ и всякій отдѣльный народъ на первыхъ ступеняхъ своего развитія бываетъ склоненъ къ предметному счету. Какъ дѣтямъ, такъ и дикарямъ свойственно начинать счетъ съ пальцевъ. Отъ пальцевъ они переходятъ робкими попытками и съ большой нерѣшительностью къ счету на другихъ предметахъ, обыкновенно на близкихъ имъ и обиходиыхъ, напр., на черточкахъ, зарубкахъ, крестикахъ, костяшкахъ в т. п. Они еще очень далеки въ этомъ случаѣ отъ устнаго счета и отъ письменныхъ вычисленій. Продолжая развивать свою привычку къ наглядному счету, человѣкъ доходитъ до сложныхъ системъ, которыя онъ проявляетъ въ особенныхъ счетныхъ приборахъ и аппаратахъ. Одни только индусы, у которыхъ наука восходитъ къ такой же сѣдой древности и къ такимъ же необъятнымъ глубинамъ прошедшихъ вѣковъ, какъ у египтянъ и китайцевъ, и у которыхъ образованіе начало развиваться за тысячи лѣтъ до Р. X., – одни они успѣли освободиться отъ помощи предметовъ во время счета и занялись чисто умственнымъ, преимущественно устнымъ, счетомъ. У остальныхъ же народовъ, какъ образованныхъ, такъ и мало развитыхъ, мы встрѣчаемъ множество наглядныхъ пособій.

Укажемъ прежде всего на счетъ по пальцамъ и притомъ не на простой способъ постепеннаго загибанія пальцевъ, а на оригинальные пріемы, изобрѣтенные по большей части римлянами.

Римляне были большіе любители всевозможныхъ вычисленій на пальцахъ. Между прочимъ, путемъ разгибанія и загибанія пальцевъ, а также путемъ вытягиванія и складыванія рукъ, они умѣли выражать числа отъ 1 до милліона. При этомъ 3 пальца лѣвой руки, начиная съ мизинца, служили у нихъ въ различныхъ комбинаціяхъ для простыхъ единицъ, остальные пальцы лѣвой руки—для десятковъ, большой и указательный пальцы правой руки для сотенъ, а остальные для тысячъ. Чтобы выразить, напр., простую единицу, они загибали мизинецъ, чтобы выразить 2, пригибали 4-й и 5-й палецъ къ ладони, для 3-хъ—3-й палецъ: число 90, напр., обозначалось указательнымъ пальцемъ, пригнутымъ къ ладони; для обозначенія десятковъ тысячъ они клали лѣвую руку на грудь, бедро, для сотенъ тысячъ пользовались такимъ же образомъ правой рукой; складываніеі рукъ крестъ-накрестъ соотвѣтствовало милліону.

Римляне не только могли замѣчать на пальцахъ большія числа, но они умѣли производить при помощи пальцевъ нѣкоторыя дѣйствія. И сейчасъ еще потомки римлянъ, румыны и южные французы, въ состояніи быстро и искусно продѣлывать на пальцахъ таблицу умноженія.

Положимъ, дано умножить 6 на 8; тогда протягиваемъ на одной рукѣ 1 палецъ, т. е. ровно столько, насколько первый множитель больше пяти, а на второй рукѣ протягиваемъ 3 пальца, потому что, согласно такому же разсчету, 8 больше 5-ти на три; количество протянутыхъ пальцевъ складываемъ, и это будетъ число десятковъ—4; количества же пригнутыхъ пальцевъ перемножаемъ: 4×2=8, тогда получимъ единицы произведенія, 4 дес.+8=48.

Еще примѣръ: 8X9; такъ какъ 8 больше 5-ти на 3, а 9 на 4, то надо протянуть на первой рукѣ 3 пальца, а на второй—4, тогда останется согнутыхъ пальцевъ на первой рукѣ 2, на второй—1; теперь мы складываемъ количество протянутыхъ: 3+4=7, и перемножаемъ количества согнутыхъ: 1×2=2, отвѣтъ 72.

На чемъ же основанъ этотъ остроумный и быстрый пріемъ? Имъ такъ любили пользоваться школьники, особенно среднихъ вѣковъ. когда имъ не давалась многотрудная таблица умноженія. Основаніе его лучше всего можно выяснить алгебраической формулой, и для тѣхъ, кто владѣетъ алгеброй, мы ее сообщаемъ. Она имѣетъ видъ тождества: х. у==(х—5+у—5). 10+[5—(х—5)]. [5—(у—5)]. Изъ формулы можно видѣть, что она примѣнима только для тѣхъ случаевъ, когда множители больше 5-ти.

Пальцевымъ счетомъ можно воспользоваться также и при умноженіи двузначныхъ чиселъ, но только такихъ, чтобы они были не выше 20-ти. Чтобы показать это на примѣрѣ, умножимъ этимъ способомъ 13 на 14; для зтого 3 да 4 складываемъ; будетъ 7, столько десятковъ; эти же числа, т.-е. 3 и 4, перемножаемъ, будетъ 12, столько единицъ; а за то, что множители принадлежатъ ко 2-му десятку, надо къ полученнымъ отвѣтамъ добавить еще сотню; тогда всего получится: 100+70+12=182—отвѣтъ совершенно вѣрный. Кто знаетъ алгебру, тотъ безъ труда составитъ формулу для объясненія этого пріема: (10+a). (10+b)=100+ab+10. (a+b).

Покончивши съ вопросомъ о самомъ главномъ, близкомъ и употребительномъ пособіи, о пальцахъ, мы переходимъ къ тому разряду пособій, который нашелъ себѣ представителя въ русскихъ торговыхъ счетахъ. Русскіе счеты! Какъ они распространены въ народѣ, среди лавочниковъ, мелкихъ служащихъ, въ конторахъ! Ихъ издавна любитъ русское торговое сословіе. Это дало поводъ думать нѣкоторымъ, что счеты изобрѣтеніе исключительно русское. Ничуть: приборы, похожіе на счеты, мы встрѣчаемъ у многихъ народовъ, въ особенности у народовъ древняго міра, напр., у римлянъ, грековъ, китайцевъ, халдеевъ и у всѣхъ народовъ, которые приходили съ ними въ соприкосновеніе. Да и какъ не быть счетамъ, когда происхожденіе ихъ такъ просто, ясно и всеобще. На счетахъ имѣются шарики: естественно и удобно для всякаго народа, потому что потребность наглядности есть у всѣхъ, а что-нибудь лучше шариковъ трудно и придумать, по крайней мѣрѣ, заостренные, неотшлифованные предметы не такъ удобны для рукъ, какъ круглые; далѣе, шарики надѣваются на проволоки, но они могли бы надѣваться на стержни и шнуры или могли-бы класться въ желобки: цѣль, очевидно, та, чтобы они не разсыпались; это мы наблюдаемъ также у многихъ народовъ. Наконецъ, этотъ счетный приборъ содержитъ не одинъ рядъ костяшекъ, а нѣсколько; это уже болѣе высокая ступень счета, когда народъ имѣетъ нѣсколько разрядовъ единицъ, какъ простыхъ, такъ и сложныхъ; проволоки, шнуры и колонны для различныхъ разрядовъ могли бы располагаться какъ горизонтально, такъ и вертикально; у насъ въ русскихъ счетахъ проволоки расположены горизонтально, у римлянъ же колонны для шариковъ располагались вертикальными рядами.

Русскимъ торговымъ счетамъ можно указать иараллель и предшественника въ китайскомъ сванъ – панѣ. Изобрѣтеніе его относится къ вѣкамъ глубокой древности, откуда, впрочемъ, восходитъ и вся китайская наука и искусство. Надо полагать, что сванъ-панъ получилъ свое начало не сразу, а преобразовался изъ зачаточнаго, грубаго прибора постепенно, многими поправками и улучшеніями, пока не дошелъ до своего настоящаго вида. Признакомъ его древности служитъ то, что онъ содержитъ въ себѣ смѣсь пятеричной системы съ десятичной, слѣдовательно, онъ изобрѣтенъ тогда, когда народъ еще пользовался пятеричной системой и не перешелъ къ чистой десятичной.

Объяснимъ устройство сванъ-пана. Представьте себѣ деревянную раму, въ родѣ той, какая имѣется въ русскихъ торговыхъ счетахъ; поперекъ этой рамы горизонтальными рядами натянуты шнуры, вмѣсто нашихъ мѣдныхъ проволокъ. На каждомъ шнурѣ только 7 шариковъ, а не 10. Какъ же управляться съ 7-ю шариками и почему именно 7, а не другое число? А вотъ какъ: вдоль всѣхъ счетовъ, вертикально сверху внизъ, пересѣкая шнуры, идетъ перегородка, сквозь которую шнуры и продѣъаются. При этомъ по одну сторону перегородки остается шариковъ пятокъ, а по другую пара. Пятокъ назначается для отдѣльныхъ единицъ и съ нимъ ведется дѣло такъ же, какъ у насъ съ косточками на торговыхъ счетахъ. Что же касается пары, то назначеніе ея сложнѣе: каждая изъ составляющцхъ ее косточекъ равна по значенію 5 единицамъ соотвѣтствующаго разряда. Поэтому, какъ только мы наберемъ 5 косточекъ на нижней проволокѣ, то мы этотъ пятокъ должны сбросить и замѣнить одной изъ тѣхъ косточекъ, которыя входятъ въ составъ пары. Въ свою очередь, какъ только наберется этихъ пятерныхъ косточекъ двѣ, такъ онѣ сбрасываются и замѣняются одной простой косточкой на слѣдующей высшей проволокѣ. Изъ этого мы видимъ, что на нижней линіи кладутся единицы и пятки, на 2-й десятки и полсотни, на 3-ей сотни и полутысячи и т. д. Всего въ сванъ панѣ 10 линій, т.-е. шнуровъ. Отдѣльныхъ линій для долей въ немъ вовсе нѣтъ, не такъ, какъ въ русскихъ счетахъ. Въ греческомъ и римскомъ мірѣ былъ свой замѣститель сванъ-пана и русскихъ счетовъ. Онъ назывался абакомъ. Слово «абакъ» происхожденія еврейскаго и значитъ пыль. И это потому, что римляне и греки пользовались досками, на которыхъ былъ насыпанъ мелкій песокъ; на нихъ расчерчивался рядъ вертикальныхъ параллельныхъ линій; между начерченными линіями въ промежуткахъ само сабой являлся рядъ колоннъ или гладкихъ пространствъ, изъ которыхъ крайнее назначено было для простыхъ единицъ, второе (обыкновенно слѣва) для десятковъ, третье для сотенъ и т. д. Какъ же обозначить на такомъ абакѣ число единицъ, десятковъ, сотенъ и т. д.? Для этого былъ не одинъ способъ, а нѣсколько, при чемъ въ разныя времена и подъ вліяніемъ тѣхъ или другихъ математиковъ поперемѣнно выдвигалея на первый планъ то тотъ способъ, то другой: во-первыхъ, на колонны клали нужное количество костяшекъ или камешковъ, или же на нихъ чертили столько черточекъ, крестиковъ или кружковъ, сколько хотѣли обозначить единицъ; это самый немудрый, примитивный способъ. Позднѣе, съ Пиѳагора (въ VI вѣкѣ до Р. Хр.) начали пользоваться вторымъ пріемомъ, именно въ колоннахъ на пескѣ стали писать не крестики и черточки, а прямо цифры, и, наконецъ, въ замѣну этого пріема явился третій: стали употреблять костяшки или «марки», съ награвированными цифрами, такъ что вмѣсто письма въ колоннахъ на пескѣ начали класть костяшки съ цифрами; кромѣ того, вмѣсто доски съ насыпаннымъ пескомъ употребляли иногда поверхность гладкую изъ камня, дерева или металла, на ней графили рядъ колоннъ, въ которыя и клали марки. Чисто-римскій абакъ, въ отличіе отъ абака греческаго и отъ позднѣйшихъ видовъ этого же инструмента, былъ съ такими двумя подробностями. Во-первыхъ, сбоку у него имѣлись небольшія колонки для долей: половинъ, третей и четвертей или же унцій, т.-е. двѣнадцатыхъ долей: потребностъ въ вычисленіяхъ съ дробями давала себя чувствовать въ обширной и практически-разносторонней дѣятельности римлянъ; во-вторыхъ, такъ какъ римляне дольше всѣхъ народовъ примѣшивали къ десятичной системѣ пятеричную, то ихъ абакъ, подобно своему родоначальнику сванъ-пану, былъ примѣненъ къ счету пятками; надо замѣтить, что гордый Римъ, весь міръ приведшій подъ свое владычество и давшій образцы устройства государства, былъ не силенъ по части истинной науки и больше занимался вопросами житейской практики; плохіе математики и только свѣдущіе землемѣры, римляне не могли представкть себѣ ясно всѣхъ преимуществъ точнаго счета десятками безъ всякой примѣси пятковъ, и лишь ученый представитель позднѣйшей римской образованности Боэцій, жившій въ VI столѣтіи по Р. Хр., отбросилъ, наконецъ, добавочныя грани для пятковъ, и у него мы видимъ чистый счетъ десятками. Абакъ Боэція содержитъ въ правой колоннѣ единицы, въ сосѣдней съ ней десятки, въ слѣдующей сотни и т. д.; если какой-нибудь разрядъ отсутствуетъ, то та колонна остается незаполненной. Какъ близко отъ такого способа обозначенія до нашего порядка записыванія чиселъ! Стоитъ стереть черты колоннъ и обозначить какъ-нибудь мѣста пропущенныхъ разрядовъ, вотъ и наша система. Весьма возможно, что въ историческомъ развитіи такъ именно и совершалось дѣло, т.-е. когда въ данномъ числѣ какой-нибудь разрядъ отсутствовалъ, и та колонна, слѣдовательно, являлась незаполненной, то стирали всѣ колонны, кромѣ нея, ее же выражали въ видѣ квадрата, незаполненнаго цифрой; отсюда одинъ шагъ къ тому, чтобъ вмѣсто неудобнаго квадрата ввести кружокъ, который чертится гораздо легче: кружокъ этотъ и есть нашъ нуль. Но все-таки введеніе нуля никоимъ образомъ не можетъ считаться заслугой римлянъ: оно принадлежитъ индусамъ.

Въ XV столѣтіи по Р. Хр. абакъ, почти забытый со временъ Боэція и замѣненный письменными вычисленіями, вновь выступаетъ на первый планъ. Его выводитъ изъ забвенія кипучая, горячая пора открытій, изобрѣтеній, развитія торговли и мореплаванія. Въ XV–XVI столѣтіи торговля западной Европы сильно оживилась, явилась потребность въ конторахъ, банкахъ и т. д., и вотъ купцы и всѣ коммерческіе люди стали усиленно примѣнять абакъ, какъ инструментъ сравнительно простой и легкій. При этомъ для удобства доску абака они клали на спеціальную подставку или скамейку и въ этомъ видѣ называли абакъ счетной скамьей, а такъ какъ по-нѣмецки скамья называется «bank» («банкъ»), то намъ легко понять, что значитъ «банкъ», «банкиръ».

Отголоски абака проникли въ русскую ариѳметическую литературу XVII вѣка, подъ именемъ счета «костьми» или «пѣнязи». Цѣль этого пособія была та, чтобы «великій счетъ считати». Нашъ абакъ отличался только одной особенностью, именно, онъ разлиневывался поперекъ на нѣсколько частей, и въ немъ отводились спеціальныя мѣста для слагаемыхъ и суммъ. Счетъ «костьми» употреблялся, когда нужно было «класть костьми сошную кладь», т.-е. высчитывать земельные налоги, «а вытная и хлѣбная потому жъ», т.-е. болѣе мелкія подати. Кромѣ единицъ, десятковъ и т. д. при счетѣ костьми употреблялись доли: трети, полутрети, половино – полутрети, малыя трети (24-я), чети, т.-е. четверти, получети, половино-получети, малыя чети (32-я доли). Для всѣхъ этихъ дробей были внизу доски особыя мѣста. Что счетъ костьми происхожденія иноземнаго, на это, между прочимъ, указываетъ и присутствіе пятковъ, полсотенъ и т. д., какъ въ сванъ-панѣ и старинномъ римскомъ абакѣ.

Скажемъ еще нѣсколько словъ о русскихъ торговыхъ счетахъ. Первоначальная ихъ форма на Руси такъ назыв., «дощаный счетъ», т.-е. доска или рама съ «четками» (шариками), надѣтыми на шнуры или веревки. Дощаный счетъ, подобно нынѣшнимъ торговымъ счетамъ, употреблялся въ народѣ часто: «имъ всякій торговый счетъ сочтетъ и сошной и помѣрной и вѣсчеи и денежной всякой счетъ по всякимъ статьямъ и въ доляхъ». Русскіе торговые счеты, или, какъ называютъ ихъ нѣмцы, «русская счетная машина», сдѣлались извѣстными за границей очень недавно и по такому случаю. Французскій офицеръ Понселе въ 1812 году былъ взятъ въ плѣнъ и поселенъ въ Саратовѣ; послѣ кампаніи онъ вернулся на родину въ Мецъ и ознакомилъ тамъ соотечественниковъ съ оригинальнымъ и удобнымъ приборомъ, который онъ захватилъ съ собой изъ Саратова. Съ тѣхъ поръ счеты распространились въ иностранныхъ школахъ въ видѣ нагляднаго пособія, но далеко не такъ повсемѣстно, какъ въ нашихъ.

Цифры различныхъ народовъ

Немного есть наукъ, которыя свое начало вели бы съ такихъ древнихъ временъ, какъ ариѳметика. И среди этихъ немногихъ своихъ спутницъ ариѳметика является наукой самой отвлеченной. Но если ужъ теперь, несмотря на то, что цивилизація и общее развитіе значительно проникли въ массу народа, всякое отвлеченное мышленіе все же очитается чѣмъ-то сухимъ и труднымъ, то тѣмъ болѣе во времена давно прошедшія отвлеченное знаніе нуждалось обязательно во внѣшнемъ проявленіи. Цифры и служатъ такимъ проявленіемъ. Онѣ всеобщи и такъ же древни, какъ древни крайніе зачатки ариѳметики. Такъ, цифры у египтянъ мы видимъ за 2200 лѣтъ до Р. Хр. въ папирусѣ Ринда, у халдеевъ за 2300 лѣтъ до Р. X. въ табличкахъ Сенкере и у китайцевъ за 2637 лѣтъ до Р. X. въ «Кіу-чангѣ», составленномъ ученымъ авторомъ Тзинъ-кіу-чау. Много есть разныхъ сортовъ цифръ; они отличаются другъ отъ друга и происхожденіемъ, и начертаніемъ, въ зависимости отъ того, когда они получили начало и у какого именно народа.

Навѣрное, читатель, вамъ приходилось не разъ замѣчать, что малые ребята съ особенной охотою рисуютъ дома, людей, животныхъ, т.-е. все то, что прямо предъ глазами, и лишь потомъ, впослѣдствіи они берутся за условные рисунки, т.-е. значки, планы и чертежи. Такъ точно и народы древности предпочитали имѣть цифры въ видѣ рисунковъ тѣхъ предметовъ, которые у нихъ передъ глазами. Особенно замѣтна эта оклонность у древнихъ египтянъ, хотя и у другихъ народовъ мы можемъ указать подобные слѣды. Это письмо носитъ названіе гіероглифичеекаго; напр., чертежъ шеста или кола обозначалъ собою единицу; десятокъ означался фигурою 2-хъ соединенныхъ рукъ, такъ какъ на 2 рукахъ бываетъ 10 пальцевъ; символомъ сотни считался свернутый пальмовый листъ, такъ какъ съ его развитіемъ выходитъ изъ него много листовъ, можетъ быть до 100; тысяча рисовалась въ видѣ цвѣтка лотоса, который знаменовалъ собой обиліе; цифрой, которая обозначала 10000, было изображеніе лягушки, такъ какъ лягушки при разливахъ Нила являлись въ неисчислимомъ количеетвѣ, многими тысячами. Картиной милліона была фигура изумленнаго человѣка.

Такими гіероглифами пользовался Египетъ для выраженія всѣхъ чиселъ. Подобная система была и у халдеевъ. У римлянъ цифра V напоминаетъ своей формой кисть руки. Но, очевидно, писать при помощи рисунковъ крайне медлительно и неудобно, въ особенности же потому, что каждый изъ рисунковъ необходимо было повторять по многу разъ. Такъ, чтобы выразить число хоть 30270, египтянинъ 3 раза рисовалъ лягушку, 2 раза листъ и 7 разъ сложенныя руки. Гіероглифы надо было упростить, снабдить ихъ легкой формой и примѣнимостыо къ письму. Виѣсто фигуръ стали чертить лишь облики, нѣчто въ родѣ условныхъ знаковъ. Такъ получились цифры. Вромѣ того, писать одинъ и тотъ же знакъ по многу разъ невыгодно и долго, поэтому египтяне придумали для чиселъ 2, 3, 4, 9 свои особые значки, которые давали имъ возиожность избѣжать длиннаго и утомительнаго повторенія цифры 1. Что же касается 5, 6, 7, 8, то эти цифры у египтянъ были составлены изъ 2, 3, 4.

Слѣды письма гіероглифами, какъ сказано уже выше, мы видимъ у халдеевъ. Но и они оставили эту систему и выработали вмѣсто нея новую, очень послѣдовательную и простую, такъ называемое клинообразное письмо. Чтобъ обозначить единицу, халдеи рисовали вертикальную черту съ заостреннымъ нижнимъ краемъ и толстымъ расщепленнымъ верхнимъ. Десятокъ означался такою же чертой, но только въ положеніи горизонтальномъ и съ острымъ краемъ, обращеннымъ влѣво. Для выраженія нѣсколькихъ единицъ халдеи повторяли столько разъ знакъ единицы, еколько ихъ содержалось въ данномъ чиелѣ. Такъ, напр., чтобы выразить 7 единицъ, они писали 7 разъ знакъ единицы. Такимъ же образомъ они писали и десятки. Сотню оии обозначали помощью 2 чертъ, горизонтальной вмѣстѣ съ вертикальной. Для чиселъ, состоящихъ изъ полныхъ сотенъ порядокъ видоизмѣнялся: именно, халдеи брали знакъ сотни и при немъ писали столько разъ единицу, сколько сотенъ въ заданномъ числѣ. Для тысячи халдеи не имѣли особенной цифры, и они обозначали тысячу, какъ десять согенъ. И такъ, халдейская система цифръ, равно какъ и египетская, основаны на непосредственной наглядности, и отъ нея уже онѣ переходятъ къ условнымъ знакамъ.

Еще такого же происхожденія мы видимъ цифры у китайцевъ. Въ первоначальной своей формѣ онѣ напоминаютъ картины тѣхъ шнуровъ и косточекъ, которые употреблялись при наглядномъ счетѣ. Впослѣдствіи цифры китайцевъ сильно измѣнились и приняли нѣсколько видовъ. У нихъ есть разныя цифры: древне – китайскія, торговыя, научныя и для правительственныхъ актовъ. Цифры древне-китайскія очень фигурны и замысловаты и весьма возможно, что онѣ явились измѣненіемъ начальныхъ гіероглифовъ; онѣ писались на листкахъ не въ строчку, а вертикальнымъ столбикомъ, располагаясь сверху внизъ. Наоборотъ, цифры торговыя писались горизонтальными строками и шли слѣва направо; при этомъ числа разлагались на разряды, такъ что разрядъ писался за разрядомъ. Чтобы прочесть число, китайцы прямо говорили тѣ слова, какія соотвѣтствуютъ написанному ряду цифръ; согласно ихъ произношенію, тридцать = три десять, тринадцать = десять три, девяносто = девять десять.

Итакъ, у египтянъ, халдеевъ и китайцевъ мы видимъ дифры древнѣйшаго происхожденія, которыя напоминаютъ собою гіероглифы, или картины тѣхъ предметовъ, которые стоятъ въ связи съ даннымъ числомъ. Другимъ основнымъ корнемъ, давшимъ начало цифрамъ, являются числительныя имена. Это уже цифры болѣе позднѣйшія, такъ какъ для ихъ изображенія необходимо было развиться алфавиту, грамотности, потребности въ письмѣ и достаточному искусству письменнаго изложенія. У нѣкоторыхъ народовъ, какъ, напр., у финикіянъ, нерѣдко выписывались числителъныя имена сполна, черезъ посредство буквъ и словъ: финикіяне прямо записывали числа, согласно ихъ произношенію, словами, а не пользовались особыми значками – цифрами. Иногда такой же способъ примѣняли и греки, но особенно его любили арабы. Существуетъ цѣлый учебникъ по ариѳметикѣ араба Алькархи (въ 11 ст. по Р. X.), гдѣ нѣтъ ни одной цифры, и всѣ вычисленія, даже довольно сложныя, выполнены словесно.

Но очевидно, что подобное выписываніе числительныхъ именъ крайне неудобно и утомительно. Въ силу этого, числительныя имена стали подвергаться сокращенію. и цифрами стали считаться начальныя буквы числительныхъ именъ. Примѣровъ этому мы видимъ много у грековъ и у римлянъ, у индусовъ и у арабовъ (въ ихъ позднѣйшихъ цифрахъ). Греческія слова «пять» (πέντε), десять (δέχα), тысяча (χίλιοι), десять тысячъ (μύριοι) начинались съ буквъ π, δ, χ, μ, поэтому именно такія буквы являлись у грековъ знаками для чиселъ 5, 10, 1000, 10000, такъ что, согласно первоначальному греческому обозначенію, число пять имѣло цифру π, десять δ, тысяча χ, и, наконецъ, десять тысячъ μ. Подобный счетъ описанъ византійскимъ грамматистомъ Геродіаномъ, и этотъ сортъ греческихъ цифръ называется геродіановыми цифрами. Подобной же системой воспользовались и арабы, когда они, наконецъ, поняли, что полностью писать числительныя имена довольно затруднительно, они тоже стали писать только начальныя буквы числительныхъ именъ.

И наконецъ, послѣдней стадіей развитія, хотя и близкой къ нашимъ временамъ, но вовсе неудобной, и потому оставленной, надо признать такой порядокъ, когда замѣной цифръ служили буквы въ послѣдовательности алфавита. Такъ напр., греческій алфавитъ содержитъ по порядку буквы: α, β, γ, δ, ε, въ виду этого и числа обозначались: единица – α, два—β, три—γ, четыре – δ, пять—ε. Греки придумали обозначать такимъ образомъ приблизительно со временъ Рождества Христова, а до этого они прибѣгали къ геродіановымъ цифрамъ. Вслѣдствіе этого буква δ стала обозначать уже не десять, какъ начальная буква греческаго слова «δέχα», что значитъ десять, но она стала выражать четыре, какъ 4-я буква алфавита. Какое же удобство въ этихъ позднѣйшихъ цифрахъ сравнителыш съ тѣми, которыя указалъ Геродіанъ? Ариѳметически нѣтъ совершенно никакого, и пользы отъ замѣны однихъ значковъ другими не представляется никакой; виной такой замѣны явились, вѣроятно, переписчики, которымъ слишкомъ трудно было помнить буквы вразбросъ и въ безпорядкѣ: они и предпочли расположить ихъ въ порядкѣ. Подобную же систему мы видимъ у славянъ и у евреевъ. Несомнѣнно, она заимствована отъ грековъ.

Повторимъ вкратцѣ еще разъ, что цифры всѣхъ народовъ и временъ распредѣляются на три разряда: 1) цифры, получившія начало отъ гіероглифовъ и обратившіяся въ условные знаки; 2) цифры, образовавшіяся изъ буквъ алфавита и представляющія собой начальныя буквы числительныхъ именъ, и 3) цифры въ порядкѣ буквъ алфавита. Вторая категорія цифръ тоже измѣнилась, подобно первой, въ нѣкоторыхъ случаяхъ до неузнаваемости, такъ что изъ буквъ образовались условные знаки.

Теперь мы сообщимъ нѣкоторыя подробности о цифрахъ отдѣльныхъ народовъ[3]3
  Въ концѣ книги приложена таблица цифръ.


[Закрыть]

Египтяне. Они были образованнымъ народомъ уже за 4000 лѣтъ до Р. X. Періодическіе разливы Нила рано побудили ихъ заниматься землемѣріемъ и ариѳметикой, такъ какъ каждую весну приходилось имъ снова размѣрять, расчислять и дѣлить поля, затянутыя иломъ

могучей рѣки. Въ 1872 году въ тайникахъ одной изъ многочисленныхъ египетскихъ цирамидъ нашли свертокъ пергамента, такъ наз. папирусъ «Риндъ», въ которомъ разобрали рукопись ариѳиетическаго содержанія. Авторъ ея нѣкто египтянинъ Амесъ, жившій во времена фараона Аменемы (2221–2179 г. до Р. X.). Изъ рукописи можно усмотрѣть, что автору доступны были довольно сложныя задачи замысловатаго характера не только въ цѣлыхъ числахъ, но и съ дробями.

У египтянъ было три системы письма: а) гіероглифическая, о которой упомянуто выше, в) гіератическая, или письмо жрецовъ, и с) простонародная. Письмо гіератическое является ничѣмъ инымъ, какъ упрощеніемъ гіероглифовъ, и въ этомъ смыслѣ его можно считать нормальнымъ переходомъ къ цифрамъ. Пользуясь знаками единицы, десятка, сотни, тысячи, египтяне ихъ повторяли столько разъ, сколько хотѣли обозначить единицъ, десятковъ и т. д.; но выше 1000 въ гіератическомъ письмѣ они вводили умноженіе: такъ, чтобы обозначить 10000, они писали рядомъ 10 и 1000. Письмо простонародное преподавалось въ школахъ и примѣнялось въ обиходной жизни, въ торговлѣ, письмахъ, въ гражданскихъ документахъ. Оно имѣло, въ свою очередь, не мало разныхъ видовъ; одинъ изъ нихъ нами показанъ въ приложеніи 3-мъ. Когда египтяне имѣли дѣло съ большими числами, то высшіе разряды они писали слѣва, а низшіе направо, т.-е. точь въ точь, какъ мы.

Финикіяне. Они были моряками и купцами древняго міра. Имъ приписывается изобрѣтеніе алфавита и успѣшное развитіе ариѳметическихъ знаній. Алфавитъ финикіянъ состоялъ изъ 22 буквъ, похожихъ на египетскіе гіероглифы. Служили-ль эти буквы также и для обозначенія чиселъ, на это нѣтъ никакихъ указаній. Напротивъ того, несомнѣнно, что финикіяне или писали сполна слова, выражающія числа, или же пользовались особыми, спеціальными цифрами. Изъ этихъ цифръ и составлялись обозначенія чиселъ, при чемъ рядомъ стоящія цифры иногда являлись множителями другъ друга, иногда же онѣ подлежали сложенію. Числа отъ 1 до 9 обозначались соотвѣтственнымъ количествомъ вертикальныхъ черточекъ. Горизонтальная черта или уголъ, обращенный отверстіемъ внизъ, обозначали число 10. Налѣво (не не направо, какъ написали бы мы) отъ этого знака раcполагали 1, 2, 3 и т. д. вертикальныхъ черты, для обозначенія чиселъ отъ 11 до 19. Такъ, напр. «||||—» обозначало четырнадцать. Чтобы обозначить два десятка, финикіяне писали 2 параллельныхъ черты, которыя лежали горизонтально. Для 100 былъ тоже особый знакъ, именно I

Изъ Тира и Сидона, древнихъ финикійскихъ городовъ, расположенныхъ на берегу Средизеинаго моря, центровъ тогдашней торговли, процвѣтавшихъ съ XIV до VIII вѣка до Р. X., распространилось счетное искусство по финикійскимъ колоніямъ, которыя были разсѣяны по берегу Сѣверной Африки и южнымъ полуостровамъ Европы.

Халдеи, смѣшавшіеся съ вавилонянами и подчинившіе ихъ себѣ, жили на южномъ теченіи рѣкъ Тигра и Евфрата. Это сосѣди и счастливые противники іудеевъ ветхаго завѣта. Культура ихъ принадлежитъ къ древнѣйшимъ: она началась болѣе чѣмъ за 3000 лѣтъ до Р. X., и пришла въ упадокъ за 500 лѣтъ до Р. X. Халдеи употребляли для письма нѣчто въ родѣ грифелей, съ расщепленными концами, поэтому-то мы и видимъ у нихъ такъ назыв. клинообразное письмо. Цифры халдеевъ приведены выше и представлены подробно въ приложеніи 4-мъ, въ концѣ книги. Ихъ можно хорошо установить, благодаря счастливой находкѣ, которую удалось сдѣлать въ развалинахъ древняго знаменитаго города Ниневіи. Тамъ подъ грудой мусора, пыли и пепла археологи открыли цѣлую сохранившуюся залу, по нашему сказать, библіотеку, устроенную по приказанію царя Сарданапала за 7 столѣтій до Р. X. Это была публичная библіотека. Вотъ еще когда и вотъ еще въ какихъ странахъ открывались публичныя библіотеки! Но книгъ въ ней не было, а были цѣлые ряды тонкихъ глиняныхъ плитокъ, обожженныхъ и прочныхъ, расписанныхъ разными красками: это нарисованы буквы, фразы и цѣлыя сочиненія. Есть среди нихъ и сочиненія ариѳметическаго содержанія.

Обширная торговля, вмѣстѣ съ развитіемъ ремеслъ, заставила халдеевъ заняться практическими вычисленіями; этимъ любознательный народъ не удовольствовался и перешелъ къ теоретическимъ вопросамъ ариѳметики. Мало того, халдеи стали искать какихъ-то скрытыхъ, таинственныхъ свойствъ чиселъ, стали гадать на числахъ, волхвовать, предсказывать; цифрамъ придавался смыслъ символическій, и ими угадывали будущее. Какъ это бываетъ вездѣ и всегда, легковѣрные люди создали халдеямъ репутацію искусныхъ гадальщиковъ. Въ 139 г. до Р. X. они были изгнаны изъ Рима за волшебство. Но слава ихъ и вліяніе былн замѣтны еще въ средиіе вѣка въ Западной Европѣ, такъ что имъ приписываютъ особыя кабалистическія цифры, употреблявшіяся въ астрологіи (см. 7-е приложеніе).

Греки. Древнѣйшія цифры грековъ мы указали выше. Позднѣйшими цифрами, примѣрно за 100 лѣтъ до Р. X., стали служить буквы алфавита въ ихъ нормальномъ порядкѣ. Единицы, десятки и сотни обозначаются по этой системѣ такъ: 1=α, 2=β, 3=γ, 4=δ, 5=ε, 6=σ, 7=ζ, 8=η, 9=θ, 10=ι, 20=κ, 30=λ, 40=μ, 50=ν, 60=ξ, 70=ο, 80=π, 90=ς, 100=ρ, 200=ζ, 300=τ, 400=υ, 500=φ, 600=χ, 700=ψ, 800=ω, 900=ω̈. Тутъ, какъ видно, всего цифръ 27, а буквъ у грековъ въ алфавитѣ имѣется только 24; поэтому пришлось добавить къ нимъ еще 3 буквы старинныхъ, давно уже вышедшихъ изъ практики, такъ наз. vâv, koppa и sampi, для обозначенія 6, 90 и 900.

Чтобы отличить число отъ слова, греки проводили обыкновенно надъ цифрами черту, такъ, напр., ιε[4]4
  возможности FictionBook не позволяют отображать все математические символы, поэтому «как в оригинале», к сожалению не получится.
  Имейте в виду, что «титло"(старинный древнерусский термин для обозначений цифр буквами русского алфавита) в данном случае – это сплошная черта, которая проводится над числом, чтобы можно было понять, что это не бессмысленный набор букв, а число и чтобы отделить одно число от другого. Примечание авт. док.


[Закрыть]
=15,πχβ=122. Для обозначенія тысячъ они пользовались опять 9-ю первыми знаками, но подъ ними проводили маленькую вертикальную черту, напримѣръ, |α=1000, |β=2000, |γ=3000, |αφοε=1575, |ετπ=5380, |θωμγ= 9843, |γχνδ=3654.

Десятокъ тысячъ составляетъ новую употребительную едииицу счета – миріаду. Греки любили пользоваться миріадами и прииѣняли ихъ съ такою же охотой, cъ какой мы примѣняемъ тысячи и милліоны; можно сказать, что въ греческомъ счисленіи классъ состоялъ изъ 4 разрядовъ, а не изъ 3-хъ, какъ въ нашемъ, такъ что при выговариваніи большихъ чиселъ они прежде всего указывали миріады, а послѣ нихъ и тысячи и остальные всѣ разряды. Знакъ миріады былъ М или Мν. Двѣ миріады обозначались черезъ βM.

Миріада миріадъ, по нашему сто милліоновъ, обозначалась черезъ Мβ. Миріада въ кубѣ, иначе сказать трилліонъ, писалась Мγ. Отдѣльаыя же миріады раздѣлялись точками, поэтому: Мγ.ε|Mβ.ρι|Mα.|εσπ=5601052800000. Какъ видно, цифры здѣсь располагаются отъ лѣвой руки къ правой, но это было не всегда, и такой порядокъ не считался обязательнымъ: можно было писать отъ правой руки къ лѣвой; въ Сициліи и Малой Азіи даже и выговариваніе чиселъ происходило отъ низшаго разряда къ высшему, такъ что сперва произносились единицы, затѣмъ десятки, сотни, тысячи и высшіе разряды.

Буквы – цифры гораздо менѣе удобны, чѣмъ выше упомянутые знаки Геродіана. Внося немало сбивчивости при письмѣ, онѣ, кромѣ того, мѣшаютъ производству дѣйствій, такъ какъ при нихъ надо въ отдѣльности учиться, какъ вычислять съ простыми единицами, въ отдѣльности съ десятками и съ прочими разрядами: нѣтъ аналогіи и мало сходства въ вычисленіяхъ съ отдѣльными разрядами.


    Ваша оценка произведения:

Популярные книги за неделю