Текст книги "Космические мосты"
Автор книги: Владимир Губарев
Жанр:
Физика
сообщить о нарушении
Текущая страница: 4 (всего у книги 13 страниц)
Много пользы принесет и сравнительное геофизическое изучение планет, которое будет вестись параллельно с изучением минералогического состава пород.
Огромный интерес у геологов вызовут вопросы сравнительной петрографии различных планет. Иногда в метеоритах обнаруживается такое сочетание минералов, которое не наблюдается в земных породах. Встречаются ли подобные сочетания на соседних планетах? Ответ на этот вопрос поможет проверить космогонические гипотезы планетообразования. Так, если планеты солнечной системы образовались из некогда единой массы, то разниться они будут лишь количественными соотношениями пород. Если же на планетах обнаружатся качественно разные породы, это будет свидетельством того, что наша планетная система образовалась путем захвата космической пыли различными облаками.
Освоение планет солнечной системы позволит решить и ряд других спорных вопросов геологии, например, успевший стать «вечным» вопрос о происхождении нефти. Наука располагает двумя точками зрения на происхождение нефти. Одни ученые утверждают, что нефть образуется в результате распада органических веществ. Другие (последователи Дмитрия Ивановича Менделеева) Доказывают, что углеводороды нефтяного типа могут образовываться и неорганическим путем. Открытие нефти, например, на Луне сразу же решит этот спор в пользу второй группы ученых. И наоборот – если на Луне других безжизненных планетах нефти не обнаружится, будет доказано, что она – непременный спутник органической жизни.
Что касается использования природных богатств других планет, то вряд ли окажется экономически целесообразным транспортировать их на Землю. Однако минеральное сырье, идущее на изготовление горючего для космических кораблей, будет, вероятно, добываться других планетах. Это позволит производить там дозаправку ракет для дальних полетов. По мере освоения планет будут использоваться и другие их минеральные ресурсы.
Таким образом, – говорит академик А. Яншин, – освоение космического пространства не только в корне преобразует геологию, но и заставит ее внести вклад в освоение планет солнечной системы...»
– И вновь только обещания!
– Таков уж характер ученых – они предпочитают размышлять о будущем, а не о сделанном.
– Хотелось бы услышать несколько конкретных примеров. Мол, взлетел «Салют», космонавты провели цикл измерений, и... геологи обнаруживают нефть!
– Вы повторяете распространенную ошибку.
– А что имеется в виду?
Казалось, сказочный клад рядом. Надо только подняться в космос, взглянуть вниз, на Землю, и отправляй экскаваторы, чтобы грузить железную руду в самосвалы. Космическая геология представлялась наукой не очень сложной и удивительно заманчивой. Основания для ких предположений были. Уже первые полеты спутнике дали любопытные результаты: по отклонениям орбиты можно было судить о характере пород, залегающих поверхности Земли. В частности, разведка двух крупных месторождений железной руды в Западной Сибири и Бразилии приписывалась спутникам, и никто не опровергал это.
Полеты «Салютов» показали, что в науке так просто не откроешь закон всемирного тяготения, даже если все яблоки на земном шаре упадут одновременно. И ничего не добьешься, если все время твердить: «Сезам, откройся!» Космическая геология не стала неким золотым ключиком которым можно открывать кладовые Земли, но она заявила о себе в полный голос, превратившись в составную часть геологии.
Искры «Салюта»-15
Космическую съемку нельзя рассматривать как универсальное средство, способное заменить весь арсенал методов геологической разведки. У поисковой партии свои задачи, у аэрофотосъемки – свои, а космическим геологам выпадает на долю то, что невозможно сделать на Земле или с борта самолета. Крупные геологические образования невозможно рассмотреть вблизи. Они просматриваются тем отчетливее, чем глубже залегают. Новые представления о геологическом строении некоторых районов страны, казалось бы, уже изученных, – вот первые итоги анализа снимков с «Салютов» и «Союзов».
Во время одного из полетов «Союза» был сфотографирован большой участок земной поверхности. И хотя в этом районе уже несколько раз велась аэрофотосъемка, только на космическом снимке были видны своеобразные геологические образования. По снимку специалисты сразу же определили: в этом районе есть соляные купола, а значит, надо вести разведку на нефть и газ. Чтобы прийти к этому обычными методами, геологической партии из 8 человек потребовалось бы 15 месяцев... Вот почему геологические эксперименты включаются в программу полета каждой орбитальной станций «Салют».
Экипажу «Салюта-3» – П. Поповичу и Ю. Артюхину – предстояло провести съемку южных районов нашей страны, в частности Кавказа. Сам по себе снимок из космоса не очень многое может сказать геологу, ecли не разработать специальные методы дешифровки. Способы, применяемые в аэрофотосъемке, не могут быть использованы в полной мере. «Вмешивается» атмосфера Земли – ее влияние нельзя не учитывать, ка и леса, поля, снежный покров тщательно скрывают геологические особенности района, которые интересуют специалистов.
Кавказ уже фотографировался с «Союзов» и «Салютов». Были определены условия съемки, появились и методы дешифровки снимков. Казалось бы, район Кавказа изучен досконально и неожиданностей быть не может. Но эксперимент на борту «Салюта-3» был запланирован по нескольким причинам. Во-первых, дешифровка снимков из космоса и сравнение полученных данных с реальными позволяют убедиться в эффективности съемок с орбиты. Во-вторых, любая наука, и в первую очередь геология, постоянно нуждается в «самопроверке». Не редкость, когда на освоенных площадях обнаруживаются новые месторождения.
Район Кавказа, и особенно Апшеронского полуострова, богат нефтью и газом. Геологи исходили его вдоль и поперек. Каково же было их удивление, когда снимки с «Салюта-3» выявили новые, неведомые ранее структуры. Используя эти данные, ученые создали новую тектоническую схему. Практическое значение ее велико схема используется теперь при организации поисковых работ на нефть и газ.
Все совершеннее становится геологическая съемка с борта пилотируемой орбитальной станции. Пройдет еще несколько лет, и космосъемка станет столь же обычной, как и аэрофотосъемка. И, уходя в тайгу, в пустыни, в горы, человек с геологическим молотком в руках будет вооружен более точными знаниями о том, что он может найти в подземных кладовых и где они расположены.
– Это хорошо, что космонавты начинают занимать сугубо земными делами. Но, согласитесь, без специалистов они не способны решить ни одной научной проблемы.
– Я бы не противопоставлял одних другим. Космический эксперимент нельзя отделять от теоретических разработок, он продолжает их. Однако бывает и иначе: космонавты, вернувшись после полета, делятся впечатлениями и своими наблюдениями. Они подсказывают новые направления поиска. Человеческий глаз – один из самых точных приборов. Подчас никакая аппаратура не способна заменить его. Уже Ю. Гагарин, хотя его полет продолжался всего полтора часа, увидел сложную цветовую гамму космической зари.
– И на Земле зори прекрасны!
– А в космосе – это одно из самых неповторимых зрелищ.
Г. Титов вскоре после своего полета писал: «...На горизонте я увидел ярко-оранжевую полосу, над которой стали возникать все цвета радуги. Небо было таким, словно я глядел на него через хрустальную призму... Перед выходом корабля из тени Земли интересно было наблюдать за движением сумерек по земной поверхности. Одна часть Земли – светлая – в это время была уже освещена Солнцем, а другая оставалась совершенно темной. Между ними была четко видна быстро перемещавшаяся сероватая полоска сумерек. Над ней висели облака розоватых оттенков.
Все было необычно, красочно, впечатляюще. Космос ждет своих художников, поэтов и, конечно, ученых, которые могли бы все увидеть своими глазами, осмыслить и объяснить».
Вот как описывают другие космонавты сумеречный ореол.
«Нижняя часть ореола, окрашенная в красно-оранжевые и желтые тона, переходит через белесую полосу к светло-голубым, темно-синим и черно-фиолетовым тонам» (В.Николаева-Терешкова).
«Последовательность окраски ореола в вертикальном направлении от линии горизонта: красно-оранжевые тона, желтые, светло-голубые, белесые, затем снова светло-голубые и синие, наконец, белесоватые» (Д. Макдивитт и Э. Уайт)
«...От красно-оранжевых к желтым, голубым и белесым, затем опять голубые и белесые» (К. Феоктистов).
Рисунки, сделанные на борту «Восхода-2» А. Леоновым, по мнению одних космонавтов, хорошо передавали игру красок в космосе, другие же не соглашались с первым космическим художником.
Что же происходит? Почему сумеречный ореол Земли видится людьми по-разному?
Искры «Салюта»-16
Одними из первых на этот вопрос пытались ответим медики: они подчеркивали, что у каждого человека оптические характеристики глаз сугубо индивидуальны. Все мы видим по-разному.
Объяснение убедительное, но явно недостаточное. И на помощь медикам пришли физики. Проанализировав состояние атмосферы во время полетов космических кораблей, они доказали, что были различны метеорологические условия, направление визирования, положение Солнца и т. д. и поэтому цветовые картины сумеречной атмосферы казались неодинаковыми.
Уже давным-давно люди знали, что Земля круглая и атмосфера, которая окружает нашу планету, тоже имеет сферическую форму. Но до недавнего времени ученые не очень с этим считались. В своих расчетах они допускали, что атмосфера «плоская». Поступали они так потому, что стоило лишь слегка искривить эту очень удобную «плоскую атмосферу с параллельными световыми лучами», как сразу начинались сложнейшие расчеты своеобразный математический лабиринт, вырваться из которого было очень трудно, а некоторые считали – даже невозможно. Да и особой нужды забираться в этот лабиринт не было: «плоская» атмосфера вполне оправдывала себя, результаты получались достаточно точными.
Уже первый спутник вынес приговор «плоской» атмосфере Шагая по улице, мы не очень часто задумываемся о том что живем на гигантском шаре, а человек в космосе никогда об этом не забывает. Он смотрит в иллюминатор и отчетливо видит край планеты. Для него Земля – сферическое тело.
Модель «плоской» атмосферы уже не могла удовлетворить ученых, и им пришлось распутывать математический лабиринт. В. Соболев и его ученик доктор физико-математических наук И. Минин первыми проложили путь.
Группа молодых ученых должна была пойти дальше. Цель: дать более эффективный метод расчета яркости планетных атмосфер, разработать строгую теорию сумеречных явлений. Задача, сформулированная в двух фразах, имела большое практическое значение. Ее решение важно не только для определения оптических свойств атмосферы Земли и других планет, но и для навигации в космосе.
Молодые ученые Ленинграда наконец получили формулы яркости сферической планетной атмосферы, учитывающие положение наблюдателя в космосе, условия освещения Солнцем и многое другое. Из умозрительных выкладок и расчетов постепенно выкристаллизовалась практически ценная работа.
Ученые проводят расчеты сумеречного ореола земной поверхности и строят цветные картинки. Они дают мозаику красок в космосе. Вместо громоздких интегралов рождается всем понятная цветная картинка.
У участников международного конгресса по астронавтике в Белграде (1967 год) доклад об этой работе вызвал большой интерес. Но о подобном они слышали впервые и, вполне естественно, не могли до конца поверить в результаты расчетов, прежде чем эксперимент в космосе не подтвердит их.
А в Ленинграде тем временем рождался прибор, член-корреспондент АН СССР К. Кондратьев, вдохновитель и организатор этого эксперимента, предлагает включить его в программу полета «Союза-5».
...Космонавт и ученый понравились друг другу при первой встрече. Евгений Хрунов подробно расспрашивал, об устройстве прибора, об особенностях эксперимента, о его значении для астрофизики. Нет, не простое любопытство привлекало космонавта к эксперименту, а глубокая заинтересованность исследователя, готовящегося взглянуть на Землю из космоса. Олег Смоктий почувствовал это, и теперь их встречи стали более «продуктивными» – исчезла настороженность, столь обычная для малознакомых людей. Постепенно они сдружились, тем более что Олегу показалось, что Евгений особо «пристрастен» именно к этой работе.
Впрочем, позднее, когда Е. Хрунов поднялся в космос и вместе со своими товарищами начал работу на борту экспериментальной орбитальной станции, О. Смоктий понял, что для инженера-исследователя корабля «Союз-5» не было в полете «главного» и «второстепенного». Все было одинаково важно: и выход в открытый космос, и съемка планеты, и многочисленные задания, которые поручили экипажам космических кораблей ученые самых разных специальностей. Пожалуй, если бы Е. Хрунову даже не удалось провести какой-то эксперимент, запланированный программой, его трудно было бы упрекнуть: он впервые работал на орбите, а человеку, покидающему Землю, космос преподносит немало сюрпризов. Но Е. Хрунов, как и члены этого экипажа Б. Большое и А. Елисеев, не мог допустить, чтобы хоть один из запланированных экспериментов не был осуществлен. Они знали: их работа нужна людям, оставшимся на Земле. 15 января 1969 года на втором и шестом витках и 16 января па пятнадцатом Е. Хрунов проводил наблюдения сумеречного ореола Земли. Сначала он описывал это так, как видел сам, а потом, вооружившись прибором провел эксперимент по спектрофотометрированию.
Спустя полгода космонавт и ученый напишут: «Край Земли виден отчетливо в виде черной линии. Вблизи земной поверхности сумеречный ореол окрашен в красивые оранжевые тона. По мере увеличения высоты визируемого слоя цвет ореола плавно переходит в желто-оранжевый и желтый, к которому примыкает узкая темно-синяя полоса пониженной яркости, расположенная примерно на высоте, равной 1/3 от видимого размера ореола. Сразу за темно-синей полосой располагается область, окрашенная в светло-голубые тона. Занимая приблизительно 2/3 видимого размера ореола, данная область на границе с открытым космосом (черный цвет) окрашена в темно-синие и черно-фиолетовые тона».
Потом Е. Хрунов добавит: «Краски космоса чрезвычайно нежные, переход их плавный и едва заметный...»
Сразу после полета Е. Хрунов начал работать над кандидатской диссертацией. В ее основу легли наблюдения, сделанные на орбите. Теперь Е. Хрунов – кандидат наук.
Исследования сумеречного горизонта Земли, начатые во время полета первой орбитальной экспериментальной станции, продолжаются на «Союзах» и «Салютах». Уже вышел научный труд, подводящий итоги почти пятилетних наблюдений. Среди авторов не только такие ученые, как К. Кондратьев, А. Бузников, А. Лазарев, О. Смоктий, но и космонавты – Г. Береговой, А. Николаев, В. Севастьянов.
– Согласен, что космические зори прекрасны, но нужно ли их так тщательно исследовать? Наверное, есть проблемы посложнее...
– А будущее атмосферы вас беспокоит?
– Конечно. Как и многие земляне, я тревожусь, хватит ли кислорода, не потеплеет ли климат из-за резкого увеличения углекислого газа, наконец, не закроет ли пыль в небе Солнце!
– А наблюдения за атмосферой Земли, ее оптическими свойствами – часть работы по сохранению среды. Прежде чем что-то защищать, надо знать, что именно.
– Итак, ясно: спасать надо биосферу!
– От чего?
– От вредных воздействий.
– Давайте конкретизируем – что именно наиболее опасно для биосферы.
Биосфера возникла приблизительно три с половиной миллиарда лет назад, и с тех пор она не только изменяется сама, но и «перекраивает» лик нашей планеты. Особенно интенсивно этот процесс идет сейчас, во многом обусловленный деятельностью человека. Мы, люди, вмешиваемся в окружающий мир активно и властно. Что же происходит в биосфере, как «отвечает» она на дым заводов, рост городов, расширение посевных площадей?
Академик А. Виноградов – ученый с мировым именем. Крупнейший геохимик, один из основателей этой науки, он постоянно интересовался проблемами, связанными с изменением биосферы. Наш разговор с ним был посвящен как раз тем вопросам, которые сегодня волнуют всех.
«Я хочу представить влияние деятельности человека в масштабе планеты на биосферу, – говорил академик. – Существуют ли сегодня в биосфере природные явления, ведущие к возникновению критических, пороговых ситуаций глобального масштаба?
Искры «Салюта»-17
Прежде всего вспомним о кислороде. Его единственный источник – фотосинтез в земных растениях. В атмосфере находится около 1 500 000 000 миллионов тонн кислорода. Через каждые две-три тысячи лет этот «живительный газ» полностью обновляется. Уменьшилось ли количество кислорода в нашем столетии? Ведь теперь мы много сжигаем угля, нефти и газа. За 20 лет нефти добыто больше, чем за всю историю человечества. Эта нефть сгорает в топках электростанций и двигателях автомобилей. Нефть «съедает» кислород, а его... осталось столько же, сколько было раньше, по крайней мере в 1910 году, когда начались систематические наблюдения за количеством кислорода. «Зеленые фабрики» – растения – работают продуктивнее, чем раньше. Даже если темпы добычи топлива возрастут, кислорода хватит на сотни тысяч лет. Так что «кислородный голод» планете не грозит.
Несколько иначе обстоит дело с углекислым газом. Его источники – вулканические газы, дыхание животных и растений, горючие ископаемые и т. д. Углекислый газ выполняет в атмосфере роль «стекла оранжереи». Он пропускает солнечный свет к земле, но тепловое излучение планеты задерживает. Создается своеобразный «тепличный эффект». За 100 лет углекислого газа в атмосфере стало больше на несколько процентов, за десять минувших лет – на 0,2 процента. Накопление углекислого газа идет достаточно быстро. Некоторые ученые подсчитали, что к 2000 году его будет на 20 процентов больше, чем сейчас. А это, в свою очередь, вызовет в масштабах планеты повышение температуры в среднем на 2 градуса. К сожалению, пока нет точных данных, как будут реагировать на повышение концентрации углекислого газа «зеленые фабрики». Если они увеличат свою «производительность» и начнут поглощать углекислый газ более интенсивно, то положение стабилизируется на нынешнем уровне.
Самое большое влияние на климат Земли оказывает пыль в атмосфере. Пыль рождают пустыни (их площадь растет из-за уничтожения лесов), взрывы вулканов и, наконец, выброс отходов производства через трубы фабрик и заводов, распыление удобрений и т. д. Пыль – это экран для солнечной радиации. Некоторые ученые уверены, что похолодание, наступившее 30 лет назад, – следствие увеличения количества пыли.
Как бы то ни было, но запыленность атмосферы – главное, из-за чего может измениться климат Земли, и притом очень резко. Это процесс опасный, и за ним надо тщательно следить. Пока невозможно установить, где находится тот предел запыленности, за которым начинаются пагубные «неприятности» с климатом.
Не нужно драматизировать создавшееся положение, – считал академик А. Виноградов, – но усиление загрязнения атмосферы в ближайшие десятилетия угрожает прежде всего здоровью человека. Поэтому для разделения критических изменений в атмосфере совершенно необходимо организовать систематические наблюдения за состоянием атмосферы на всей планете. Те эксперименты, которые проводятся на орбитальных станциях «Салют» по определению оптических свойств атмосферы, чрезвычайно важны. Они позволяют с высокой точностью выявлять запыленность атмосферы, контролировать процессы, которые идут в ней».
– Драматизировать, конечно, не надо, но академия нарисовал не очень радостную картину. Пора начинать великий поход за сохранность природы...
– И вновь без космонавтики не обойтись.
– А кто подскажет, как именно нам действовать?
– Человечество живет в одиночестве, оно учится только на своих ошибках.
– Приходится сожалеть, что у нас нет «братьев по разуму».
– Да. Они могли бы быть полезными, если, конечно, они старше.
– А не могли бы «Салюты» помочь нам связаться с иными цивилизациями?
– Нет. Но кое-какие исследования полезны. Я имею в виду изучение космических лучей.
В глубокой древности человек, всматриваясь в звезды, видел только крошечные огоньки, раскиданные по небосводу. Появившиеся позднее оптические приборы приблизили к нему эти загадочные мерцающие точки, тогда-то он осмелился предположить, что там, в беспредельном мраке вселенной, есть другие миры, иные существа, способные творить, мыслить, дерзать. Долгом время эти предположения оставались лишь догадками, смелыми гипотезами. Расстояния, которые трудно даже представить себе, бережно скрывали от людей Галактику, процессы рождения и смерти космических систем. И только с появлением новой науки – радиоастрономии – мы почувствовали дыхание вселенной и стали пристально всматриваться в ее жизнь. Этому много помогли космические лучи, которые неутомимо скитаются по Галактике и, пока пусть схематично, но беспристрастно рассказывают о других мирах.
Академик В. Гинзбург принадлежит к плеяде советских ученых, жизнь которых неразрывно связана с изучением космических лучей.
«Миф о том, что межпланетное пространство – пустота, – говорит он, – развеян давно. Теперь ни у кого не вызывает сомнения, что все космические тела движутся в межпланетной или межзвездной плазме, свойства которой и пытаются познать сегодня ученые. Задача ответственная и трудная, но актуальная, так как человек наконец разорвал оковы земного тяготения и стал обживать солнечную систему.
Космическому кораблю, летящему на Марс или Венеру придется выдержать атаку обладающих громадной энергией частиц, которые пронизывают космическое пространство. Опасно ли это для космического корабля?
Искры «Салюта»-18
Скорость космических лучей близка к скорости света. Даже у самых медленных и тяжёлых частиц она превышает 100-200 тысяч километров в секунду. Все остальные космические тела (например, наша планета) – «тихоходы» в сравнении со стремительными лучами.
Земля защищена от космических лучей мощной броней магнитных полей, которые отбрасывают поток частиц в сторону. Частицы, прорвавшиеся сквозь магнитные поля, на большой высоте сталкиваются с молекулами воздуха и погибают. Однако космические лучи все же прорываются к поверхности Земли в виде потоков так называемых вторичных частиц, образующихся при столкновении космических лучей с ядрами атомов атмосферных газов.
Но ученых интересуют первичные частицы, и поэтому в небо поднимаются шары-зонды, а к вершинам горных хребтов ежегодно отправляются экспедиции физиков.
Надо ли говорить, что с появлением искусственных спутников возможности детального изучения космических лучей безгранично расширились? Теперь ученые могут исследовать совершенно «чистые» космические лучи.
Каковы цели таких исследований? Не хочу подробно останавливаться на том, что изучение космического излучения – одна из первостепеннейших задач современной астронавтики. Это ясно.
Исследования космических лучей связаны с элементарными частицами и их взаимовоздействием при высоких энергиях. Природа услужливо предоставила в наше распоряжение совершенную лабораторию, создание которой в земных условиях немыслимо. В естественных условиях космические лучи разгоняются да 10 000 000 000 миллиардов электрон-вольт!
Какие направления предпочитают космические лучи, странствуя по просторам Галактики? Научные данные, полученные в последние годы с помощью шаров-зондов, стратостатов и искусственных спутников Земли, подтвердили предположение, что наша планета атакуется космическими лучами со всех сторон равномерно, что потом излучения почти одинаков в разных направлениях. Значит, космическое излучение в Галактике изотропно. Од сюда можно сделать вывод, что в нашей Галактике множество источников космических лучей. Большинство сея временных исследователей считают, что космические лучи образуются в основном в пределах нашей Галактики, а не попадают в нее извне.
Для того чтобы поддерживать в Галактике постоянный уровень космического излучения, космические лучи, энергия которых огромна, должны непрерывно генерироваться. А где? Энергия их так велика, что трудно считать их генераторами звезды. Так, если бы все 200 миллиардов звезд нашей Галактики генерировали космический лучи так же, как Солнце, то суммарная мощность для такого «генератора» все же была бы в 10 миллионов раз меньше, чем есть на самом деле. Правда, в Галактика существуют еще магнитные звезды, которые могут «организовать производство» космических лучей в миллион раз лучше, чем Солнце, но и в этом случае общая мощность будет равна лишь 1 проценту наблюдаемой.
Во II веке до нашей эры древнегреческий ученый Гиппарх заметил в созвездии Скорпиона яркую звезду, которой раньше не видел. Новая звезда вскоре исчез, я Гиппарх, пораженный этим, решил переписать все звёзды чтобы потомки могли проследить, не появились ли новые светила и не исчезли ли прежние. Так был составлен первый звездный каталог.
Новые и сверхновые звезды наблюдали китайские, японские, византийские и другие астрономы. Появление их описано в древних рукописях. Сейчас установлено, что примерно каждые 50-100 лет вспыхивает сверхновая звезда – звезда особенно большой яркости. К сожалению, мы не можем наблюдать все вспышки, происходящие в нашей Галактике: большая часть их происходит за ее непрозрачным, межзвездным веществом диска. Образуются сверхновые звезды и в других галактиках.
Итак, вспыхнула сверхновая звезда. Свет ее настолько ярок, что астрономы без труда наблюдают это уникальнейшее явление природы. Однако такая звезда недолго радует астрономов – ее «оптическая жизнь» коротка. Свет ее постепенно слабеет, и уже через несколько месяцев она никак не выделяется на звездном небе. Теперь астрономы могут наблюдать только огромные массы газа, разлетающиеся от места взрыва в разные стороны. Газ можно обнаружить оптическими приборами.
Причины и механизм образования сверхновых звезд пока загадка для ученых. Мы можем только предполагать, что происходит в глубинах Галактики. Существует, например, гипотеза, утверждающая, что в сверхновой звезде в результате эволюции почти все протоны и электроны быстро образуют нейтроны. Звезда при этом с катастрофической скоростью уменьшается в размерах. Происходит взрыв, и вещество наружных оболочек разбрасывается в пространстве.
Грандиозен взрыв сверхновой звезды! Если сравнить энергию, выделившуюся, например, при взрыве сверхновой звезды в туманности Кассиопеи А, то она окажется в 100 миллиардов раз больше энергии, выделяемой Солнцем за целый год.
Какое отношение имеют вспышки сверхновых звезд к космическим лучам? Ответ на этот вопрос решит проблему происхождения источников космического излучения. Даже части энергии, выделяющейся при взрыве одной звезды, достаточно, чтобы компенсировать потери космических лучей в Галактике в течение десятков лет.
Радиоастрономические наблюдения указывают на существование огромного количества космических лучей в зовых оболочках образовавшихся в результате взрыва сверхновых звезд.
Космические лучи путешествуют с огромной скоростью. Что же представляет собой фантастический естественный ускоритель космических лучей, способный сообщать частицам такую огромную энергию?
Было предположение, что ускорение космических частиц происходит в газовой оболочке звезды под действием ударных волн. С такой гипотезой, однако, трудно согласиться: вероятно, таким образом частицы не смогу приобрести ту энергию, которая присуща космическим лучам, а в десятки и даже в сотни раз меньшую. Очевидно, ударные волны только выбрасывают в пространство из недр звезды огромные массы частиц и придают им сравнительно небольшие начальные скорости. Далее частицы разгоняются уже под действием переменных магнитных полей.
Иными словами, наша Галактика – это гигантский естественный ускоритель, мощность которого настолько велика, что даже трудно себе представить.
Чем объяснить, что в космических лучах процентной содержание ядер тяжелых элементов больше, чем во вселенной? Маловероятно, чтобы сверхновые звезды по составу столь сильно отличались от обычных. Некоторый соображения позволяют прийти к выводу, что здесь главная роль принадлежит механизму ускорения частиц, особенно в начальной его стадии.
Для того чтобы процесс ускорения начался, ядрам легких элементов необходимо придать определенную скорость. В наземных ускорителях частицы через инжектор «впрыскиваются» в установку и только потом разгоняются. В естественных условиях такого инжектора нет и поэтому частицы, имеющие недостаточную скорость, ускоряются, а остаются в районе взрыва сверхновое звезды.
Тяжелые же частицы в определенных условиях могут ускоряться при любой начальной скорости. Поэтому их процентное содержание в космических лучах оказывается повышенным.
Космические лучи бороздят просторы Галактики, – заканчивает свой рассказ В. Гинзбург. – Они живут сотни миллионов и миллиардов лет и за это время проходя огромные расстояния. Нашу Галактику они никогда не покидают. Если фотоны или загадочные нейтрино лишь пронизывают Галактику и теряются где-то во вселенной, то космические лучи верны нашему звездному миру. Изучать их – значит постоянно следить за пульсом нашей звездной системы».
– А что, если радиотелескопы слышат не только голоса звезд, но и принимают сигналы разумных существ иных цивилизаций?
– Хотя гипотеза эта и спорна, многие ученые не считают ее невероятной.
– И они слушают «голоса иных цивилизаций»?
– По крайней мере, пытаются их распознавать... Перед радиоастрономами всего мира сегодня встала проблема: узнать и расшифровать послания разумных существ, если они на самом деле присутствуют в потоке космического излучения. В Советском Союзе в этой области работает член-корреспондент Академии наук СССР профессор И. Шкловский. Вот что он рассказывает.
«Предположим, что в Галактике есть цивилизации, которые продвинулись далеко вперед по пути прогресса. Допустим, они находятся на уровне научного и технического развития, какого мы достигнем через 100, 200 или 500 лет. Эти цивилизации, бесспорно, пытаются найти в космосе «братьев по разуму». Но как они могут это сделать?
Электромагнитные волны – вот одно из средств межзвездной связи, решили ученые. Во-первых, они распространяются с максимально возможной в природе скоростью, во-вторых, при таком способе связи энергию можно концентрировать в узких пределах.
Известный ученый Ф. Дайсон предположил, что достигшая высокого уровня технического развития инопланетная цивилизация способна окружить свою «солнечную систему» твердой оболочкой. По мысли Ф. Дайсона, наблюдателям, находящимся в других звездных системах, в частности в нашей, солнечной, такая оболочка должна представляться довольно мощным источником инфракрасного излучения. Ф. Дайсон предложил организовать систематические поиски «точечных» космических источников инфракрасной радиации. Кстати, аналогичную идею задолго до Ф. Дайсона высказывал К. Циолковский.