355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Соколов » Огнепоклонники » Текст книги (страница 4)
Огнепоклонники
  • Текст добавлен: 29 сентября 2016, 02:34

Текст книги "Огнепоклонники"


Автор книги: Владимир Соколов



сообщить о нарушении

Текущая страница: 4 (всего у книги 5 страниц)

Вход в Музей ПШ в Петропавловской крепости

Имена главных героев этого повествования увековечены в названиях горных образований обратной стороны Луны, а имя самой ГДЛ носит тысячекилометровая гряда лунных гор. Теперь на месте дислокации второго отдела расположен Музей ГДЛ. На кирпичной стене Иоанновского равелина укреплена бронзовая мемориальная доска с надписью:

В 1932, 1933 гг. здесь в Иоанновском равелине помещались испытательные стенды и мастерские первой в СССР опытно-конструкторской организации по разработке ракетных двигателей Газодинамической лаборатории (ГДЛ) военно-научно-исследовательского комитета при Реввоенсовете СССР. Здесь производились стендовые испытания первого в мире электротермического ракетного двигателя, первых советских жидкостных ракетных двигателей, разработанных в ГДЛ в 1929–1933 гг. В ГДЛ были заложены основы отечественного ракетного двигателестроения. Выросший из ГДЛ комплекс дважды орденоносного опытно-конструкторского бюро создал мощные двигатели ракет и носителей, выводивших на орбиты искусственные спутники Земли, Луны и Солнца; автоматические станции на Луну, Венеру и Марс, пилотируемые корабли «Восток», «Восход» и «Союз».

Другую (мраморную) мемориальную доску можно видеть на стене Главного Адмиралтейства.

Глава 6.
Сегодня ракетно-космической техники

Современные многоступенчатые космические ракеты являются устройствами одноразового использования. На Землю они, как правило, не возвращаются, а их детали остаются в космосе, засоряя и без того достаточно замусоренные земными изделиями околоземные орбиты. Сегодня таких искусственных тел насчитывается уже около десятка тысяч. Вследствие неудачных запусков захламляется деталями космических ракет и загрязняются остатками их топлива обширные территории вблизи стартовых комплексов. Особенно пострадали степи Казахстана и северная тундра, где сокращаются оленеводческие угодья. Кроме того, обидно терять такие дорогостоящие объекты, как космические ракеты. Все эти соображения говорят в пользу создания таких ракет-носителей, которые бы возвращались на Землю из космического пространства.

По-видимому, первыми над этим задумались американские ракетчики. В результате около двух десятилетий назад в США была создана система многоразовых транспортных космических кораблей (МТТК). Она была разработана по программе «Спейс-Шаттл» («Космический Челнок»), которую субсидировало Национальное управление по аэронавтике и исследованию космического пространства (НАСА).

В основу компоновки МТКК положен иной, нежели во всех предшествующих космических кораблях с их последовательным сочленением ступеней, принцип: составные части объединяются в «пакет» параллельно соединяемых блоков. В МТКК «Спейс-Шаттл» таких блоков три. Первый из них содержит два твердотопливных цилиндрических ускорителя, второй – крепящийся к их поверхасти огромный бак для водородно-кислородного топлива третьей ступени, которая выполнена в форме аэроплана. В зависимости от названия этой возвращаемой на Землю ступени, весь комплекс получает одно из четырех названий: «Челленджер», «Колумбия», «Дискавери» или «Атлантис».

О том, какое топливо заливается в цилиндры ускорителей, можно лишь догадываться по просочившимся в прессу крайне скудным сведениям. Еще в 1942 г. после серии засекреченных испытаний в США было создано топливо на асфальтовой основе. Оно получило обозначение «Галсит» и состояло из 25 % асфальта и 75 % перхлората калия. Этот состав имеет жидкую фазу и затвердевает после заливки его в корпус ракетного ускорителя в течение четырех суток. Автором его считают Дж. У. Парсонса – главного эксперта лаборатории химических топлив. Новая модификация – «Галсит-61С», состоящая из 76 % перхлората калия и 24 % горючего (основой горючего являлся асфальт с добавлением смазочного масла), – использовалась в ракетных ускорителях уже в ходе второй мировой войны. Серийное производство его осуществляла фирма «Аэроджет». Работы над дальнейшим улучшением топлива, похоже, были продолжены.

Надо сказать, что асфальт течет при высоких температурах, а при низких становится хрупким, как стекло. Поэтому, вероятно, его решили заменить резиноподобными материалами, которые в процессе отвердения переходят в результате необратимых химических реакций в неплавкие и нерастворимые высокомолекулярные полимеры. В конце войны фирма «Тиокол кемикал корпорейшн» заменила асфальт полисульфидным каучуком. Горение такого заряда происходит как с торцевой поверхности, так и по внутреннему звездообразному каналу, что резко увеличивает газообразование. С 1948 г. началось внедрение этого топлива на американских ракетах дальнего действия. Возможно, что в ускорители «Спейс-Шаттла» заливается какая-то из модификаций этого топлива.

Последняя ступень МТКК «Спейс-Шаттл» имеет три маршевых водородно-кислородных ЖРД, два ЖРД маневрирования и 44 ЖРД ориентации. Эти двигатели питаются смесью четырехокиси азота и монометилгидразина. Топливный бак маршевых ЖРД заполняется на 70 % его объема жидким водородом (102 т), а в верхнюю вливается 605 т жидкого кислорода. Огромный бак для этого топлива является единственной составной частью МТКК, не возвращаемой на Землю. Оба ускорителя отделяются на высоте около 48 км после выработки топлива и приводняются на парашютах в расчетную точку. Последняя ступень приземляется, как самолет, на подготовленную взлетнопосадочную полосу.

Ускорители выпускаются фирмой «Тиокол» (США). Их длина – 35,3 м, поперечник – 3,7 м. Сопла регулируемые. Стартовая тяга достигает 1360 Т. Длительность непрерывной работы до 122 с, что достаточно для преодоления зоны сильного гравитационного поля Земли. Топливный бак сбрасывается спустя 10–30 с на высоте около 113 км после того, как прекращают работу маршевые ЖРД последней ступени перед выходом в космос. Войдя в плотные слои атмосферы на высоте около 53 км бак сгорает. Что же касается ускорителей и последней самолетовидной системы, то они, после небольшого ремонта, могут быть использованы многократно.

Маршевые двигатели последней ступени изготавливает фирма «Мартин-Мариетта» (США). Каждый из них способен развивать в течение 8 мин тягу 713 Т. Их ресурс рассчитан на несколько полетов. При возвращении на Землю они продолжают работать до тех пор, пока не станут эффективными аэродинамические свойства самолетовидной ступени. Ее выпускает фирма «Рокуэлл» (США). Ступень имеет длину 37,2 м, высоту 17,3 м. Каркас и обшивка изготавливаются из алюминиевых сплавов, а облицовочные теплозащитные плитки – из композиционных материалов типа «углерод-углерод» и кварцевого волокна. Расчетная длительность непрерывного полета – неделя. Экипаж – до 8 человек, пребывающих внутри корпуса без скафандров. Полезная нагрузка размещается в просторном головном отсеке с размерами 18,3 х 6,0 м2. Она выгружается на орбиту и снимается с нее с помощью специального робота.

Особо следует сказать об экипаже. Желающих попасть в его состав в США оказалось более чем достаточно. На участие в первом полете претендовало 8079 человек, из них 1544 – женщины. После жестких конкурсных испытаний НАСА отобрало 208 человек, включая 21 женщину, которые и были направлены для подготовки к полету в учебный центр. Командиром первого корабля был назначен астронавт Джон Янг, совершивший в 1972 г. высадку на Луну.

Первым из МТКК «Спейс-Шаттл» была «Колумбия», стартовавшая 12 апреля 1981 г. с мыса Канаверал и пробывшая на космической орбите с высотой 276,6 км 7 суток 20 часов 42 минуты 52 секунды. После этого она благополучно приземлилась на дне высохшего озера близ базы ВВС США «Эдвардс» в штате Калифорния.

Двадцать пятый из запланированных НАСА полетов «Спейс-Шаттл» закончился трагически. «Челленджер» успешно стартовал с семью членами экипажа 28 января 1986 г. в 11 часов 30 минут 17 секунд. Но через 74 секунды, достигнув высоты 15 км, он развалился на глазах тысяч зрителей в ослепительной бело-желтой вспышке громоподобного взрыва. Впоследствии было установлено, что причиной катастрофы явилась протечка пламени через разрушившийся от мороза стык нижних колец корпуса правого ускорителя. Пламя коснулось топливного бака. Экипаж погиб. В его составе была молодая учительница истории из города Конрад Криста Маколифф, намеревавшаяся из космоса преподать урок о необходимости беречь Землю. В стране был объявлен национальный траур и заторможена программа «Спейс-Шаттл», хотя в распоряжении НАСА еще оставались три МТКК: «Колумбия», «Атлантис» и «Дискавери».

Погибший корабль обошелся налогоплательщикам в 1,2 млрд долларов. Для сравнения скажем, что программа «Манхеттен» по созданию первой атомной бомбы была «всего» на 0,8 млрд долларов дороже. На создание семейства кораблей «Спейс-Шаттл» НАСА израсходовало начиная с 1972 г. более 12 млрд долларов, а знаменитый полет на Луну «Аполло» стоил почти 24 млрд долларов – столько же, сколько ежегодно США тратили на войну во Вьетнаме. Американцы считают, что сегодня вывод в космос полезной нагрузки массой 1 кг стоит более 10 тыс. долларов. Что касается сроков реализации ракетно-космической программы, то, по тем же данным, от эскизного проекта до реализации в «металле» проходит 15 лет, после этого требуется еще длительное время на «доводку» до серийного выпуска.

Когда шок от гибели «Челленджера» прошел, полеты МТКК «Спейс-Шаттл» возобновились, 29 сентября 1988 г. на орбиту вышел «Атлантис».

Программа «Спейс-Шаттл» преследует в основном военные цели. Однако существует и гуманный аспект использования МТКК. Конечно, еще не пришло время внеземных поселений людей, о который мечтал Циолковский, но уже вполне реально создание экологически чистых источников электрической энергии для использования ее на Земле. Как сообщило агентство ЮПИ (Вашингтон), еще 9 февраля 1970 г. фирма «Боинг» предложила правительству США разработать и реализовать проект орбитальной электростанции, эквивалентной по мощности десяти крупным АЭС. Предполагалось, что это будет искусственный спутник длиной до 30 км, массой 100 тыс. тонн с панелями солнечных фотоэлементов общей площадью 95,2 км. Вырабатываемая ими энергия должна передаваться на Землю по фиксированному микроволновому каналу через специальные антенны. Конструктивные элементы станции будут доставляться МТКК на низкую монтажную орбиту. Для их сборки потребуется 400 опытных космических монтажников. Пока что этот проект – мечта.

Плодотворная идея пакетной компоновки ракетно-космических систем нашла применение и у нас. Одним из ее авторов был, как указывалось, М. К. Тихонравов, энергично поддержанный С. П. Королевым. Например, комплекс «Энергия»-«Буран» состоит из ракеты-носителя («Энергия») и отделяющейся от нее в космосе самолетновидной ступени («Буран»). Этот комплекс, однако, нельзя причислить к МТКК, поскольку на Землю возвращается из полета только «Буран», а ракета и топливный бак утрачиваются.

Наряду с «Титаном-7» «Энергия» является одной из наиболее мощных сегодняшних ракет. Суммарная мощность ее двигателей достигает 170 млн л. с., что более чем в восемь раз превышает те «лошадиные силы», которым Ю. Гагарин скомандовал: «Поехали!» По опубликованным данным ракета «Энергия» может доставить в космос полезную нагружу более 100 т. Высота этой ракеты со стартовой массой свыше 2000 т достигает 60 м (она ниже «Титана-7»), а поперечник – 18 м.

Первый полет комплекса «Энергия»-«Буран» состоялся 15 мая 1987 г. Макетная последняя ступень приводнилась по ошибке в акватории Тихою океана. Однако после второго полета, осуществленного 15 ноября 1988 г., «Буран» автоматически, в беспилотном режиме, точно приземлился на взлетно-посадочной полосе космодрома, успешно использовав свои аэродинамические свойства. Для полета он оборудован объединенной двигательной установкой, работающей на экологически чистом углеводородном горючем.

Появление «Энергии» вызвало определенную «смуту». Дело в том, что она может временно оказаться «безработной», частично из-за отсутствия подходящих для нее полезных нагрузок, частично – из-за возможности более экономной доставки их на орбиту. По некоторым, хотя и не вполне достоверным данным, в настоящее время около 70 % советских космических транспортных средств и 90 % американских ориентированы на массы полезных нагрузок, не превышающие 7 т. Нельзя упускать из вида и достижения конструкторской мысли в микроминиатюризации, позволяющей непрерывно расширять функциональные возможности полезных нагрузок с одновременным уменьшением их массо-габаритных характеристик. До настоящего времени одной из наиболее крупных полезных нагрузок, выводимых на рабочую орбиту системой «Спейс-Шаттл», можно считать орбитальную лабораторию «Спейслэб», созданную в 1983 г. Европейским космическим агентством. Американскую орбитальную лабораторию «Скайлэб», построенную десятилетием ранее и доставленную на орбиту могучей ракетой «Титан-7», до 1974 г. посетили три экипажа, но она стала вдруг терять высоту, угрожая наземным объектам. Поправить дело не удалось, и в июле 1979 г. «Скайлэб» вошел в плотные слои атмосферы. Несгоревшие обломки упали в Индийский океан и на западе Австралии. К счастью, обошлось без жертв.

Известно, что советские орбитальные станции «Салют» оказались «долгожителями», а «Мир» до сих пор не исчерпал своих ресурсов. Сегодня многие зарубежные страны претендуют на посылку туда своих исследователей и на получение в невесомости в блоках, пристыкованных к «Миру», сверхчистых полупроводниковых и органических материалов.

Интерес к космическим исследованиям проявляют теперь не только сверхдержавы. В частности, на космические орбиты выходит Китай. Достижения этой бедной азиатской страны поразительны. Она сумела создать даже собственное термоядерное оружие, а ведь им сегодня располагают только самые передовые страны Европы и Америки. Ключ к разгадке – в давней программе «четырех модернизаций», одним из лозунгов которой было: «Пусть пчелы возвращаются с медом к своему улью». «Пчелы» – многие тысячи китайских ученых и инженеров, работавшие вне пределов Китая (так называемые «хуацяо»), вернувшись на Родину в 50 – 70-е годы, создали «мозговой центр» в области ядерной и ракетно-космической техники. В нем работают немало выдающихся ученых, в том числе лауреатов Нобелевской премии, из которых назовем лишь Цянь Цуэсяна, прозванного «китайским фон Брауном». По данным американского министерства торговли, в 1972 г. в США действовало свыше 13 тысяч электронных фирм, принадлежащих «хуацяо».

Первый китайский спутник «Дунфакун» массой 173 кг был выведен на орбиту 25 апреля 1970 г. китайской ракетой-носителем «Великий поход-1». За шесть лет до этого китайские ракеты уже проникли в космос. Сегодня все китайские ИСЗ выводятся на орбиту китайской ракетой «Великий поход-3». Вполне современная по техническим характеристикам она отличается относительной дешевизной (стоимость ракеты и космического фрахта на 10–15 % ниже мировых расценок), что обеспечило коммерческий успех и обилие заказчиков. С китайской ракетной компанией «Великая стена» недавно вели переговоры 13 организаций из 10 стран мира. Этому способствовало рассекречивание работ.

Сегодня изготовление спутников в КНР поставлено на поток. Масса спутника «Чайна-УШ» со сложным радиотехническим разведывательным оборудованием доведена до 1,3–4,5 т.

Нельзя не упомянуть, что Китай является четвертой страной мира, разрабатывающей и использующей электрические ракетные двигатели.

Давно уже располагает собственными ракетами-носителями и спутниками Израиль. Первый израильский спутник «Офек-1» был выведен на орбиту ракетой «Шавит». Новый спутник – «Офек-2» – имеет массу 16 т.

В печати появляются сведения о намерениях проникнуть в космос и государств Латинской Америки, Среднего Востока, Индии и особенно Японии. Последняя держава проявляет повышенный интерес к освоению Луны как промышленной базы. В эту работу уже включились такие фирмы-гиганты, как «Мицубиси», «Тойота», «Нихон-Денко» и др. В ближайшее время японцы намереваются создать на Луне долговременный обитаемый комплекс и автоматизированный завод по производству сверхчистых полупроводниковых материалов для своей электроники.

Глава 7.
Заглянем в завтра

Сейчас много пишут о грядущей ракетно-космической технике. Помечтаем и мы, опираясь на увлекательные сообщения печати. Назревает сближение космической и авиационной техники. Все шире используются аэродинамические свойства в космических летательных аппаратах, что проявилось в конструкции последней ступени американского «Спейс-Шаттла» и нашего «Бурана». С другой стороны, самолеты в погоне за скоростью оборудуются мощными реактивными двигателями, в них находят применение конструкционные материалы, используемые в космической технике (например, обладающие повышенными теплозащитными характеристиками).

Все больший вес обретает идея горизонтального запуска космических аппаратов как с поверхности Земли, так и со специально оборудованных самолетов-носителей. (Напомним, что она была высказан еще Цандером.) Какие преимущества дает горизонтальный старт?

Прежде всего, отпадает необходимость в весьма сложных стартовых позициях и точной привязке по времени каждого старта. Если же старт космического аппарата осуществляется с самолета-носителя, то достигается значительная экономия топлива. Кроме того, может быть выбрана оптимальная точка старта на трассе самолета-носителя. Возможность установки космического аппарата на самолете практически доказана недавней доставкой советским самолетом «Мрия» на выставку во Францию «Бурана». Этим заинтересовались такие крупные английские фирмы, как «Бритиш аэроспейс» и «Роллс-Ройс», имея в виду вывод на орбиту своего «Хотола» массой 250 т. Конечно, для этой цели потребуется специальное оборудование, однако его нельзя сравнить с наземным стартовым комплексом.

Преимущества горизонтального старта хорошо усвоили конструкторы немецкой фирмы «Мессершмитт-Бельков-Блом», которые разработали в деталях проект космоплана «Зенгер», названного в честь выдающегося немецкого авиаконструктора Ойгена Зенгера. (Он знаменит тем, что еще в 1944 г. разработал оригинальный проект аппарата с ЖРД, способного облететь Землю за счет многократного рикошетирования от верхней границы плотной атмосферы.) Генеральный директор конструкторского отдела фирмы доктор Эрнст Хегенауэр считает, что использование двухступенчатого «Зенгера» позволит Европе осуществлять собственные космические старты, что весьма проблематично или даже невозможно при использовании вертикального пуска одноразовых ракет. (Правда, исключение делается для ракеты-носителя «Ариан».)

По габаритам и массе «Зенгер» подобен американскому самолету «Боинг-747». Его длина 8 м, общая масса 330 т, в том числе 90 т приходится на верхнюю ступень. Первая ступень используется в качестве самолета-«разгонщика», вторая представляет собой стартующий с него на орбиту «челнок». Обе ступени возвращаются на Землю и могут многократно использоваться.

Предусматриваются две модификации «челнока»: «ХОРУС» и «КАРГУС». Первая из них – крылатый аппарат, способный перевозить четырех пилотов-операторов и 4 т полезной нагрузки. Вторая, обладающая собственным ЖРД, может доставлять на низкую орбиту 15 т груза, а на 30-километровую геостационарную орбиту – 2,5 т. (Английский космоплан «Хотол» рассчитан на полезную нагрузку 7 т.)

Старт «Зенгера» с Земли и старт «челнока» с самолета-«разгонщика» осуществляются в направлении вращения Земли, что позволяет заметно сократить расход топлива. Двухступенчатая система «Зенгер» быстро набирает высоту свыше 10 км, преодолевая звуковой барьер. На высоте 19,5 км включаются прямоточные воздушно-реактивные двигатели (ПВРД), разгоняющие систему до скорости 4,4 М (М – число Маха). На высоте более 30 км при скорости полета 6,8 М «челнок» стартует с «разгонщика», возвращающегося на Землю, и направляется на космическую орбиту.

Особенностью «Зенгера» является тщательная инженерная проработка конструкции и режимов полета. Стоимость четырехлетних исследований составила 220 млн марок. Доводка займет (по плану) пятилетие, и в 1998 г. предполагается начать летные испытания. Широкую эксплуатацию фирма намечает на начало следующего столетия.

По мнению доктора Хегенауэра, «Зенгер» сможет выполнять ежегодно 6 полетов стоимостью до 20 млн долларов каждый, тогда как один полет общеевропейского космоплана «Гермес» вдесятеро дороже.

К проекту «Зенгер» не остались равнодушными японцы, предложив свой вариант «разгонщика» – тележку на электромагнитной подвеске.

Конечно, нельзя забывать, что все перечисленные проекты пока что далеки от воплощения в реальность. Освоение космоса – дело крайне хлопотное и дорогостоящее. Еще десятилетие назад космический бюджет США достиг 29,6 млрд долларов, а наш (в пересчете) – 6,9 млрд. Но уже в прошлом году только космические исследовния по определению природных ресурсов Земли принесли доход 0,8 млрд рублей, по материаловедению – 0,4 млрд рублей, а в сумме с другими видами работ – 3,2 млрд рублей.

Заметьте при этом, что получить сверхчистые кристаллы для нужд радиоэлектроники и биологии, например, на Земле невозможно. По свидетельству же генерального конструктора НПО «Энергия», за три года на борту орбитальной станции «Мир» было изготовлено и доставлено на Землю несколько сот килограммов таких сверхчистых кристаллов, без которых не может развиваться ни радиоэлектроника, ни генная инженерия. Вот почему, в частности, нельзя согласиться с теми, кто считает бесполезным финансирование развития ракетно-космической техники.

Сейчас наблюдается процесс коммерциализации освоения космического пространства. Так, программы совместных (с участием иностранцев) полетов на советской орбитальной станции «Мир» преследуют отнюдь не пропагандистские цели, они обещают определенный валютный доход. Например, плата за непродолжительный полет японского космонавта составляет несколько миллионов рублей.

Следует ли сократить размеры финансирования космических исследований? Международная статистика показывает, что это абсурдно даже с чисто денежной стороны, так как в результате этого прервется глобальная звуковая и видеосвязь, резко подорожают и осложнятся геологические разведочные работы, рыболовецкие и спасательные операции в океане, застопорится процесс микроминиатюризации и повышения КПД электронных устройств и т. д. Список возможных потерь огромен.

Освоение околоземного пространства, как и вся человеческая деятельность, породило экологические проблемы. Первыми задумались над ними американцы, которые задержали старт первого МТКК «Спейс-Шаттл», опасаясь загрязнения атмосферы и прорыва надатмосферного озонового слоя. Специалисты считали, что прорыв этого слоя, защищающего от ультрафиолетового излучения Солнца, может нанести непоправимый ущерб сельскому хозяйству Калифорнии. Расширяющаяся «озоновая дыра», основной причиной появления которой называют попадание в атмосферу фреона, не безразлична к космическим стартам.

Космические летательные аппараты, отслужив свой срок на расчетной орбите, искусственно и естественно разрушаются, порождая скопление орбитальных обломков. По данным Службы наблюдения за космосом США, в настоящее время там находятся более 7500 отработавших свой срок спутников, обломков ракет-носителей и других искусственных тел. Среди последних американцы упоминают и утраченные в невесомости предметы личного снаряжения астронавтов, выходивших в открытый космос. Но это не единственная опасность.

На околоземной орбите в космосе с огромной скоростью вращается громадное количество очень мелких крошек искусственного происхождения, общая масса которых в полтора десятка раз превышает массу частиц естественного происхождения разного размера. Масса космического «мусора» имеет тенденцию к умножению под влиянием взаимных самоударений частиц, что может к 2050 г. попросту закрыть доступ на околоземные орбиты. Почему?

Ответ станет ясен, если вспомнить об огромных скоростях соударения этих частиц. Считается, что удар алюминиевого обломка с поперечником всего в 1 см равносилен для космического корабля встрече с бронированным сейфом весом около четверти тонны, разогнанным до скорости порядка 100 км/ч. Подобное, увы, не выдумка. В 1983 г. пришлось заменить иллюминатор «Челленджера», почти разрушенный кусочком засохшей краски размером около 1 мм. Поэтому приходится принимать разнообразные меры для защиты корпуса орбитальных станций, что, естественно, вызывает крайне нежелательное, но неизбежное увеличение их массы. НАСА разрабатывает наземную систему радиолокационного слежения, позволяющую обнаруживать частицы размером до 1 см, находящиеся на орбитах с высотой 300–600 км. Пока что размер реально обнаруживаемых частиц вдесятеро больше. Но и это еще не все.

Сегодня над Землей кружится около полусотни ядерных энергоустановок космических кораблей. Чтобы отработавшие, но не ставшие от этого безопасными реакторы не свалились на Землю, их приходится переводить на высокие стационарные орбиты. Однако они и там излучают «злую» радиацию, распространяющуюся на сотни километров.

Серьезную проблему представляет радиационная защита астронавтов, особенно в периоды повышенной солнечной активности. Если на Земле облучение естественным фоном составляет около 0,1 бэра (экологический эквивалент рентгена), то на орбите высотой 200–400 км доза облучения возрастает на два-три порядка. Принятая в настоящее время допустимая годовая норма (доза облучения) специалиста-атомщика составляет 5 бэр, опыт же длительных (до года) советских космических экспедиций показал, что космонавты получают около 15 бэр. Подобные же значения называют и американцы. Обстановка резко ухудшается при пиках солнечной активности и в более глубоком космосе, что, конечно, ограничивает проникновение в эти глубины. По выражению одного из научных обозревателей, космическая радиация может надолго загнать космонавтику в прокрустово ложе околоземного пространства. Запланированные полеты к Марсу покажут, насколько справедлив этот горький прогноз.

Обширные площади вокруг знаменитого Байконура усеяны обломками летательных аппаратов, побывавших в космосе. Практика искусственного разукрупнения больших обломков путем их подрыва привела к тому, что земли вокруг космодрома стали практически непригодными для сельскохозяйственных работ. Оленеводы Севера лишаются ягельных пастбищ. Протесты местных властей дошли наконец и до Главкосмоса, который недавно приступил к механической очистке засоренных угодий от металлических осколков космических аппаратов, создав для этого специализированные отряды. Насколько эффективна их работа, покажет будущее.

До последнего времени лишь ракетный двигатель позволял проникать в космос. Но вот недавно американский журнал «Бизнес уик» сообщил, что специалисты из национальной лаборатории «Сандиа» ведут разработку электромагнитной пушки для доставки за пределы земной атмосферы грузов с массой до 200 кг. Однако перевод их на космическую орбиту будет осуществлять все же ракетный двигатель. Груз может быть любым, но должен выдерживать огромные перегрузки. Это сообщение невольно возвращает к фантастике Жюля Верна, но оно не фантастично, хотя пока еще и не реализовано.

Идея использования солнечного ветра для движения в космическом пространстве высказывалась у нас еще Цандером. А само явление давления света было открыто выдающимся русским физиком П. Н. Лебедевым (1866–1912), за что в 1899 г. он получил докторскую степень минуя магистерскую.

Современные исследователи предлагают применять для движения летательных аппаратов в космическом пространстве под давлением солнечного ветра специальные паруса, изготовленные из тонкой полимерной пленки, алюминированной со стороны Солнца. Впервые такой парус успешно использовался для точной стабилизации полета по курсу и тагнажу на американском космическом летательном аппарате «Маринер». Предполагается вывод таких аппаратов с набором солнечных парусов на орбиту традиционным путем, т. е. ракетой носителем, после чего они должны буксироваться парусами в направлении от Солнца к глубинам Вселенной.

Всемирный космический фонд в Пасадене (США) планирует посылку за пределы нашей Галактики нескольких каравелл с солнечными парусами: «Колумб», «Нинья» и «Пинта». Эти корабли должны представлять Европу, Америку, Азию. Предполагается «забросить» их на орбиту, удаленную от Земли на десятки тысяч километров, где и будут развернуты солнечные паруса. За три месяца разгон каравелл достигнет такой скорости, что они покинут околоземную орбиту и перейдут через полтора года на орбиту Марса.

Университет Джона Гопкинса в Балтиморе предлагает проект «Санфлауэр» («Подсолнух»). В нем предусмотрено использование солнечных парусов в виде дисков диаметром около 200 м из высокопрочного полимерного материала с напылением алюминия. В проекте Массачусетского технологического института (США) паруса имеют звездовидную поверхность с длиной лучей до 4 м. Есть проекты, где фигурируют шестиугольные паруса, а также паруса с квадратной поверхностью площадью чуть менее 1000 м. Среди стран, ведущих разработки солнечных каравелл, – Канада, Италия, Великобритания, Франция, Япония, Китай и СНГ. В качестве возможных средств доставки на рабочую орбиту рассматриваются популярная французская ракета «Ариан» и советская «Протон».

Полет может длиться очень долго. Сможет ли выдержать его человек? Годичный срок – это пока экспериментально проверенный предел. А дальше? Использование оранжерейной растительности для получения необходимого количества воды и стимулирующих биопрепаратов сможет, по-видимому, несколько удлинить этот срок. Но если этот срок несоизмерим с требующимся для проникновения в отдаленные глубины Вселенной? Это проблема не только техническая и биологическая, но и философская. Недаром философскому осмысливанию космоса было уделено основное внимание на традиционных научных чтениях имени Циолковского, происходивших в Калуге осенью 1990 г.

Недавно известный специалист в области космонавтики, один из первых летчиков-космонавтов, д-р техн. наук К. Феоктистов высказал ясно сформулированную мысль о возможности человеческого общения с инопланетянами, даже обитающими на планетах, удаленных от Земли на гигантское число световых лет. Феоктистов предлагает отказаться от транспортировки живых материальных объектов (пусть даже погруженных в анабиоз, например замороженных), а вместо этого посылать пакеты специальной информации об этих объектах. Казалось бы, это чистейшая мистика, отделение души, мысли от материального тела. Но картина в корне меняется, если эту идею сопоставить с постоянно реализуемым отделением технической, материальной системы ЭВМ от ее «души» – программы математического обеспечения.


    Ваша оценка произведения:

Популярные книги за неделю