412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Владимир Меженский » Континентальный климат и садоводство » Текст книги (страница 1)
Континентальный климат и садоводство
  • Текст добавлен: 2 июля 2025, 04:19

Текст книги "Континентальный климат и садоводство"


Автор книги: Владимир Меженский


Жанр:

   

Сад и Огород


сообщить о нарушении

Текущая страница: 1 (всего у книги 9 страниц)

Меженский Владимир Николаевич
Континентальный климат и садоводство

Введение

Сельское хозяйство в целом и садоводство в частности в значительной степени зависят от климатических факторов, которые наряду с почвами являются основой для получения урожаев. В зависимости от конкретных условий среды потенциальная урожайность плодовой культуры может быть реализована на 100% или не быть реализована вообще. Тенденция снижения продуктивности плодовых насаждений отмечается с конца 1980‑х годов, причём не только из–за проблем экономического характера, но и в связи с климатическими изменениями.

Глобальное потепление климата повлекло за собой повышение среднегодовой температуры за последнее десятилетие более чем на 1 °C, а в зимне–весенний период – более чем на 4 °C, что является резким и значительным увеличением, причём этот процесс будет продолжаться ещё длительное время. В результате участились неблагоприятные для плодовых растений природные явления: резкое снижение температуры осенью, чрезвычайно мягкая зима с продолжительными оттепелями и возвратными морозами, необычайно сильные и частые заморозки, длительные засухи, затяжные ливни или сочетание подобных опасных явлений. Все это не только снижает урожайность и качество продукции, но и приводит к гибели садов и ягодников.

Садоводам необходимо знать физические основы метеорологических явлений, влияющих на плодовые растения, чтобы наиболее эффективно их использовать для получения высоких и стабильных урожаев высококачественных плодов, одновременно ослабляя неблагоприятные погодные условия.

Выбор места под сад, выбор культуры и сорта должны производиться с учётом оценки агроклиматических ресурсов конкретной местности. Понимание механизмов повреждения плодовых культур в условиях континентального климата, знание способов предохранения и восстановления растений позволит садоводам находить оптимальные пути решения возникающих проблем.

Агрометеорологические факторы и погода

Садовые растения находятся под непрерывным воздействием многих факторов, в том числе метеорологических, влияние которых определяет величину урожая и его качество. Природные условия, в которых культивируются растения, характеризуются, в частности, совокупностью метеорологических элементов, к которым относят солнечную радиацию, температуру и влажность воздуха, осадки, облачность, атмосферное давление, ветер и некоторые другие, имеющие меньшее значение. Метеорологические элементы находятся в зависимости от климатических факторов, таких как географическая широта, высота над уровнем моря, характер и свойства земной поверхности, удалённость от океанов и морских течений. В свою очередь, метеорологические элементы влияют на климатические факторы: например, ветер зависит от распределе. ния атмосферного давления, а температура воздуха – от облачности.

Солнечная радиация

Солнечная радиация – основной источник энергии почти для всех природных процессов, происходящих в атмосфере и на поверхности Земли, и один из главных климатообразующих факторов. В результате нагрева поверхности суши и океанов возникает перемещение воздушных масс и перемешивание воздуха, что обеспечивает постоянство основного газового состава атмосферы. Под действием солнечной радиации испаряется огромное количество воды, которая является основным источником осадков, питающих реки, орошающих луга, поля, сады и леса.

Растения в процессе фотосинтеза превращают энергию Солнца в органические вещества. Благодаря фотосинтезу они из углекислого газа, воды и минеральных веществ синтезируют первичные органические вещества, выделяя в атмосферу кислород. Вся совокупность растений на Земле оценивается примерно в 150 млрд тонн. Органические вещества растений служат основой питания всех живых организмов, в том числе человека, а также важнейшим источником энергии для человечества, включая не только древесину, но и продукты фотосинтеза в предшествующие эпохи – торф, каменный уголь, нефть и газ.

Солнечный свет – незаменимый фактор жизни растений, которые реагируют на изменение интенсивности солнечной радиации и её спектрального состава, на продолжительность дня. Степень силы света зависит от широты и долготы места, высоты над уровнем моря и облачности. Большое значение имеет не только общее количество солнечной энергии, падающей на Землю, но и ежедневная продолжительность освещения (длина дня). Реакцию растений на продолжительность дня называют фотопериодизмом. Если такие южные растения, как абрикос и грецкий орех, поместить в условия короткого дня, то вследствие более быстрого вызревания древесины они будут лучше перезимовывать на севере. Увеличение длительности светового дня компенсирует уменьшение количества тёплых дней, отмечаемое при продвижении с юга на север.

Подавляющее большинство плодовых пород является светолюбивыми растениями. При недостаточном количестве света их рост и плодоношение ухудшаются. По мере убывания требовательности к свету плодовые культуры располагаются в следующем порядке: абрикос, миндаль, персик, черешня, груша, яблоня, вишня, ягодные культуры. С возрастом деревья и кустарники становятся светолюбивее, т. е. требуют большего простора при размещении их в саду. Сила света в значительной степени зависит от расстояния между деревьями и мощности их развития: чем меньше расстояния и чем крупнее деревья, тем меньше они получают света. Поэтому при густом расположении деревьев в саду с крупногабаритными кронами ветви вытягиваются вверх, листья по строению становятся теневыми, мелкими и отмирают, особенно нижние, более затенённые. В результате этого обрастающие ветви прекращают расти и высыхают, кольчатки и другие плодоносные образования постепенно перемещаются на периферию кроны, урожайность дерева значительно падает. Считается, что для лучшего обеспечения плодовых растений светом ряды следует располагать в меридиональном направлении, т. е. с севера на юг. От интенсивности солнечной радиации зависит биохимический состав плодов и их окраска. Сильная солнечная радиация приводит к летним ожогам коры и плодов, а в морозную погоду вызывает зимние солнечные ожоги.

Солнечная активность имеет циклический характер, например, известен 11 -летний цикл. С этим циклом связаны колебания численности живых организмов, в том числе вредителей плодовых культур.

Солнечная радиация состоит из электромагнитных волн различной длины. Распределение лучистой энергии по длинам волн называется спектром. Солнечный спектр делится натри части: ультрафиолетовую (а<0,40 мкм), видимую (0,40 мкм <л<0,76 мкм) и инфракрасную (л >0,76 мкм). Видимая часть спектра воспринимается человеческим глазом как белый цвет, который при прохождении через призму разлагается на красные, оранжевые, жёлтые, зелёные, голубые, синие и фиолетовые лучи.

У верхней границы атмосферы на видимую часть спектра приходится 46% всей поступающей солнечной радиации, на инфракрасную – 47%, на ультрафиолетовую – 7%. При прохождении через атмосферу солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями. При этом изменяется также и её спектральный состав. Большая часть ультрафиолетовой радиации не доходит до поверхности Земли, будучи поглощённой озоном в высоких слоях атмосферы. В видимой части спектра значительно ослабляется (в основном за счёт рассеивания) наиболее коротковолновый участок (синие и фиолетовые лучи) и в меньшей степени – длинноволновый участок (оранжевые и красные лучи). Инфракрасная часть спектра также имеет ряд участков пониженной энергии, связанных с поглощением её водяным паром и углекислым газом.

Ультрафиолетовая радиация способствует дифференциации клеток и тканей, замедляет их рост. Количество ультрафиолетовой радиации, поступающей к растениям на высотах, близких куровню моря, невелико. В высокогорных районах (выше 4 км) энергия ультрафиолетовых лучей в два–три раза больше, чем над уровнем моря. Инфракрасная радиация производит тепловое действие. Она поглощается водой, содержащейся в растениях, увеличивая испарение, что играет существенную роль в их энергетическом режиме. В высокогорных районах энергия инфракрасных лучей возрастает. Это в значительной мере компенсирует недостаточное количество тепла, получаемое здесь растениями от окружающего воздуха.

Часть спектра солнечной радиации, находящаяся в интервале длин волн 0,38-0,71 мкм называется фотосинтетически активной радиацией (ФАР), которая используется в процессе фотосинтеза и является одним из важнейших факторов продуктивности сельскохозяйственных растений. Правильное представление о ФАР, учёт её распределения по территории и во времени имеет большое значение для получения высоких урожаев. Обычно коэффициент использования растениями солнечной энергии составляет 1-3%. Установлено, что для фотосинтеза необходима интенсивность солнечной радиации, превышающая определённое значение, ниже которого расход органических веществ на дыхание будет больше, чем их образование в процессе фотосинтеза. В дневное время поступления ФАР обычно превышает это значение, но в насаждениях, а также в теплицах в пасмурные дни интенсивность ФАР бывает недостаточной. Особенно это проявляется в густых насаждениях и в крупногабаритных кронах, что приводит к снижению фотосинтеза и к уменьшению продуктивности садов.

Земля и атмосфера, воспринимая солнечную радиацию, поглощают и отражают её, обмениваясь энергетическими потоками. Коротковолновую радиацию Солнца атмосфера в значительной степени пропускает, а излучение земной поверхности ослабляет, поглощая её водяным паром и углекислым газом, содержащимися в воздухе. Это свойство атмосферы называется оранжерейным эффектом, поскольку она действует подобно стёклам в теплицах: хорошо пропускает солнечные лучи, нагревающие почву и растения, но плохо выпускает во внешнее пространство тепловое излучение нагревшейся почвы. Если поступление радиации больше расхода, то радиационный баланс положителен и деятельный слой земли нагревается. При отрицательном радиационном балансе этот слой охлаждается. В тёплое время года радиационный баланс днём положителен. Примерно за 1 -2 ч до захода солнца он становится отрицательным, а утром снова делается положительным – в среднем через 1 ч после восхода солнца.

Поступление прямой радиации на земную поверхность зависит от угла падения солнечных лучей. Максимум энергии приходит к поверхности, если лучи падают на неё под углом 90°. С уменьшением угла падения на единицу поверхности количество радиации уменьшается. Если земная поверхность негоризонтальна, как это большей частью и бывает в природе, то угол падения солнечных лучей на такую поверхность зависит уже не только от высоты солнца, но и от наклона поверхности и от её ориентировки (экспозиции) по странам света. Склон крутизной 10°, обращённый к северу, в полдень получает вдвое меньшее количество прямой радиации, чем южный склон такой же крутизны. В первом случае оно составляет лишь 67%, а во втором уже 128% поступления радиации на горизонтальную поверхность. Количество солнечной радиации, получаемой северными и южными склонами, значительно различается и в течение всего года, что влияет на выбор месторасположения растений.

Температура

Для процессов, происходящих в атмосфере, источником энергии является солнечное излучение. Поступающее на поверхность Земли количество энергии в виде солнечного излучения (радиационный баланс) превращается на ней в тепловую энергию и после выравнивания теплового режима используется для нагревания почвы, воды и воздуха, а также для поддержания испарения.

В растительных организмах фотосинтез, дыхание, транспирация, усвоение питательных веществ почвы и другие физиологические процессы осуществляются лишь в определённом диапазоне температур. Существуют температурные пределы жизнедеятельности растений – биологический минимум и биологический максимум. Между ними находится зона оптимальных температур, при которых развитие растений и формирование урожая протекают наиболее интенсивно. Эти температурные характеристики у различных растений неодинаковы. С повышением температуры скорость развития растений увеличивается пропорционально возрастанию температуры, но только до определённых её значений. При дальнейшем её повышении скорость развития растений замедляется, а затем наступает их угнетение и гибель.

Для нормального роста и развития растениям нужен не только безморозный период определённой продолжительности, но также и соответствующий ритм температуры в течение вегетационного периода. Это подтверждает, например, оранжерейная культура персика, для успешного роста и плодоношения которого температуру воздуха во время цветения приходится снижать на 4-7 °C, а во время образования косточки – на 2-3 °C по сравнению с температурой предшествующей фазы развития. Плодовые культуры в различные фазы вегетации требуют неодинакового температурного режима. Например, вегетация яблони начинается при суточной температуре около 8-10 °C, а рост корней происходит и при 0-2 °C. Плодовые деревья умеренного климата, если им не обеспечить определённого периода сниженных температур, при выращивании в комнатных в условиях плохо развиваются.

По требовательности к теплу плодовые растения можно расположить в следующем возрастающем порядке: северная зона – рябина, черёмуха, сибирская яблоня, ягодные культуры; средняя зона – яблоня, вишня, слива, груша; южная зона – черешня, айва, абрикос, грецкий орех, пекан, фундук, миндаль, персик, гранат, инжир.

Температура воздуха и почвы является важным фактором для развития растений. Она вместе с солнечным излучением, осадками и испарением обусловливает географическое размещение растений и определяет возможности садоводства. Для садовода представляют интерес средняя температура года, сезонная и суточная динамика температуры воздуха. Поскольку поступление солнечной радиации неодинаково в течение суток и года, то температуры воздуха и почвы тоже изменяются – и иногда в очень широких пределах. Для оценки агроклиматических ресурсов используют также значения абсолютных минимумов температур воздуха, а также процент зим с температурами, достигающими определённого минимума.

Суточный ход температуры воздуха обусловлен суточным ходом температуры деятельного слоя. Минимальная температура воздуха на высоте 2 м наблюдается перед восходом солнца, а максимальная температура отмечается через два–три часа после полудня. Суточный ход температуры воздуха нередко нарушается вторжениями тёплых и холодных воздушных масс. Например, если вторжение холодного воздуха произошло днём, то температура воздуха в дневные часы может стать ниже, чем в предыдущую ночь. В сельскохозяйственном отношении очень важно то обстоятельство, что с величиной суточных колебаний температуры воздуха тесно связана его относительная влажность. Поэтому летние дни на суше с большими колебаниями суточной температуры характеризуются повышенной потребностью растений в воде. Кроме того, при больших суточных колебаниях температуры в переходные времена года усиливается опасность поздних весенних и ранних осенних заморозков.

Годовой ход температуры воздуха в основном определяется годовым ходом температуры подстилающей поверхности. Для континентального климата умеренных широт с чётко выраженными четырьмя временами года характерен годовой ход температуры воздуха с максимумом примерно в течение месяца после наивысшего стояния солнца и с минимумом также около месяца после самого низкого его стояния. Поэтому июль имеет наивысшую, а январь – наименьшую среднемесячную температуру воздуха. Атлантический океан оказывает влияние на Западную Европу, особенно зимой через области низкого давления с господствующими западными ветрами, которые приносят большие массы тёплого морского воздуха и смягчают суровость зимы. Наоборот, на Тихоокеанском побережье Евразии влияние океана ограничивается узкой полосой, потому что область высокого давления над Сибирью в зимние месяцы препятствует проникновению океанских воздушных масс. Здесь, в отличие от тёплого Гольфстрима, протекает холодное Курильское течение. Влияние океанов вместе с общей циркуляцией атмосферы проявляется в том, что область с самыми низкими зимними температурами, называемая полюсом холода, находится не на полюсе, а в северо–восточной части Сибири (Оймякон). Наиболее тёплые районы в летнее время находятся между 20 и 30° с. ш. в глубине континента.

К годовому ходу температуры приурочен и годовой ход фенологических явлений, так как время наступления многих фенологических фаз связано с наступлением определённого порога температуры воздуха.

Температурный режим почвы в основном зависит от её теплоёмкости и теплопроводности. Теплоёмкость почвы, у которой поры заполнены водой, значительно больше теплоёмкости сухой почвы, так как теплоёмкость воды во много раз выше, чем неподвижного воздуха. На нагревание почвы влияет также её цвет. Светлые почвы имеют большую отражательную способность, чем тёмные, и поэтому при одинаковом поступлении радиации меньше нагреваются. Растительный покров затеняет поверхность почвы, поглощая значительную часть или даже всю приходящую солнечную радиацию. Но в то же время он уменьшает охлаждение почвы, вызываемое её излучением. Все же в целом под растительным покровом почва летом холоднее, а зимой теплее, чем оголённая.

Средняя температура верхних слоёв почвы (0-5 см) летом в дневные часы выше, чем температура воздуха на высоте 2 м. На глубине 20 см под растительным покровом температура лёгких супесчаных почв в середине лета тоже несколько выше температуры воздуха, а тяжёлые суглинистые почвы на этой глубине в течение всего лета на 1 -2 °C холоднее воздуха. Полив и осадки, увеличивая теплоёмкость почвы, обусловливают её меньший нагрев. Сухой торф, имеющий наименьшую теплоёмкость по сравнению с другими почвами, при полном насыщении водой приобретает наибольшую теплоёмкость.

В течение суток температура почвы обычно имеет одно максимальное и одно минимальное значения. На поверхности почвы минимум температуры в ясные дни наблюдается перед восходом солнца, когда радиационный баланс отрицателен, а обмен теплом между воздухом и почвой незначителен. Максимум температуры в такие дни наблюдается около 13 ч, затем начинается её понижение, продолжающееся до утреннего минимума. На амплитуду суточного хода температуры почвы влияют время года, географическая широта, рельеф местности, растительный покров, теплоёмкость, теплопроводность и цвет почвы, облачность. Годовой ход температуры поверхности почвы зависит в основном от различного поступления солнечной радиации в течение года. Максимальные средние месячные температуры поверхности почвы наблюдаются в июле, когда приток тепла к почве наибольший, а минимальные – в январе–феврале.

Данные об изменениях температуры почвы на глубинах в течение года имеют большое практическое значение. Например, для прокладки водопроводных или дренажных труб на садовом участке надо знать, до какой глубины в данной местности промерзает грунт. При закладке труб на расстояние менее глубины промерзания вода в трубах замёрзнет, а при закладке труб на глубину, значительно большую, чем это необходимо, увеличатся непроизводительные затраты на земляные работы.

Снег защищает почву от охлаждения, так как теплопроводность снега очень мала. Глубина промерзания почвы уменьшается с увеличением высоты снежного покрова. Защитное действие снега важно для успешной перезимовки земляники, плодовых кустарников и деревьев. Температура почвы на глубине 3 см в зависимости от высоты снежного покрова при прочих равных условиях изменяется в больших пределах. Разность температур воздуха и почвы на этой глубине увеличивается примерно на 1 °C на каждый сантиметр высоты снежного покрова (до высоты 10 см). При большей высоте снега эта разность уменьшается, составляя, например, при высоте снежного покрова 25 см 0,6 °C, а при 50 см – 0,3 °C.

Представление об общем количестве тепла за год (вегетационный период, сезон, месяц), а также о годовом и суточном изменении температуры воздуха дают средняя суточная, средняя месячная и средняя годовая температуры. Для садоводства особо важны не средние показатели суточного и годового хода температуры, а сведения о минимальной и максимальной температурах в отдельные периоды и их амплитуде. Например, зная минимальную температуру в отдельные месяцы, можно судить об условиях перезимовки плодовых деревьев, о сроках окончания заморозков весной и начала их осенью. Данные о максимальной температуре зимой показывают частоту оттепелей, их интенсивность, а летом характеризуют число дней, когда растения угнетены жарой. Амплитуда суточного и годового хода температуры характеризует степень континентальности климата.

Обеспеченность растений теплом в период вегетации определяют по сумме активных температур, составленной из средних суточных температур выше 10 °C и сумме эффективных температур, вычисленной суммированием средних суточных температур, отсчитанных от биологического минимума, при котором развиваются растения данной культуры. Обычно для плодовых культур за биологический минимум принимают 10 °C, поэтому при подсчёте сумм эффективных температур выше 10 °C(П> 10) от средней суточной температуры за каждый день отнимают 10 °C и остатки суммируют. Ряд исследователей за биологический минимум принимают 5 °C.

В табл.1 указана потребность плодовых культур в теплообеспеченности. Сорта, культивируемые в более северных районах, способны успешно развиваться и плодоносить в условиях с несколько меньшими показателями, чем приведённые в таблице.

Таблица 1. Минимум сумм активных температур выше 10 °С и количества дней со среднесуточной температурой воздуха выше 15 °С, необходимых для плодовых культур


Культура Сумма температур Количество дней
Яблоня (летние сорта)(1200)1800-200070-80
Яблоня (осенние сорта)2200-240080-100
Груша (летние сорта)2200-240080-90
Вишня2200-240080-90
Яблоня (зимние сорта)2400-2600100-110
Груша (осенние сорта)2400-260090-100
Слива2400-280080-100
Черешня2600-2800100-115
Груша (зимние сорта)2600-3000110-115
Абрикос2800-3000100-115
Персик3200-3400115-120

С помощью сумм эффективных температур воздуха рассчитывают сроки наступления фаз развития, например, начало цветения, что важно при подготовке к защите садов от заморозков или от болезней и вредителей. Тем не менее не наблюдается строгой корреляции между суммой температур и наступлением основных фаз. По годам минимальная и максимальная температуры в начале вегетации могут различаться в два–четыре раза, а в конце вегетации на 10-20%. Сумма эффективных температур характеризует различия теплообеспеченности данного года от среднемноголетней, характерной для конкретной местности. По ней с учётом продолжительности вегетационного периода, можно с некоторой погрешностью определить пригодность данной культуры и сорта для конкретных условий.

Для нужд сельского хозяйства важна обеспеченность вегетационного периода не только теплом, но и влагой. Поэтому оценку климатических условий проводят с использованием гидротермического коэффициента – показателя отношения месячного количества осадков к сумме температур за тот же месяц с коэффициентом 0,1. Благоприятные условия для плодоводства складываются там, где гидротермический коэффициент составляет 1,1-1,4. При большем значении гидротермического коэффициента растения страдают от избытка влаги, а при меньшем – нуждаются в поливе.

С удалением от Атлантики с запада на восток возрастает континентальность климата. При этом из–за низких зимних температур сокращается вегетационный период, так как необходимые для развития растений минимальные температуры весной устанавливаются позднее, а осенью сменяются низкими температурами раньше. Хотя вследствие более сильного нагревания суши летом сумма температур частично компенсирует сокращение вегетационного периода.

Для плодовых культур недостатком теплового режима в континентальных районах в период вегетации являются перепады температур, приводящие к оттепелям и заморозкам, из–за которых гибнет урожай. Особенно сильный вред причиняют резкие понижения температуры воздуха в зимнее время, тем более если эти понижения продолжительны и сопровождаются сухими и сильными ветрами. Чем чаще наблюдаются в какой–либо местности абсолютные минимумы температур воздуха, тем менее пригодна эта местность для выращивания плодовых культур. Количество безморозных дней в году и частота появления абсолютных минимумов температур воздуха увеличивается в Восточной Европе с юго–запада на северо–восток, а в Сибири – на восток, ограничивая распространение недостаточно морозостойких сортов и культур.


    Ваша оценка произведения:

Популярные книги за неделю