355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Бусленко » Наш коллега - робот » Текст книги (страница 2)
Наш коллега - робот
  • Текст добавлен: 25 сентября 2016, 23:57

Текст книги "Наш коллега - робот"


Автор книги: Владимир Бусленко



сообщить о нарушении

Текущая страница: 2 (всего у книги 14 страниц)

В них впервые использовались принципы и отдельные механизмы, получившие впоследствии широкое распространение в разнообразнейших автоматах.

Одним из мастеров, создававших такие миниатюрные автоматы, был Хуанело Тариано, инженер, служивший у императора Карла V, властителя Испании и Нидерландов. Когда Карл V в 1556 году передал бразды правления своему сыну, а сам удалился в монастырь, Тариано и там развлекал его игрушечными солдатиками, которые фехтовали, и пастушкой, игравшей на лютне. Легенда гласит, что он создал также "полноразмерного" андроида, который каждый день появлялся на улицах Толедо, закупая провизию для своего хозяина. И хотя это почти наверняка миф, улица в Толедо, где жил Тариано, до сих пор носит название "улица деревянного человека".

В 1675 году изобретатель X. Гюйгенс из Голландии построил первые маятниковые часы.

Увидев успехи механиков, на поле автоматизации вышли мыслители, чтобы собрать богатый урожай. Было совершенно необходимо осмыслить, упорядочить и превратить в стройную теорию накопленное изобилие прагматических фактов.

Знаменитый французский философ Рене Декарт одно время увлекался андроидами и даже создал механическую женщину, названную Франсиной. Во всяком случае, еще в 1637 году он писал, что наступит время, когда человечество создаст "бездушные механизмы", которые будут вести себя подобно людям. Он же одним из первых высказал конструктивную мысль о подобии животных машинам: "...ничуть не покажется странным тем, кто знает, сколько различных автоматов или самодвижущихся машин может произвести человеческое искусство, пользуясь при этом немногими частями, в сравнении со множеством костей, мускулов, нервов, артерий, вен и всех других частей, находящихся в теле каждого животного". Тогда же ученые пытались приложить известные законы механики к объяснению явлений, происходящих в живом организме.

В XVII-XVIII веках заметны три основных направления интенсивных поисков. Первое связывают с именами гениальных математиков Л. Эйлера и Д. Бернулли, которые применили законы механики к объяснению некоторых физиологических явлений. Второе – с именем французского врача и философа Ж. де Ламетри, который издал в 1747 году в Лейдене знаменитый трактат "Человек-машина". В нем он, говоря о человеке, в частности, писал: "По сравнению с обезьяной и умнейшими животными он представляет то же, что планетные часы Гюйгенса с часами императора Юлиана. Если для отметки движения планет нужно было больше инструментов, колесиков, пружин, чем для показания времени на часах, если на создание флейтиста Вокансону понадобилось больше искусства, чем на утку, то на создание механического человека, способного говорить, нужно было бы еще больше; нельзя думать, что такую машину невозможно создать, в особенности руками какого-нибудь Прометея..." Третье направление принадлежит механикам-изобретателям, воспроизводившим на практике эти витавшие в воздухе идеи.

Наиболее достоверно известно о совершенных автоматах, созданных французским изобретателем и инженером Жаком де Вокансоном (1709-1782), принесших ему широкую известность. Он был даже избран во Французскую академию. В числе его блестящих творений был пастух, который играл на флейте. Сам изобретатель в это время аккомпанировал ему на тамбурине. Флейтист в сидячем положении вместе со своим пьедесталом достигал 170 сантиметров в высоту. Он играл двенадцать разных пьес, "производя звуки вдуванием воздуха изо рта в отверстие флейты и изменяя ее тоны действием пальцев на отверстия инструмента".

Другой андроид Вокансона играл левой рукой на провансальской свирели, правой – на бубне и прищелкивал языком по обычаю провансальских свирельщиков.

Наконец, жестяная утка того же механика – едва ли не самый совершенный из всех известных автоматов – не только подражала с необычайной точностью всем движениям, крику и манерам поведения своего оригинала: плавала, ныряла, плескалась в воде, но даже клевала пищу с жадностью живой утки и выполняла до конца при помощи скрытых внутри ее химических веществ обычный процесс пищеварения. Эту утку, состоящую из тысячи движущихся деталей, позже видел Гёте, который описал ее в своем дневнике. Все эти автоматы были публично показаны Вокансоном в Париже в 1738 году.

В это же время в промышленности появились станки со сложными механизмами для изготовления деталей сложной конфигурации. В двадцатых годах XVIII века русский изобретатель Андрей Нартов создал автоматический суппорт, перемещающий резец вдоль обрабатываемой детали для токарно-копировальных станков. Он же предложил станок с применением сменных зубчатых колес для нарезки крупных винтов. В 1765 году русский механик И. Ползунов изобрел регулятор питания парового котла в виде поплавка, "автоматически" поддерживающего уровень воды.

Кстати, первым "промышленным роботом" был созданный Вокансоном механический осел, который с изяществом, несвойственным ослам, ткал на обычном ткацком станке. Но почему именно осел? Дело объясняется просто. Когда в 1742 году Вокансон задумал создать автоматический ткацкий станок, лионские ткачи, боясь конкуренции, решили избить изобретателя. В ответ на их нападение Жак де Вокансон и создал механического осла, который ткал на обычном ткацком станке.

Однако вернемся к создателям человекообразных машин. Весной 1774 года швейцарский часовщик Пьер Дро и его сын Анри показали изумленным согражданам сконструированного ими механического писца. Он с важным видом макал гусиное перо в чернильницу и ровным, красивым почерком выводил длинную фразу.

При этом он двигал головой и любовно оглядывал написанное. Закончив писать, он посыпал, как тогда было принято, бумагу песком и стряхивал ее. Кроме писца, мастера сделали механического рисовальщика и музыкантшу, исполнявшую на фисгармонии сложные произведения. В 1774 году на выставке в Париже эти механические люди пользовались шумным успехом. Затем Анри Дро повез их в Испанию, где они также вызывали восторг и восхищение. Но там в дело вмешалась священная инквизиция, которая обвинила его в колдовстве и посадила в тюрьму, отобрав автоматы-андроиды.

Считается, что само слово "андроид" создано из первых букв имени и фамилии Анри Дро, однако это всего лишь совпадение, хотя и весьма удачное. Слово это происходит от греческого "anthros", что значит "мужчина", которое является однокоренным со словом "anthropos" – "человек", и означает "человекоподобный".

Андроиды – механические люди – были отражением механического века сжатых пружин. Пружины приводили в движение сложнейшие системы зубчатых колес, рычажков, штанг, кулачков, винтов, всевозможных автоматов. Поэтому можно утверждать, что андроиды были своего рода разновидностью часов. Как известно, часы – одно из самых совершенных созданий человека в технике своего времени. Именно часы, как говорил К. Маркс, подали человеку мысль применить автоматы в производстве.

В 1784 году Дж. Уатт предложил центробежный регулятор скорости оборотов паровой машины, которая стала после этого основным источником механической энергии для приводов станков, машин и механизмов.

Теперь у механиков был двигатель, и они знали, как с помощью передаточной цепи из отдельных звеньев превратить вращение вала в любое сложное движение исполнительного механизма. Они постепенно начали создавать все больше и больше машин, способных своими руками-механизмами воспроизводить разнообразные рабочие движения людей во многих трудовых процессах.

Умели механики и передавать в автоматах команды для различных узлов. Использовали шпильки на барабане музыкального ящика, картонные ленты с отверстиями, валики с кулачками. Это была программа работы автомата, но программа самая примитивная, жесткая, беч всякой реакции на внешнюю среду. Творчество автоматчиков принесло много пользы. Оно помогло найти и практически проверить основные математические и технические средства для развития машиностроения и основ автоматики, когда начался повсеместный переход к машинному производству – знаменитый промышленный переворот.

Победно шагала техника. Машины появились в текстильной, металлообрабатывающей, горной и других отраслях промышленности. Повсюду шел бурный процесс механизации. Впервые рука человека была освобождена от непосредственной обработки металла.

Увлечение андроидами мало-помалу сходило на нет, впечатляющие перспективы промышленной революции оказались куда увлекательнее, тем более что возможности механики были в общем-то исчерпаны. Лучшие конструкции, созданные в средние века, позднее просто повторялись в разных вариантах. Так, в 1810 году немецкий механик И. Кауфман создал механического трубача, который виртуозно исполнял несколько сложных пьес на трубе. В 1850 году Г. Дешан смастерил автоматическую "укротительницу змей". В 1893 году Дж. Мур построил механического человека с приводом от паровой машины мощностью 0,5 лошадиной силы. Он развивал скорость хода до 14 километров в час, при этом машина была спрятана внутри, а сигара служила дымоходом.

В 1815 году изобретателем Модели была создана первая автоматическая станочная линия, она служила для изготовления корабельных блоков.

Наступала эра электричества. После изобретения электродвигателя и динамо-машины электричество открыло новые возможности для автоматизации производства.

В 1830 году русский ученый П. Шиллинг изобрел магнитоэлектрическое реле – один из основных элементов электроавтоматики. В 1872 году В. Чиколев впервые продемонстрировал электропривод к швейной машине на Первой Московской политехнической выставке. В 1895 году С. Апостол-Бердичевский и М. Фрейденберг создали первую в мире автоматическую телефонную станцию.

После изобретения в начале XX века регуляторов напряжения электроэнергия активно заявила о себе в производстве. Электродвигатель закрутил станки, оживил автоматические устройства. В 30-х годах XX века появились многошпиндельные агрегатные станки, а в 40-х годах – целые автоматические линии из агрегатных станков.

В ходе выполнения первых пятилетних планов развития народного хозяйства в нашей стране были созданы заводы, производящие приборы и аппаратуру для автоматизации производства. Конец сороковых годов ознаменован появлением "усилителей интеллекта" – электронных вычислительных машин – и рождением "науки об управлении" – кибернетики, которая стала повивальной бабкой многих автоматических электронных устройств, в том числе и промышленных роботов.

ОТРОЧЕСТВО

В середине XX века крупные достижения электроники, физики и электротехники позволили вновь приступить к конструированию человекоподобных автоматов, но на более высоком уровне. Их стали называть роботами. Окончательное формирование кибернетики как нового научного направления дало мощный стимул развитию роботов, появились многочисленные электронные "люди" и "животные". В отличие от андроидов роботы теперь обладают обратной связью, более гибки в действиях и более чувствительны к изменению внешней обстановки. У них появилось зрение – фотоэлементы, слух – микрофоны, речь – громкоговорители.

Один из первых советских роботов демонстрировался на всемирной выставке в Париже -в 1937 году. На всемирной выставке в Нью-Йорке в 1939 году можно было видеть шагающего робота "Электро" с собакой-роботом "Спарко". "Человек" беседовал с многочисленными посетителями, а "собака" лаяла и служила. В 1960 году огромным успехом пользовался выставленный на ВДНХ робот, сконструированный на Чкаловской станции юных техников Московской области, он выполнял 18 различных команд и назывался "СЮТ". Там же, на Чкаловской станции юных техников, в 1969 году создан кибернетический робот-гигант, успешно экспонировавшийся на всемирной выставке ЭКСПО-70 в Японии. Широкую известность получил робот "Сспулька", работавший экскурсоводом в Политехническом музее в Москве.

Однако эти устройства, несмотря на то, что назывались громко и эффектно роботами, являлись всего лишь игрушками, в задачу которых входило удивлять и забавлять. В то же время стали появляться первые зрелые плоды "кибернетического древа". Инженеры начали разрабатывать устройства, которые, хотя и скромно назывались кибернетическими игрушками, создавались отнюдь не для развлечения. Они служили примером практического воплощения идей кибернетического управления, моделируя весьма целесообразное поведение насекомых и животных.

Наибольшую известность среди кибернетических игрушек приобрели представители так называемого "кибернетического зверинца" – устройства, воспроизводящие различные формы поведения и внешне несколько напоминающие животных – черепах, жуков, белок, собак и т. п. Первые простейшие схемы таких устройств, способных двигаться в направлении света – "моль" или удаляться от него – "клоп", разработал еще Н. Винер.

Наибольшую известность приобрели три "черепахи", созданные английским биофизиком и нейрофизиологом Г. Уолтером в 1950-1951 годах. Эти простейшие игрушечные роботы представляли собой самодвижущиеся электромеханические устройства, способные воспроизводить следующие виды целесообразного поведения насекомых и животных: движение на свет или от него, обход препятствия, поисковые движения, заход в "кормушку" для подзарядки разрядившихся аккумуляторов и т. п.

Черепашка Грея – миниатюрная тележка на колесиках, которые вращаются электромоторчиком. Другой электромотор поворачивает руль. Тележка возит на себе аккумулятор, который служит источником питания.

На тележке есть также фотоэлемент, электрический контакт, замыкающийся при столкновении с препятствием.

"Мозгом" черепашки является несложная электронная схема. Несмотря на видимую простоту, черепашка ведет себя довольно "осмысленно". В полутемной комнате или при слабом рассеянном свете она ползает в разных направлениях, словно что-то ищет. Натыкаясь на препятствия, она пытается их обойти, чуть отходя назад и поворачивая вбок. Если в комнате зажигается достаточно яркая лампа, черепаха решительно направляется в ее сторону. Подойдя к источнику света, она поворачивается и, как бабочка, двигается вокруг него, находя и поддерживая оптимальные "условия существования".

Другой робот – белка Э. Беркли – имеет уже два фотоэлемента, две лапки, которые могут сдвигаться и раздвигаться на уровне пола, маленький металлический хвостик, который волочится по полу. Белка собирает орешки разбросанные в беспорядке белые мячики для игры в гольф – и складывает их в "гнездо" – на металлическую подстилку. Вот белка заходит в пустую комнату, где на полу разбросаны мячики. В углу комнаты металлический лист, освещенный мигающей люминесцентной лампой, изображает гнездо. Белка наугад движется по комнате, пока в "поле зрения" фотоэлементов не попадает "орех" – белый мячик. Тогда она направляется к нему, раздвигает лапки, останавливается, сдвигает лапки, схватив шарик, затем поворачивается и ищет гнездо. Поскольку оно освещено мигающим светом люминесцентной лампы, белка легко находит его, заползает на металлический лист и останавливается. Замыкание контакта между листом и ее металлическим хвостиком показывает, что она "дома". Раздвинув лапки и выпустив "орех", она снова отправляется на поиски.

Кибернетический зверинец разрастался, увеличивался и "интеллект" зверюшек. Наиболее совершенные моделировали такие сложные биологические процессы, как формирование условного рефлекса. Если в момент столкновения с препятствием "дрессировщик" подавал звуковой сигнал, то через несколько таких повторений "зверек" начинал реагировать на сигнал так же, как на препятствие.

И все-таки, несмотря на все головокружительные трюки, которые проделывали эти электронные "создания, они оставались лишь кибернетическими игрушками, призванными продемонстрировать нам "неограниченные возможности кибернетики". Это был счастливый возраст роботов, когда электронные "чада" весело резвятся, а ах "родители" приглашают всех полюбоваться на очаровательные создания и восхититься их талантами. Но тогда роботы не более чем хитроумные игрушки для взрослых. Или в них заключается нечто иное?

Давайте подумаем, от какого слова произошло слово "робот" и вообще, как оно появилось?

Почти любая популярная статья или книга о роботах начинается с объяснения того, что слово "робот" ввел чешский писатель Карел Чапек. Сделал он это в 1920 году в своей пьесе "RUR", или "Россумские универсальные роботы". В ней изобретатель и его сын строят машины гуманоидных форм, которые, заменяя живых людей, трудятся на фабриках и заводах. Но вот его соотечественник, автор научно-популярных и научно-фантастических книг Людвиг Соучек (1926-1978), в своей книге "Иллюстрированный исправитель распространенных ошибок" подробно рассказывает нам о том, как это произошло. Слово "робот", хотя и было впервые употреблено в пьесе К. Чапека "RUR", откуда и начался его путь по свету, не является, однако, вопреки распространенному мнению продуктом языкового творчества самого писателя. По свидетельству самого К. Чапека, это слово придумал его брат Йозеф, которого автор пьесы попросил посоветовать, какое имя дать действующим в этом произведении искусственным людям. У него уже, правда, было одно название – лаборы (от латинского слова "работа"). Но это название казалось писателю чересчур вычурным. Йозеф, сидевший тогда за мольбертом, даже не отрываясь от рисования, проворчал: "Ну так назови их роботами..." Он просто взял за основу то же слово "работа", "труд", но перевел его на чешский язык. И новое слово пошло путешествовать по страницам сначала фантастических, затем научных и, наконец, популярных изданий. Само слово "робот" образовано от чешского слова "rabota" – барщина, тяжелый, каторжный труд. Значит, робот – это рабочий, это труженик, это помощник человека.

Можно, конечно, сказать, что электронные "люди" и "животные" тоже выполняют определенную работу. Например, робот "Сепулька" – работу экскурсовода, белка Беркли – работу сборщика мячей для гольфа. Однако эти уникальные устройства вряд ли смогли бы совершить ту революцию в технике, свидетелями которой мы являемся.

Сегодня более ста тысяч потомков кибернетических игрушек трудятся на предприятиях во многих странах мира. Тысячи промышленных роботов эффективно работают на Волжском и Камском автозаводах, на ЗИЛе и ВЭФе, на Петродворцовом часовом заводе.

Таким образом, предвидение К. Чапека получило конкретное техническое воплощение, которое привлекло к себе внимание ученых и производственников, открыв, как теперь принято говорить, "новую эру автоматизации производства".

Обратимся же к истории роботостроения. Современный промышленный робот возник не на пустом месте, он прямой потомок автоматических станков, линий и заводов, в изобилии применявшихся в промышленном производстве.

В 1950 году в СССР создан первый завод-автомат, который выпускал автомобильные поршни. В конце 50-х годов разработаны станки с числовым программным управлением, а в середине 60-х годов – программные станки с автоматической сменой инструмента, так называемые обрабатывающие центры. Несмотря на кажущуюся или фактическую примитивность подобных автоматов, они чрезвычайно широко распространены. Они полностью утратили сходство с человеком, и поэтому их не относят к роботам, хотя в принципе это тоже роботы. Такой обрабатывающий центр имеет специальный магазин барабанного типа, как у револьвера, где хранятся многочисленные инструменты, которые могут понадобиться в работе.

Автоматически, по командам устройства управления осуществляется смена инструмента. Она производится с помощью специального приспособления с двумя небольшими манипуляторами. Магазин поворачивается так, чтобы нужный инструмент оказался в самом верху, где его удобно взять левым манипулятором. Он опускается, захватывает инструмент, и, пока магазин движется, поднимается вверх правый манипулятор (так и хочется сказать рука), он в это время вынимает инструмент из шпинделя станка, чтобы освободить место для нового. Теперь руки меняются местами. Одна с новым инструментом вставляет его в шпиндель, другая со старым, снятым, ставит его в магазин. Станок готов к новой операции.

Чтобы деталь можно было обрабатывать со всех сторон, станок снабжен специальным поворотным столом, на котором закрепляется обрабатываемая деталь. Точность ее перемещения контролируется специальной следящей системой.

Манипуляторы обрабатывающего центра, используемые для смены инструмента, – ближайшие родственники современных промышленных роботов. Эти автоматические транспортирующие устройства используются на различных вспомогательных операциях: загружают детали на станок, закрепляют в шпинделе, снимают обработанные детали и т. п. Некоторые фирмы стали специализироваться на производстве подобных транспортирующих устройств все более и более универсального назначения. Наконец, выпустив очередной многоцелевой автоматический манипулятор, предприниматели снабдили его броским рекламным названием – "промышленный робот". Он и стал первым образцом робота, применяемого в промышленности.

Вот где пересеклись две параллельные прямые: копирующие человека автоматы, андроиды и киберы встретились с мощным потоком автоматизации промышленного производства. Это случилось тогда, когда очередная ступень автоматизации персонифицировалась в копировании движений человека, обслуживающего станок.

Итак, матерью современного промышленного робота является представительница древнего рода, принцесса – андроид, его отец – простой работяга, токарный станок.

ЮНОСТЬ

Человечество XX века "старательно" играло в свои игрушки антропоморфные механизмы; фантасты проигрывали разнообразные "конфликтные" ситуации, мир взрослел, и роботы выходили со страниц книг на производственную сцену. Фантастика, экзотика, реальность – вот путь, который прошли роботы всего за сорок лет.

Во второй половине 50-х годов советская школа теории механизмов и машин начала заниматься проблемами роботов и манипуляторов. В марте 1958 года на Втором всесоюзном совещании по основным проблемам теории механизмов и машин выдающийся советский ученый И. Артоболевский поставил проблему стыковки науки о механизмах и кибернетики. Он указал– на работы по созданию биоэлектрической системы управления механической рукой, которые были выполнены коллективом ученых Института машиноведения.

В июле 1965 года в Москве был созван первый симпозиум по теории и принципам устройства манипуляторов. Симпозиум открывался докладом А. Кобринского и Ю. Степанова, освещающим основные проблемы теории манипуляторов.

В 60-х годах практические модели подобных устройств разрабатывали многие специалисты нашей страны. В 1968 году в Ленинградском политехническом институте имени М. И. Калинина при участии ученых Ленинградского института авиационного приборостроения и Института океанологии АН СССР была создана модель робота для проверки возможностей ее использования при глубоководных работах. В это же время были начаты работы по созданию промышленных роботов с так называемым числовым программным управлением (ЧПУ). В 1971 году уже функционировали первые опытные образцы: универсальный манипулятор УМ-1, созданный под руководством П. Белянина и Б. Родина, робот "Универсал-50" под руководством Б. Сурина, а также робот УПК-1 под руководством В. Аксенова.

Манипулятор УМ-1 был первым отечественным роботом, применяемым на серийных предприятиях нашей страны. В 1972-1973 годах впервые в СССР было освоено серийное производство промышленных роботов УМ-1.

Широкий размах приобрели исследования и разработки промышленных роботов за рубежом. В 50-х годах американский изобретатель Дж. К. Девол запатентовал принцип универсальной вспомогательной машины.

В 1958 году ему удалось начать научно-конструкторские работы, а в 1962 году фирма "Юнимейшен" выпустила первые промышленные роботы модели "Юнимейт Марк II". Эта довольно громоздкая машина благодаря высокой надежности, неприхотливости и хорошим динамическим качествам ухитрилась не устареть до сих пор.

Вот уже более двадцати лет роботы семейства "Юнимейт", не претерпев существенных изменений, выпускаются и используются в промышленности.

Таким образом, на Западе первыми были признаны и нашли сбыт американские промышленные роботы "Юнимейт" и "Версатран", разраоотанные фирмами "Юнимейшн" и "Американ машин энд Фаундри". За ними рядами двинулись в производство когорты роботов:

"Аутохэнд" и "Флексимен", "Праб", "Аутобот" и "Трансфербот", "Мобилити", "Трансива", "Минитрен" и т. д. и т. п. Предприниматели поняли, что использование робота сулит немалые прибыли. В одной из статей, посвященных появлению роботов на заводах США, в частности, говорилось: "В металлообрабатывающей промышленности появился новый тип производственного рабочего. Он не состоит в профсоюзе, не пьет кофе в обеденный перерыв, работает по двадцать четыре часа в сутки и не интересуется пособиями или пенсионной оплатой. Он осваивает новую работу за несколько минут и всегда выполняет ее хорошо. Он никогда не жалуется на жару, пыль и запахи и никогда не получает увечий на работе. Он – промышленный робот".

В 1976-1982 годах в промышленность нашей страны было внедрено около 10 тысяч отечественных автоматических манипуляторов. По их количеству наша страна занимает сейчас второе место в мире после Японии.

В текущем пятилетии народное хозяйство получит еще 40-45 тысяч промышленных роботов. Они дадут около 500 миллионов рублей экономии.

Возникает вопрос: действительно ли промышленный робот должен быть похож на человека, в какой степени важно его "человекообразие"? Ответ на этот вопрос весьма прост: в той степени, в какой робот должен заменить человека на его рабочем месте.

Человек создал вокруг себя целый мир, приспособленный к нашей собственной природной "конструкции": мебель, лестницы и двери в доме, инструменты и станки в цехе, индикаторы и ручки управления в автомобиле, метро и трамвае. Все, буквально все приспособлено "под человека". Машина, которая сможет постоянно действовать рядом с человеком (коллега-робот), использовать рассчитанные на человека вещи, должна, очевидно, походить на человека. Это и экономно (не нужно переделывать техносферу), и разумно. Таким образом, человекоподобный робот или антропоморфный механизм-манипулятор не фантастика, а насущная реальность. Вот почему, начиная со времени первых андроидов и до сего дня, происходит колоссальный процесс самопознания человека, моделирования функций живого. Человечество как бы действует по принципу: "Построим копию – мижет быть, поймем, как действует оригинал". Таким образом, основная проблема роботехники состоит в осознании основных механизмов движения, ощущения и мышления и их моделирования в поведении роботов.

Роботы первого поколения моделируют двигательные функции человека и животного, они берут и кладут, поднимают и опускают, вынимают, встряхивают, кроме того, робот ходит, скачет, перелезает и марширует.

Роботы второго поколения моделируют функции ощущения; они видят и слышат, обоняют, осязают и высматривают.

Наконец, роботы третьего поколения моделируют функции мышления: узнают и вспоминают, соображают и пробуют, ошибаются и учатся на ошибках.

Изучая и применяя различные поколения роботов, мы должны хорошо понимать, что сами роботы – это всего лишь часть единой системы – нашей технической цивилизации. Составляющие робота: манипуляторы, микрокомпьютеры, датчики и т. п. – производные этой единой системы. Рассматривать любой элемент этой совокупности отдельно, оторванно от всего целого – значит намеренно сузить поле нашего зрения, оставить за бортом все море фактов и сосредоточиться на той лужице, которая случайно образовалась на палубе нашего корабля. Поэтому, описывая эволюцию промышленных роботов, мы будем иногда отвлекаться от основной темы, чтобы не потерять этого цельного видения.

РОБОТЫ ПЕРВОГО

ПОКОЛЕНИЯ

ОБУЧАЕМЫЕ

МАНИПУЛЯТОРЫ

ЖИЗНЬ – ЭТО ДВИЖЕНИЕ

Роботы первого поколения с успехом воспроизводят двигательные функции человека. Они берут и кладут, поднимают и опускают, вынимают и вставляют, переворачивают и встряхивают, достают и опрокидывают.

Все это разнообразие движений, умноженное на современный промышленный инструментарий, позволяет роботу не только перемещать детали и заготовки, но и красить, шлифовать, сваривать и резать, упаковывать и маркировать, сортировать и отбраковывать и даже стричь, рисовать, играть на пианино и резать по мрамору.

Чудо человеческого движения: плавные па балерины, точные движения рук хирурга, творящие пассы скульптора, микроскопические движения ювелира... какая бездна тончайшей координации, какая свобода движения!

Любое тело, находясь в свободном состоянии, имеет шесть "степеней свободы", оно может перемещаться вдоль трех координатных осей и вращаться вокруг них.

Рука человека имеет 27 степеней свободы, из них 20 приходится на кисть руки и пальцы. Человеческое тело в целом имеет несколько сотен степеней свободы.

Эта подвижность обеспечивается многочисленными мышцами: 52 пары мышц на руки, 62 пары на ноги, 112 мышц спины, 52 мышцы грудной клетки, 15 шейных мышц и т. д. Естественно, что моделирование движения такой сложной системы привело бы к механизмам чрезвычайной сложности, огромных размеров и слабой надежности в работе. Нужно ли такое богатство двигательной активности роботу?

Разумеется, нет! Как раз важно обеспечить оптимальный минимум движений для выполнения поставленной задачи, не упустив при этом важных свойств необходимой универсальности робота. Поэтому современные механические руки имеют всего шесть-восемь степеней свободы.

Пусть нам поручено создать манипулятор промышленного робота – аналог руки человека. Что нам понадобилось бы для этого, кроме необходимого упорства и терпения? Во-первых, наша механическая рука не будет висеть в воздухе, она должна к чему-то прикрепляться, необходимо основание, или тело робота. Затем нужна сама рука, то есть некоторый аналог костей скелета. Чтобы рука могла двигаться самостоятельно, поднимать тяжести и манипулировать ими, ей нужны мускулы. Все? Ничего не забыли? Нет, не все. Мы забыли самое главное, без чего рука безжизненно повиснет плетью или согнется в "три погибели". Это мозг, то, что управляет всем многообразием ее движений. Теперь все, можно приступать.

Примерно так же, только гораздо квалифицированней, рассуждали первые роботостроители. Они без зазрения совести пользовались незапатентованными идеями природы, создавая конструкции "по своему образу и подобию".

Каждый промышленный робот состоит из двух основных частей: манипулятора и программатора. Первый осуществляет все необходимые движения, второй все необходимое управление.


    Ваша оценка произведения:

Популярные книги за неделю