355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Бусленко » Наш коллега - робот » Текст книги (страница 1)
Наш коллега - робот
  • Текст добавлен: 25 сентября 2016, 23:57

Текст книги "Наш коллега - робот"


Автор книги: Владимир Бусленко



сообщить о нарушении

Текущая страница: 1 (всего у книги 14 страниц)

Бусленко Владимир Николаевич
Наш коллега – робот

Владимир Николаевич Бусленко

НАШ КОЛЛЕГА – РОБОТ

Серия "Эврика"

В книге рассказывается о роботах, которые всего за десяток лет прошли путь о г кибернетических игрушек до механических помощников человека практически во всех сферах его деятельности, в материалах XXVI съезда КПСС отмечается необходимость "развивать производство и обеспечить широкое применение промышленных манипуляторов (промышленных роботов)". Издание рассчитано на самые широкие круги читателей.

СОДЕРЖАНИЕ

БУДЕМ ЗНАКОМЫ

Кто ты, робот?

Почему все-таки роботы?

Какие бывают роботы?

РОБОТ АНДРОИДОВИЧ АВТОМАТОВ

Детство.

Отрочество.

Юность.

РОБОТЫ ПЕРВОГО ПОКОЛЕНИЯ – ОБУЧАЕМЫЕ МАНИПУЛЯТОРЫ

Жизнь – это движение.

Ода пешему ходу.

Легко ли поднять бумажный стаканчик?

Работа закипела!

Чего не могут промышленные роботы?

ВТОРОЕ ПОКОЛЕНИЕ – ОЧУВСТВЛЕННЫЕ РОБОТЫ

Смена поколений.

Шестое чувство.

Как мы видим то, что мы видим.

Семь раз отмерь.

Обратная связь – посох слепого.

ТРЕТЬЕ ПОКОЛЕНИЕ – РОБОТЫ-ИНТЕЛЛЕКТУАЛЫ

Я мыслю – следовательно, я существую.

Как роботы набирались ума.

Кибернетический диалог.

За советом к роботу.

РОБОТЫ ВОКРУГ НАС

Там, где трудно, вредно, опасно.

Роботы у нас дома.

Робот: читаю и могу изъясняться.

Миди, мини, микро.

Умные вещи.

Роботы внутри нас.

ЗАВОДЫ-РОБОТЫ

Что такое современное предприятие?

Бригадный подряд роботизации.

Сегодняшние "заводы будущего".

Самовоспроизводство?!

2001. ПЕРСПЕКТИВЫ

Роботы будущее.

Преображенный труд.

Роботы в быту.

Роботы и мы.

Заключение.

БУДЕМ ЗНАКОМЫ

КТО ТЫ, РОБОТ?

Ответить на этот вопрос не так-то просто. Заглянув в недра современного роботизированного предприятия, мы не обнаружим там столь привычных по фантастическим романам "железных киберов", бесстрастно склонившихся над станками. В то же время современное промышленное производство настолько насыщено разнообразными автоматами, что порой возникает ощущение, что весь завод – это один гигантский робот.

Что же такое современный промышленный робот?

Чем отличается он от манипулирующего раскаленными заготовками блюминга или ловко закупоривающего бутылки автомата?

Главное достоинство промышленного робота перед другими автоматическими устройствами – его "гибкость", то есть простота переналадки для выполнения самых разнообразных операций. Что еще способна делать машина, предназначенная для закупоривания бутылок? Да ничего. Рожденный закупоривать летать не может! Тысячи специализированных автоматов должны быть выброшены или с большими затратами переоборудованы, когда меняется характер производственного процесса, но только не робот, в котором достаточно заменить программу и сменить оконечные устройства. Итак, если на этой неделе роботы производят окраску кузова автомобиля, на следующей они работают сварщиками, если утром упаковывают продукцию, вечером грузят ее на платформы, и делают они это лучше, чем люди. Их "руки" тверды и устойчивы, движения неутомимы и аккуратны. Вот только выглядят они не столь привлекательно, как полюбившиеся нам "киберы": длинные "шеи", высовывающиеся из массивных "туловищ", захваты, напоминающие клювы, моторы, клапаны, проволока, шланги. Они шипят, свистят и извиваются у нас на глазах; ни дать ни взять – вымершие чудовищные птицы, вдруг воскресшие в металле.

Современный промышленный робот – это удивительное средоточие, казалось бы, несоединимого. В англоязычных странах для характеристики робота используют непереводимый термин "kluge", означающий систему, состоящую из разнородных компонентов, конструкторы которых никогда не собирались использовать их совместно. Действительно, какой случай мог бы слить воедино в качественно новое образование насосную станцию современную ЭВМ, многочленную механическую руку и телевизионную камеру? Развиваясь независимо, все эти составляющие робота достигли определенного совершенства, когда отнюдь не случай, а дерзкая мысль инженеров свела их вместе, чтобы еще лучше служить человеку. Однако для этого потребовалось преодолеть узкие междисциплинарные рамки, терминологические баррикады, психологические барьеры и массу других, обычных в новом деле преград. Отголоски этих баталий заметны и сегодня, особенно когда различные классы специалистов претендуют на роль "крестных отцов" робототехники. Невольно вспоминается старинная индийская притча о трех слепцах, ощупывающих слона и выносящих свои суждения.

Расскажем современную притчу о трех инженерах, впервые увидевших промышленного робота.

– Какой совершенный механизм! – воскликнул специалист по строительным машинам. – Вы обратили внимание на число степеней свободы и высокую точность манипулятора? Ошибка составляет не более долей миллиметра, и это при весе транспортируемой детали в несколько десятков килограммов! Особенно удивительна способность этого автомата перестраиваться с одной операции на другую, ведь он работает без помощи человека!

– Да разве только в этом дело! – перебил его специалист по ЭВМ. – Перед нами современный компьютер. Здесь мы имеем блестящий пример расширения функциональных возможностей ЭВМ за счет новых устройств ввода и вывода информации: тактильных датчиков, телекамеры, микрофона и на выходе гибкого манипулятора. Самое замечательное, что благодаря этим устройствам компьютер получил уникальную возможность проявлять физическую активность в окружающей среде. А то, что вас поразило больше всего – способность к переналадке, – так это же естественное свойство компьютера программируемость. МиниЭВМ робота просто перешла к выполнению новой программы!

– Я не вижу здесь предмета для спора, – вмешался в разговор специалист-кибернетик. – Главное здесь не механическая конечность или электронный мозг. Главное состоит в том, что чем эффективнее человечество развивает техносферу, тем больше наших достижений мы обнаруживаем у живой природы, в биосфере. Помните, как сказал Герберт Уэллс: "Перед каждым паровозом бежит тень лошади". И мы имеем наглядное подтверждение этого тезиса. Перед нами искусственный аналог живого мыслящего существа, так сказать, антропоморфная модель человека. Вот искусственные руки наподобие рук рабочего, вот органы чувств: зрение, слух, осязание – и вот, наконец, прообраз головного мозга – ЭВМ, которая и сообщает этому искусственному существу способность к рефлекторно-целесообразной деятельности! Присмотритесь, ведь движения робота просто воспроизводят поведение рабочего.

Так рассуждали специалисты, про которых еще Козьма Прутков заявил: "Узкий специалист подобен флюсу: полнота его односторонняя". Попытаемся разрешить их спор и ответить на вопрос: "Что же такое робот?" Возьмем аналогию робота с человеком. Какие качества в данном случае нас интересуют? Во-первых, функциональные возможности человека, а именно: приспособляемость, универсальность, способность к выполнению сложных движений. Во-вторых, физические данные, которые включают силу, скорость, надежность, стабильность основных характеристик. И наконец, в-третьих, умственные способности, которые охватывают восприятие, обучение, наличие памяти, логики и т. д. Если изобразить эти категории качества графически, то получится трехмерное пространство X, Y, Z, где каждая из категорий имеет свою ось.

Рис. ROBOT.GIF

Возьмем какую-нибудь строительную машину, например экскаватор. Он обладает функциональными способностями: известной универсальностью, возможностью манипулировать ковшом и перемещаться. Кроме того, он обладает физическими данными, которые обеспечиваются его двигателями. Если отложить категории, присущие экскаватору по осям X и Y, получим условное двухмерное "пространство экскаватора". Очевидно, что экскаватор начисто лишен интеллекта, его заменяет интеллект водителя, поэтому по оси Z мы ничего откладывать не будем. Рассмотрим теперь с тех же позиций, например, компьютер. Он обладает определенным интеллектом и некоторыми функциональными способностями, в частности универсальностью и приспособляемостью.

Двухмерное пространство компьютера можно изобразить по осям Z и X.

Компьютер, по крайней мере в традиционном смысле, не обладает вовсе физическими данными, поэтому на оси X мы также ничего не отложили. Итак, все эти машины на нашем рисунке оказались двухмерными, так как расположены по своим качественным возможностям в плоскости лишь двух осей.

Теперь изобразим "пространство робота" и "пространство человека". И робот и человек обладают всеми перечисленными качественными категориями в совокупности, а именно: функциональными возможностями, физическими данными и умственными способностями.

Поэтому на нашей схеме их пространства будут трехмерными.

Именно в этом совпадении качественных пространств и состоит антропоморфность робота, то есть сходство его с человеком. Наиболее распространенное техническое определение промышленного робота следующее: "обучаемый, программно-управляемый манипулятор".

Некоторые организации, производящие роботов, стремясь отделить понятие "промышленный робот" от понятия "робот", используемого в научной фантастике, называют эти автоматы "транспортирующими устройствами", или "автоманипуляторами".

ПОЧЕМУ ВСЕ-ТАКИ РОБОТЫ?

Ответ на этот вопрос является своеобразным ключом к замку, открывающему дверь в новую эру автоматизации производства. Робототехника и роботостроение, роботизация и роботроника и, наконец, роботология – вот эхо того гигантского взрыва, или бума роботов, который охватил современный мир. Причины этого бума порождены общим развитием экономики и научно-техническим прогрессом и глубоко коренятся в самой социальной структуре общества. Чтобы ответить на вопрос, стоящий в заголовке, проведем небольшое исследование.

Социологи утверждают, что успехи современной медицины и повышение общего уровня жизни приводят к изменению динамики возрастной структуры населения.

Это значит, что с каждым годом увеличивается доля пожилых людей и соответственным образом уменьшается доля молодежи. Изменился и образовательный уровень лиц, вступающих в производство, резко сократилось число выпускников средних школ, а число выпускников вузов, поступающих на работу в промышленность, обнаруживает тенденцию к постоянному увеличению. Кроме того, происходит общая смена сферы трудовой деятельности: возрастает доля управляющего и обслуживающего персонала за счет непосредственно участвующего в материальном производстве. Все эти тенденции связаны с развитием цивилизации. Избежать их невозможно, но они все острее ставят перед промышленностью проблему нехватки рабочей силы.

Нехватка рабочей силы – это общая тенденция, затронувшая все промышленные страны, однако в капиталистическом мире она зачастую ликвидируется за счет рабочих-иммигрантов: в США – за счет выходцев из ФРГ, Италии, стран Латинской Америки, в Англии – за счет африканцев, индийцев, а также итальянцев и испанцев; в ФРГ и Франции – за счет выходцев из стран Среднего и Ближнего Востока.

Однако решение проблемы нехватки рабочей силы при помощи такого рода изменений социальной структуры общества само по себе содержит противоречия, например, такие, как возникновения расовых проблем.

Очевидно, что для нашей страны подобный путь зависимости от рабочих-иммигрантов противоречил бы самой структуре социалистического общества.

Итак, социологи определили проблему: нехватка рабочей силы. Продолжим наше исследование. Зададим себе следующий вопрос: где проявляется в первую очередь нехватка рабочей силы? Не прибегая к социологическому анализу, а коснувшись своего собственного личного опыта, каждый может ответить на этот вопрос так: там, где работать вредно, неприятно и неинтересно.

Действительно, держаться подальше от таких мест, где мы попадаем в труднопереносимую обстановку, вполне естественно для человека. Поэтому все труднее и труднее находить квалифицированных рабочих для специфических производств. Люди избегают работать в неблагоприятных условиях: в цехах с повышенной температурой, загазованностью, неприятными запахами, грязных и шумных, связанных с работой с отравляющими и взрывчатыми веществами, на большой высоте или глубине.

Все больше текучесть кадров на работах, состоящих из простых, однообразных операций, угнетающих своей монотонностью. Одним из неприятных последствий промышленной революции оказалось то, что ремесленное искусство на производстве уступило место разделению труда. Это, несомненно, дало мощный толчок развитию промышленности, однако на конвейере рабочий, каждые несколько секунд повторяющий одну и ту же несложную операцию, чувствует себя винтиком механизма. Это лишило людей возможности гордиться своей работой, отняло у них творчество, и многие заводские профессии не дают людям полного удовлетворения.

Американский публицист Стаде Теркел в своем монументальном труде "Работа. Люди рассказывают о своей каждодневной работе и о том, как они к этой работе относятся" пишет: "Многие испытывают с трудом скрываемое разочарование..." "Я – машина", – говорит рабочий, обслуживающий машину для точечной сварки.

"Я – зверь в клетке", – высказывается кассир банка.

"Я – мул", – говорит рабочий-металлург. "То, чем я занимаюсь, может делать и обезьяна", – произносит секретарша. "Я превратился в сельскохозяйственное орудие", – говорит сезонный рабочий. "Я – вещь", считает манекенщица. "Синие воротнички" и "белые воротнички" выражают свое мнение одной фразой: "Я – робот". Все это и порождает естественный ответ: для многих производственных работ единственный выход – это комплексная автоматизация, ну а роботы нужны как ее носители. Образно говоря, человек создал робота, чтобы самому не превратиться в робота. Но почему именно роботы? Ведь существовали и существуют другие средства автоматизации: автоматические линии, станки-автоматы. Чтобы ответить на этот вопрос, углубимся в историю.

Начало промышленной революции было положено изобретением Дж. Уаттом паровой машины. Для поддержания постоянного числа оборотов ее вала в начале XIX века был создан регулятор, управляющий подачей пара в соответствии с числом оборотов машины, так называемый регулятор Уатта. Автоматическое регулирование числа оборотов паровой машины и явилось началом эры автоматического управления.

С тех пор автоматическое управление получило широкое развитие, а применение его в сфере производства положило начало эпохи автоматизации и сделало возможным создание таких отраслей промышленности, в которых не требуется вмешательство человека.

Однако оказалось, что легче всего поддаются автоматизации непрерывные производства, связанные с переработкой жидкостей и газов, которые легко транспортируются и автоматизация производства которых касается скорости течения или температуры, давления или пропорций в смеси сырья. В случае же, где требуется перемещение твердых тел в виде отдельных деталей или узлов в процессе их обработки или сборки, последовательная автоматизация всего цикла, начиная от подачи заготовки и кончая выходом готового изделия, сильно отстает. Выполнение такого рода транспортных операций, естественно, не требует почти никакой квалификации, но автоматизация их в силу специфики крайне сложна. Но с производственной точки зрения выполнение подобных работ необходимо, и, хотя найти рабочего на это место трудно, обойтись без него невозможно.

Промышленные роботы – это устройства, обеспечивающие автоматизацию таких технологических операций, которые невозможно автоматизировать традиционными методами. Поэтому их и следует считать необходимым компонентом комплексной автоматизации производства.

Что же дает производству внедрение промышленных роботов? Давайте проследим рассуждения отдельных специалистов.

– На нашем заводе применение роботов существенно повысило производительность труда, – говорит один, – во-первых, за счет устранения монотонности и неудовлетворенности работой, во-вторых, за счет повышения единообразия продукта, ведь не секрет, что при ручной загрузке станков или при сборке изделий выпуск продукции за определенное время – величина переменная, она зависит от усталости рабочего, от его самочувствия, наконец, от квалификации.

– Я полностью присоединяюсь к предыдущим словам, – заявляет другой, хочу только добавить, что применение роботов не только позволяет синхронизировать работу станков и таким образом стабилизирует производство, но и резко снижает размеры брака, особенно при работе с хрупкими компонентами, такими, как, например, колбы ламп или кинескопы. Интересно, что роботы весьма бережливы: там, где при ручном труде расходовались бы граммы дефицитнейших материалов, они обходятся миллиграммами. Золото, как известно, пришлось по вкусу электронике. Без него пока не обойтись. Однако с помощью робота транзисторные головки покрываются желтым металлом с большей скоростью и только в нужных местах. При этом экономится три четверти золота.

Хочется также отметить значительное улучшение условий труда. Не буду скрывать, что у нас на заводе еще есть цеха, не вполне соответствующие нормам по охране труда, и дело не только во вредных производствах. Особенно опасны работы, требующие большого нервного напряжения, так как они приводят к производственным конфликтам, повышают уровень травматизма.

Здесь, мне кажется, наиболее подходящее место для роботов.

Интересно, что роботы создают возможность эффективного использования даже устаревшего оборудования за счет уменьшения простоев, повышения стабильности, увеличения скорости.

Частным случаем экономически выгодного применения роботов является их использование при обслуживании оборудования, продолжительность эксплуатации которого вышла за пределы юридических норм по охране труда.

– Или такой факт, – отмечает третий, – мы выяснили, что стоимость внедрения автоматических линий обычно оказывается выше стоимости внедрения роботов, так как роботы подвергаются отладке при их изготовлении, а вот отладку и регулировку линий приходится производить каждый раз непосредственно при их внедрении. Средства, затраченные на проектирование универсальных роботов, не требуется расходовать вторично при переходе от одной работы к другой.

Необходимо отметить чрезвычайно важный при внедрении фактор времени. При внедрении роботов требуется, как правило, лишь кратковременная ручная настройка робота на заданную программу, тогда как с момента принятия решения об автоматизации производства до его реализации без применения роботов проходит значительный срок. Оборудование и сама технология могут за это время устареть. Наши специалисты изучали вопрос об автоматизации одного из производств. Был объявлен конкурс на лучший проект автоматизации.

На конкурс было представлено 74 проекта. Мы учитывали в первую очередь время проектирования и внедрения.

Так вот, 47 проектов требовали для своего внедрения времени больше года, 19 проектов – что-то от полугода до года, и лишь 8 проектов укладывались в полугодовой срок. Естественно, что мы выбрали один из этих восьми.

Он предусматривал создание специального станка-автомата. Работа, как говорится, закипела, Пока этот станок проектировали, изготовляли и отлаживали, производственники решили: а не попробовать ли использовать пока старые станки и приобретенные промышленные роботы?

Представьте, каково было наше удивление, когда оказалось, что к моменту готовности нового станка эти роботы, работая семь дней в неделю по три смены, полностью окупили затраты на их покупку и уход.

И все же пусть не покажется эта картина слишком идеалистической. Внедрение роботов требует еще немалых средств. Это все еще высокие капитальные затраты на приобретение роботов, затем издержки на переобучение персонала, хорошо еще, если не потребуется специальное проектирование уникальных захватов роботов, ведь одно дело – манипуляция стальными болванками и совсем другое – транспортировка стеклянных листов. Прибавьте к этому специальные средства связи, необходимые для сопряжения робота со станками, издержки на оборудование и персонал для технического обслуживания робота и т. д. Потребуется немалая сумма.

– Разумеется, – утверждает экономист, – вы будете правы, если купите один робот и используете его в каких-то уникальных условиях. Внедрение роботов тоже требует своеобразной тактики. Экономически выгодно применять сразу несколько роботов на одной массовой операции, например при сварке кузовов автомобилей, тогда и оконечные устройства проектируются один раз для целой группы роботов, и обучение персонала, помноженное на число роботов, оказывается не столь дорогим. Один оператор может обслуживать группу роботов. В общем, нужно групповое использование.

– Вот вы сказали про массовое производство, – возражает первый специалист, – а нам кажется, что эксплуатация роботов наиболее подходит для небольших предприятий с многономенклатурным, мелкосерийным производством. Только тогда с наибольшим эффектом используется "гибкость" робота, то есть простота переналадки циклограммы движения: изменение траектории, скорости, ускорения, нагрузки и, наконец, смены рабочего инструмента.

Самое существенное в применении промышленных роботов – это перспектива комплексной автоматизации производства, возможность создания интегрированных производственных систем, так сказать, заводов-роботов, где целые роботизированные участки, цеха и производства будут функционировать автоматически, без участия человека. При этом они будут обладать основными достоинствами роботов – гибкостью, простотой переналадки.

Из этих реплик специалистов вытекает основной вывод: применение роботов в современных условиях оказывается весьма выгодным.

КАКИЕ БЫВАЮТ РОБОТЫ?

"Существует традиционный принцип, который можно выразить так: наука начинается с измерения и вычисления. Эта традиция идет от физики. В действительности же наука начинается с классификации", – говорит Д. Поспелов, специалист в области роботов и искусственного интеллекта.

Если считать эту книгу введением в науку роботологию, то нам не миновать этапа классификации роботов.

Скажем сразу, что единой научно обоснованной классификации роботов пока нет. Классифицировать их можно по самым различным признакам. Каждая группа специалистов выдвигает свои принципы классификации.

Представители организаций, разрабатывающих и внедряющих силовые установки и механические манипуляторы роботов, предлагают классифицировать их по кинематическим, геометрическим и энергетическим характеристикам. По кинематическим параметрам роботов делят в зависимости от скоростей перемещения. По геометрическим – в зависимости от размеров их функциональных органов, прежде всего манипуляторов, и, таким образом, диапазонов их перемещений. По энергетическим – на группы по грузоподъемности: до 5 килограммов (груз, перемещаемый человеком одной рукой) о г 5 до 40 килограммов (перемещаемый двумя руками) и более 40 килограммов (для перемещения необходимы усилия нескольких человек).

Разработчики систем управления роботами предлагают свою классификацию, учитывающую степень участит человека в процессе управления. Тут роботы подразделяются1 на два большие класса: биотехнические и автономные.

К первому – биотехническим роботам – относятся те, которые управляются человеком, так сказать, по копирующему принципу. Это так называемые экзоскелетоны, то есть механические силовые каркасы, надеваемые непосредственно на человека. Сюда же относятся и роботы без человека, управляемые оператором с пульта управления, и полуавтоматические роботы, когда человек с пульта оперативно меняет только программы движений. Эти устройства лишь условно относятся к классу истинных роботов, так как их интеллект полностью или частично заменен интеллектом оператора.

Второй класс – истинные роботы. Это автономные, то есть работающие без участия человека, автоматические устройства с искусственным электронным мозгом. Здесь шкала классификации обусловлена степенью интеллектуальности робота, то есть мощностью компьютера и гибкостью программного обеспечения, составляющего основу управляющего устройства.

Специалистам, занимающимся внедрением роботов, представляется естественным делить их по сферам применения или "обитания". Так же, как представители животного мира обитают на земле и под землей, в воздухе и океане, так и роботы служат человеку на земле и в космосе, в океане и под землей, в пустынях Азии, в Арктике и Антарктиде.

Наиболее многочисленна "популяция" производственных роботов: промышленные и сельскохозяйственные, транспортные и строительные, медицинские и бытовые.

Можно даже изобразить своеобразное генеалогическое древо роботов. Возрастая на почве кибернетики, оно держится на трех мощных корнях: компьютерах, телеметрических датчиках и механических манипуляторах. Три мощные ветви образуют это древо: исследовательские роботы, производственные роботы и роботы бытовые.

Можно было бы и дальше плодить нескончаемые предложения о принципах классификации роботов. Мы не станем этого делать, нам важно было лишь показать, как велика "популяция" роботов, как сильно затронула роботология основные сферы научной и производственной деятельности человека.

"Эволюция роботов, которая началась в той точке, в которой эволюция живых существ достигла, так сказать, своего предела, а именно, с появлением человека, обещает, по крайней мере сейчас, даже превзойти человека в определенных областях. В противоположность эволюции живых существ, которая является, по существу, процессом проб и ошибок, эволюция роботов представляется в настоящее время заранее тщательно продуманным процессом". Так писалось еще в 1970 году по поводу разработки интеллектуальных роботов.

Специалисты по проблемам роботологии твердо "держат руку на пульсе" эволюции своих детищ. Потому в противоположность узкоспециальным классификациям они выдвигают свою уже ставшую привычной в других сферах классификацию поколений.

К первому поколению промышленных роботов относят простые манипуляторы с минимальным интеллектом, способные обучаться и выполнять заранее заданную циклограмму движений.

Второе поколение так называемых очувствленных роботов характеризуется наличием всевозможных датчиков – органов чувств, это датчики положения руки робота, датчики усилия – как бы осязание робота, оптические датчики своеобразное зрение, микрофоны – его слух и так далее...

Третье поколение роботов – это роботы "интеллектуальные", которые призваны не только и не столько воспроизводить механические движения, подобные человеческим, сколько решать сложные интеллектуальные задачи: распознавание формы, положения деталей, сборка узлов из произвольно расположенных компонентов, чтение чертежей и контроль качества изделий.

Эта классификация, отражающая развитие роботов и расширение сфер их применения, настолько проста и органична, что мы примем ее как основу этой книги.

Итак, поколения роботов, О них и пойдет речь в следующих главах.

РОБОТ

АНДРОИДОВИЧ

АВТОМАТОВ

ДЕТСТВО

Поколения современных промышленных роботов принято отсчитывать от первого, хотя в принципе числовая шкала в положительную область начинается с ноля.

"Неужели существует нолевое поколение роботов?" – спросит читатель. Как это понимать?

Да, существует. Каждая идея и любое ее техническое воплощение имеют свою нолевую фазу, так сказать, утробное развитие проблемы. Абсолютный ноль робототехники глубоко погружен в историческое прошлое человечества. Промышленный робот как механический соратник человека ведет свою родословную от первых приспособлений, помогавших людям обустраивать свою жизнь. 7 – 8 тысяч лет до нашей эры, в эпоху неолита, человек применял первые инструменты для сверления отверстий в камне. 3 – 4 тысячи лет до нашей эры появился гончарный круг – дальний родственник всех современных токарных и карусельных станков. Во II веке до нашей эры появились водяные часы: вода, вытекавшая из сосуда, поднимала поплавок, указывающий время на вертикальной шкале Их автор – живший в Александрии механик Ктезибий.

В античном мире прароботы существовали в виде оживших статуй и всевозможных "чудесных" машин.

Стоило бросить несколько монет в открытый зев каменного грифона, как "священная" вода сама собою изливалась из его глаз. Двери храма открывались, как сказал бы современный инженер, "автоматически", когда жрец возжигал огонь на алтаре перед храмом. Движущиеся статуи Герона Александрийского Старшего и других механиков эпохи эллинизма зачастую являлись объектами мистического поклонения.

Вероятно, одно из первых автоматических устройств, копирующих, или, как сейчас говорят, моделирующих, конструкцию живого "механизма", было создано другом древнегреческого философа Платона, жившего около 400 г. до н. э., который вошел в историю под именем Архитаса из Тарента. Он, как повествует легенда, изготовил деревянного голубя, который, по свидетельству пораженных современников, летал как настоящий.

Совершенно естественно, что рассказы о предках современных промышленных роботов сильно замешены на мифах и легендах. Таково уж свойство памяти человеческой – она не столько бесстрастно фиксирует факты, сколько мечтает, предвосхищая сегодняшнюю реальность, отображая прошлое в будущем.

Первое "достоверное" упоминание об использовании промышленного робота встречается еще у Гомера в его знаменитой "Илиаде". Он описывает изготовленную из золота женщину, которая помогает богу-кузнецу Гефесту. Заметим, что ее потомки активно орудуют в современном кузнечно-прессовом производстве.

Овладев энергией "падающей воды" и "дующего ветра", человек ощутил прелесть механических помощников, наделенных собственной силой. В изобилии стали появляться разнообразные станки и приспособления.

В XIX веке был создан неизменный помощник человека, спутник промышленного производства – токарный станок.

Другие изобретатели концентрировали свои силы на создании так называемых андроидов – автоматических устройств, копирующих внешний вид и движения человека.

Отзвуки этих устремлений докатились до нас в виде сведений, достоверность которых вызывает естественное сомнение. Так, имеются упоминания, что еще в XIII веке у архиепископа города Регенсбурга Альбертуса Магнуса был механический "страж", который стоял у дверей его покоев в монастыре. Андроид был сделан из воска, дерева, металла и кожи. Предание говорит, что он приветствовал посетителей, расспрашивал их о делах, шутил с ними, пока епископ не приглашал их войти. Согласно этой легенде один из учеников епископа, молодой философ Томас Аквинский, стал так досаждать андроиду своими философскими вопросами, что тот однажды, найдя дубинку, изрядно поколотил его.

XVI век подарил миру часы с пружинным приводом, изобретенным в Германии часовщиком П. Хейнлейном.


    Ваша оценка произведения:

Популярные книги за неделю