355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Фурсов » Жизнь и ее проявления » Текст книги (страница 2)
Жизнь и ее проявления
  • Текст добавлен: 7 мая 2017, 22:30

Текст книги "Жизнь и ее проявления"


Автор книги: Владимир Фурсов


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 2 (всего у книги 4 страниц)

Как питаются животные?

Итак, только зеленые растения способны создавать органические вещества из минеральных солей, воды и углекислого газа, используя для этого солнечную или любую другую лучистую энергию.

Все животные для своей жизнедеятельности нуждаются в сложных органических соединениях в виде белков, жиров, углеводов или продуктов их распада[2]2
  Многие растения, не содержащие хлорофилл (как, например, грибы), а также почти все одноклеточные организмы и бактерии для питания используют, как и животные, готовые органические вещества.


[Закрыть]
. Такой тип питания, при котором организмы используют готовые органические вещества, называется гетеротрофным (от лат. слова гетеро – иной).

Все органические вещества состоят из сложных молекул, поэтому они не могут в неизменном виде усваиваться организмами. Лишь обработанные различными ферментами и разложенные до простых составных частей, эти вещества усваиваются клетками гетеротрофных организмов.

Чтобы яснее представить, как это происходит, рассмотрим схематично питание человека. Основной пищей человека являются белки, жиры и углеводы. Начнем с последних, которых мы потребляем больше всего.

В пищевом рационе мы употребляем обычно самые сложные молекулы углевода (полисахариды) – крахмал и гликоген (животный крахмал). А наш кишечник способен всасывать углеводы только в форме простых сахаров (моносахаров) – глюкозы, фруктозы и галактозы, имеющих наименьший размер молекул. Поэтому уже в ротовой полости полисахариды начинают расщепляться на более простые вещества – ди– и моносахариды. Этому содействуют фермент амилаза или птиалин слюны. Попробуйте долго пережевывать кусочек хлеба, и вы почувствуете сладковатый привкус во рту. Это значит, что безвкусный крахмал расщепился до сладкого моносахарида глюкозы. Не успевшие расщепиться в ротовой полости полисахара заканчивают свое превращение в двенадцатиперстном и тонком кишечнике под действием ферментов (диастазы, мальтазы и других). Образовавшиеся моносахара всасываются стенками кишечника, попадают в кровеносные сосудики и током крови разносятся по всем клеткам нашего организма. Здесь они сразу же окисляются или используются на построение клеток и их структур. Избыточные углеводы в организме синтезируются в гликоген, который откладывается главным образом в печени. Большая же часть избыточных углеводов превращается в резервный жир, откладывающийся в подкожной ткани.

Растительные и животные жиры пищи расщепляются под действием фермента липазы при непременном участии в этом процессе желчных кислот. Наш желудок справляется только с легкорасщепляющимися жирами (например, жир молока). Основная же масса жиров перерабатывается уже в кишечнике. Составляющие жир части – глицерин и жирные кислоты – в виде молекул тоже всасываются стенками кишечника и попадают в кровь. В клетках глицерин и жирные кислоты синтезируются с помощью фермента липазы в жиры, которые по своему составу соответствуют жирам данного организма.

Очень важное значение для человека и животных имеет обмен белков, многогранную роль которых мы подробно освещали в предыдущей брошюре («Три тайны жизни»). С пищей попадают белки животного и растительного происхождения. Однако все они отличаются по составу от белков организма, да и молекулы их слишком крупны. Поэтому в пищеварительном тракте потребляемые нами белки расщепляются на составляющие их вещества – аминокислоты – и только затем используются организмом.

Существуют десять аминокислот, совершенно незаменимых для человека, и потому белки, в которых все они содержатся в достаточном количестве, называются полноценными. В молоке, мясе, яйцах и рыбе содержатся эти важные для нас белки.

Белковые вещества начинают расщепляться в желудке под действием фермента пепсина, активированного соляной кислотой желудочного сока. В двенадцатиперстном и тонком кишечнике более простые белки (альбумозы и пептоны) под действием фермента трипсина расщепляются до аминокислот. Последние, попав в кровеносные сосуды стенок кишечника, приносятся с кровью в каждую клеточку организма. О том же, как синтезируются белки из аминокислот, подробно рассказано в предыдущей брошюре.

Так осуществляется ассимиляция (или питание) у гетеротрофных организмов. В процессе ассимиляции организмы запасают энергию, которая им необходима во всех проявлениях жизни. Питание в научном понимании – это обогащение организма той потенциальной энергией, которая была «законсервирована» в органических веществах пищи при создании их автотрофными организмами. Таким образом, на живых организмах мы видим замечательное подтверждение закона сохранения и превращения энергии, открытого еще М. В. Ломоносовым. Солнечная энергия, улавливаемая зелеными растениями, переходит в потенциальную химическую энергию синтезированных автотрофными организмами органических веществ. Эта энергия поступает вместе с продуктами питания в гетеротрофные организмы.

У более просто устроенных многоклеточных животных, гетеротрофно питающихся растений, одноклеточных организмов и бактерий принцип одинаков. Эти организмы тоже выделяют во внешнюю среду или в полость тела ферменты, с помощью которых осуществляется расщепление сложных органических веществ до исходных соединений. В клетках снова происходит синтез, но уже специфических для данного организма белков и других органических веществ.

Гетеротрофные организмы в процессе ассимиляции используют воду и минеральные элементы. Например, человеку для нормальной жизнедеятельности в сутки необходимо потреблять: хлористого натрия (поваренная соль) от 2 до 15 г, кальция – 1,2 г, магния – 0,3 г, фосфора – 1,5 г, кальция – 0,8 г, железа – 1,012 г, меди – 0,001 г, марганца – 0,0003 г, иода – 0,00003 г.

Кроме того, человек и животные нуждаются в витаминах, которые, как и минеральные элементы, гетеротрофные организмы получают с органической, главным образом растительной пищей.

Еще один способ питания

В природе существует несколько видов бактерий, которых называют хемосинтетиками. Называют их так потому, что энергию, необходимую для синтеза органических веществ, они получают путем окисления сравнительно простых неорганических веществ. Например, в почве имеется множество так называемых нитрифицирующих бактерий. Они окисляют аммиак до азотной кислоты. Аммиак – сильнейший яд для растений, а соли азотной кислоты – очень ценное питательное вещество. В результате такой «деятельности» и растениям хорошо, и сами нитрифицирующие бактерии получают для жизни около двухсот килокалорий энергии.

Серобактерии тоже очень ценная группа хемосинтетиков. Они окисляют ядовитый сернистый газ, образующийся при гниении органических остатков. После окисления получаются сера и вода. Эта реакция дает бактериям 115 килокалорий энергии для их жизнедеятельности. Серобактерии играют большую роль при очистке водоемов. Так, например, на больших глубинах Черного моря скапливаются огромные массы мертвых организмов, которые гниют, а образовавшийся при этом сероводород отравляет все живое в воде. Но этот ядовитый газ не поднимается до поверхности воды: на глубине 150–200 метров сплошным слоем живут серобактерии. Вот поэтому слой воды, располагающийся выше серобактерий, вполне пригоден для жизни водных животных.

Назовем еще одного представителя хемосинтетиков – это водородные бактерии, которые для построения органических веществ используют энергию, образующуюся при окислении водорода.

В настоящее время установлено, что хемосинтетики, как и другие микроорганизмы, играют колоссальную роль в геологической деятельности. Они принимают участие в разложении горных пород и образовании залежей полезных ископаемых. Ученым уже удалось воспроизвести некоторые геохимические процессы, осуществляемые микробами. С помощью серных бактерий, например, удается производить окисление серы в рудах, содержащих медь, и этим облегчается добыча меди. Серобактерии окисляют сероводород нефтяных или сточных вод, дают нам элементарную серу, так необходимую химической промышленности. Существуют бактерии, окисляющие марганец и железо. Бактерии стали в руках геологов чувствительными индикаторами, способными определять присутствие углеводородов в грунтах и почве. Это свойство микроорганизмов легло в основу разработанного в СССР микробиологического метода разведки на нефть и горные газы.

Итак, хемосинтетики, как и автотрофные организмы, сами строят органические вещества из неорганических. Но если автотрофным организмам для этого необходим свет, то хемосинтетики обходятся без света, получая энергию в процессе окисления неорганических веществ.

Можно найти много общего в способах ассимиляции и у других групп организмов. Так, например, миксотрофные организмы – насекомоядные растения – занимают как бы промежуточное звено между автотрофными и гетеротрофными организмами.

Эти обстоятельства дают основание считать, что все живые организмы, населяющие Землю, имеют единую принципиальную основу в процессах ассимиляции. Для всего живого питание – это строительный материал для организма и средство накопления энергии.

Окисление органических веществ – основа жизни

Органические вещества и заключенная в них энергия, образовавшаяся в клетках любого организма в процессе ассимиляции, претерпевают обратный процесс – диссимиляцию. При диссимиляции освобождается химическая энергия, которая в организме же превращается в различные формы энергии – механическую, тепловую и т. д. Освобожденная при диссимиляции энергия является той самой материальной основой, которая осуществляет все жизненные процессы – синтез органических веществ, саморегулирование организма, рост, развитие, размножение, реакции организма на внешние воздействия и другие проявления жизни.

Диссимиляция, или окисление, у живых организмов осуществляется двумя способами. У большинства растений, животных, человека и простейших организмов окисление органических веществ происходит с участием кислорода воздуха. Этот процесс получил название «дыхание», или аэробный (от лат. аэр – воздух) процесс. У некоторых групп растений, которые способны существовать без воздуха, окисление происходит без кислорода, то есть анаэробным путем, и называется брожением. Рассмотрим каждый из этих процессов в отдельности.

Понятие «дыхание» первоначально означало лишь вдыхание и выдыхание воздуха легкими. Затем «дыханием» стали называть обмен газами между клеткой и окружающей ее средой – потребление кислорода и выделение углекислоты. Дальнейшие углубленные исследования показали, что дыхание является очень сложным многоступенчатым процессом, который совершается в каждой клетке живого организма с обязательным участием биологических катализаторов – ферментов.

Органические вещества, прежде чем превратиться в «топливо», дающее энергию клетке и организму в целом, должны быть соответствующим образом обработаны с помощью ферментов. Эта обработка заключается в расщеплении крупных молекул биополимеров – белков, жиров, полисахаридов (крахмала и гликогена) – в мономеры. Тем самым достигается определенная универсализация питательного материала.

Таким образом, вместо многих сотен различных полимеров, например пищи, в кишечнике животных образуется несколько десятков мономеров – аминокислот, жирных кислот, глицерина и глюкозы, которые затем доставляются клеткам тканей животных и человека по кровеносным и лимфатическим путям. В клетках происходит дальнейшая универсализация этих веществ. Все мономеры превращаются в более простые молекулы карбоновых кислот с углеродной цепочкой, содержащей от двух до шести атомов. Если мономеров насчитывается несколько десятков, из них двадцать аминокислот, то карбоновых кислот всего десять. Так окончательно утрачивается специфика питательных веществ.

Но и карбоновые кислоты являются лишь предшественниками материала, который можно назвать «биологическим горючим». Они непосредственно еще не могут быть использованы в энергетических процессах клетки. Следующий этап универсализации – отщепление от карбоновых кислот водорода. При этом образуется углекислый газ (СО2), который организм выдыхает. Атом водорода содержит электрон и протон. Для энергетики клетки и организма в целом (биоэнергетики) роль этих составных частей атома далеко не равноценна. Энергия, заключенная в атомном ядре, недоступна для клетки. Превращение же электрона в атоме водорода сопровождается выделением энергии, которая используется в процессах жизнедеятельности клетки. Поэтому освобождением электрона заканчивается последний этап универсализации биологического топлива. В этот период специфика органических веществ, их составных частей и карбоновых кислот не имеет значения, ибо все они в конечном счете приводят к образованию носителя энергии – электрона.

Возбужденный электрон соединяется с кислородом. Приняв два электрона, кислород заряжается отрицательно, присоединяет два протона и образует воду. Так совершается акт клеточного дыхания.

Окисление органических веществ в клетках происходит в митохондриях, которые, как уже было отмечено в предыдущей брошюре, играют роль динамомашины, преобразующей энергию сгорания углеводов и жиров в энергию аденозинтрифосфорной кислоты (АТФ).

Окислению в организме подвергаются в первую очередь углеводы. Начальные и конечные процессы окисления углеводов можно выразить такой суммарной формулой: C6H12O6 + 6O2 = 6СO2 + 6Н2O + энергия.

В животном и растительном организмах процесс дыхания в основе своей одинаков: биологический смысл его в обоих случаях состоит в получении энергии каждой клеткой в результате окисления органических веществ. Образуемая при этом АТФ используется как аккумулятор энергии. Именно этим аккумулятором восполняется потребность в энергии, в каком бы месте клетки любого организма она не возникла.

В процессе дыхания растения совершенно так же, как и животные, потребляют кислород и выделяют углекислый газ. Как у животных, так и у растений дыхание идет непрерывно днем и ночью. Прекращение дыхания, например путем прекращения доступа кислорода, неминуемо приводит к смерти, так как жизнедеятельность клеток не может поддерживаться без непрерывного использования энергии. У всех животных, за исключением микроскопически малых, кислород не может проникнуть в достаточном количестве непосредственно в клетки и ткани из воздуха. В этих случаях газообмен со средой осуществляется при помощи специальных органов (трахей, жабр и легких). У позвоночных снабжение кислородом каждой отдельной клетки происходит через кровь и обеспечивается работой сердца и всей кровеносной системы. Сложность газообмена у животных долгое время мешала выяснить истинную сущность и значение тканевого дыхания. Ученым нашего столетия потребовалось много усилий для доказательства того, что окисление совершается не в легких и не в крови, а в каждой живой клетке.

В растительном организме механизмы газообмена значительно проще, чем у животных. Кислород воздуха проникает в каждый лист растений через особые отверстия – устьица. Газообмен у растений осуществляется всей поверхностью тела и связан с передвижением воды по сосудистым пучкам.

Организмы, у которых окисление происходит за счет свободного кислорода (атмосферного или растворенного в воде), называются, как уже было отмечено выше, аэробными. Этот тип обмена свойствен подавляющему большинству растений и животных.

Все живые существа на Земле в процессе дыхания ежегодно окисляют миллиарды тонн органических веществ. При этом освобождается огромное количество энергии, которая используется во всех проявлениях жизни.

Французским ученым Л. Пастером еще в прошлом столетии была показана возможность развития некоторых микроорганизмов в бескислородной среде, то есть «жизнь без воздуха». Окисление органических веществ без участия кислорода называется брожением, а организмы, способные к активной жизни в лишенной кислорода среде, называются анаэробными. Таким образом, брожение – это форма диссимиляции при анаэробном типе обмена.

При брожении в отличие от дыхания органические вещества окисляются не до конечных продуктов (СО2 и Н2О), а образуются промежуточные соединения. Энергия, заключенная в органических веществах, освобождается не вся, часть ее остается в промежуточных сбраживающих веществах.

Брожение так же, как и дыхание, осуществляется через ряд сложных химических реакций. Например, конечные результаты спиртового брожения изображаются следующей формулой: C6H12O6 = 2CO2 + 2C2H5OH + 25 ккал/г • моль.

В результате спиртового брожения из сахара (глюкозы) образуется продукт неполного окисления – этиловый спирт – и освобождается только небольшая часть энергии, содержащейся в углеводах.

Примером анаэробных организмов могут служить дрожжевые грибки, которые получают энергию для жизнедеятельности, ассимилируя углеводы и подвергая их спиртовому брожению в процессе диссимиляции. Многие анаэробные микроорганизмы расщепляют углеводы до молочной, масляной, уксусной кислот и других продуктов неполного окисления. Некоторые виды бактерий могут использовать в качестве источника энергии не только сахара, аминокислоты и жиры, но и продукты выделения животных, как, например, мочевину и мочевую кислоту, содержащиеся в моче, и вещества, входящие в состав экскрементов. Даже пенициллин, убивающий многие бактерии, используется одним из видов бактерий как питательное вещество.

Анаэробный обмен встречается в основном в мире микроорганизмов. Из многоклеточных в значительной мере за счет анаэробного обмена живут кишечные паразиты (круглые и ленточные глисты и др.), обитающие в среде с очень малым содержанием свободного кислорода. Среди микроорганизмов есть много аэробных, а также форм, способных к обоим типам обмена.

Таким образом, в процессе синтеза органических соединений в них как бы «консервируется» или запасается затраченная на их синтез энергия химических связей. Она снова освобождается при обратном процессе разложения органических веществ. В энергетическом отношении живые существа являются, как уже говорилось, открытыми системами. Это значит, что они нуждаются в поступлении энергии извне в форме, которая позволяет использовать ее для выполнения работы, неразрывно связанной с жизненными проявлениями, и выделяют в окружающую среду эту же энергию, но уже в обесцененной форме, например в форме тепла, которое рассеивается в окружающей среде. Благодаря непрерывным процессам синтеза и распада, ассимиляции и диссимиляции в живых существах идет постоянный круговорот веществ и превращение энергии. Какое количество энергии было поглощено, столько же ее выделяется при диссимиляции. Энергия, освободившаяся при диссимиляции, осуществляет процессы, которые характеризуют сущность жизни и все ее проявления.

Организм и среда

Процессы ассимиляции и диссимиляции, характеризующие жизнь и различные ее проявления, могут осуществляться только с участием внешней, окружающей организм среды. Среда эта очень сложна и изменчива, поэтому организм, чтобы существовать, должен постоянно ощущать все, что в ней происходит. Разумно оценивать обстановку животные, а тем более растения и простейшие организмы, у которых вообще отсутствует нервная система, конечно, не могут. Зато все живые существа, начиная от одноклеточной амебы и водоросли и кончая человеком, обладают замечательным свойством отвечать (реагировать) на внешние воздействия. Это свойство живых организмов называется раздражимостью.

Долгое время считали, что свойствами раздражимости обладают только животные, имеющие нервную систему. В настоящее время доказано, что раздражимость – всеобщее и важнейшее свойство живых организмов. Ею обладают простейшие одноклеточные существа, животные, растения и человек.

Перемена условий среды, которая вызывает реакцию со стороны организма, называется раздражителем. Живые организмы в процессе эволюции приобрели свойства реагировать только на определенные условия внешней среды и их изменения. Именно эта способность позволяет организмам избирать требуемые для их жизни и развития условия.

Итак, значение раздражимости состоит в том, что она позволяет живым существам находиться в постоянной связи с окружающим миром, дает возможность приспособляться к нему, уравновешивать его влияние, благодаря чему и возможны защита и сохранность жизни.

Животные и растения по-разному реагируют на воздействие внешней среды вследствие неодинакового уровня их развития и различного характера приспособления к условиям жизни.

У простейших и у растений раздражимость проявляется в относительно элементарных формах. Простейшие, как и некоторые подвижные отдельные клетки многоклеточных организмов (сперматозоиды, лейкоциты, подвижные споры), обнаруживают раздражимость в форме таксисов, то есть движений в сторону раздражителя или от него. Если организм уходит от раздражителя, это называется отрицательным таксисом, если же организм движется к раздражителю, значит, таксис его положителен. Название того или иного вида таксиса определяется характером раздражителя. Так, фототаксисом именуют движение, возникшее под действием света, хемотаксисом – вызванное химическим веществом, термотаксисом – изменением температуры и т. д.

Приведем несколько примеров. Стремление к свету характерно не только для целых растений, но и для каждой живой зеленой клетки. На слабом свету хлоропласты «подплывают» к стенкам клеток, обращенным к свету, и располагаются перпендикулярно к лучам света. Это явление положительного фототаксиса позволяет улавливать максимум солнечных лучей. А на очень ярком свету в клетках растений осуществляются противоположные реакции: хлоропласты очень быстро становятся ребром к свету, разбегаются в стороны и прячутся от солнечных лучей, тесно прижимаясь к боковым стенкам клеток (отрицательный фототаксис). Под микроскопом это явление легко наблюдать, но объяснить его пока что полностью не удается. Ясно одно, что под действием освещения в протоплазме клеток зеленых растений разыгрываются какие-то сложные физиолого-биохимические реакции, которые управляют поведением хлоропластов. Зеленые одноклеточные водоросли под действием света ведут себя аналогично хлоропластам клеток растений. Если стеклянный сосуд с водой, содержащий подвижные клетки зеленых водорослей (например, эвглену), освещать с одной стороны, зеленые организмы соберутся к свету. Значит, зеленые водоросли проявляют положительный фототаксис. Инфузории туфельки находятся обычно в самом верхнем слое воды, потому что они нуждаются в кислороде и собираются там, где его больше, то есть проявляют положительный хемотаксис по отношению к кислороду.

Большое биологическое значение имеют таксисы и у подвижных клеток многоклеточных животных и растений. В основе процесса оплодотворения, то есть слияния гамет, лежат хемотаксические реакции. Особенно отчетливо они проявляются при слиянии гамет у водных животных. Яйцеклетки вырабатывают особые вещества, которые оказывают мощное положительное хемотаксическое действие на сперматозоиды своего вида. Эти же вещества хемотаксически отрицательно влияют на «чужие» сперматозоиды. Высокая специфичность этих реакций и исключительная чувствительность сперматозоидов поразительны – они реагируют на ничтожно малые концентрации «привлекающих» веществ, выделяемых яйцеклеткой.

Хемотаксические реакции лежат в основе питания простейших животных. Простейшие проявляют положительный хемотаксис по отношению к веществам, пригодным к пище, и отрицательный к веществам, бесполезным и ядовитым.

Выдающийся русский ученый И. И. Мечников открыл замечательную особенность особых структурных телец крови – фагоцитов находить и уничтожать возбудителей заболеваний (различных бактерий), проникающих в организм. Эта особенность фагоцитов бороться с вредными бактериями организма связана с положительной хемотаксической реакцией.

Растения не располагают специальными, воспринимающими раздражение органами. Раздражимость растений проявляется в форме тропизмов и настий. Тропизмами называют направленные ростовые движения (изгибы) растений под влиянием односторонних воздействий внешней среды. Тропизмы можно наблюдать у молодых растений, когда в их верхушках под действием особых химических веществ (гормонов роста растений, или ауксинов) происходит изгиб.

Механизм изгибания стеблей растений в сторону света заключается в том, что на освещенной стороне стебля ауксин частично разрушается, а частично переходит в затененную сторону. Создавшийся там избыток этого гормона усиливает рост, в результате чего стебель изгибается в направлении источника света. Внешне это явление выглядит так, будто бы растение «тянется» к раздражителю или, наоборот, отстраняется от него. Характерной чертой тропизмов является их четкая направленность. Как и таксисы, тропизмы могут быть положительными или отрицательными.

Раздражители, вызывающие тропизмы, различны по своему характеру. Например, широко известен, как уже было отмечено, фототропизм.

Явление геотропизма проявляется у растений по отношению к действию силы тяжести. Стебли всегда растут вверх, в сторону, противоположную действию силы тяжести. Корни же, наоборот, тянутся вниз, то есть они обладают положительным геотропизмом, а стебли – отрицательным. Известны также хемотропизмы – реакции на действие химических веществ, и тигмотропизмы, то есть ответное действие на прикосновение. Тигмотропизмом обладают многие стелющиеся растения (виноград, хмель, плющ): для роста они нуждаются в соприкосновении с какой-либо опорой (деревом, стеной и т. п.).

Особым видом двигательных реакций растений являются настии. Так называют реакции, которые возникают в ответ на раздражение, действующее на растение не односторонне (как при тропизмах), а со всех сторон. Настии возникают в ответ на действие тех же факторов среды – света, температуры, влажности и т. д. К явлениям настий относятся поднятие и поникание листьев, раскрытие и поворачивание цветов. Движение этих органов происходит благодаря изменению давления протоплазмы клеток, возможно, при этом известную роль играет и их рост. Примером фотонастий может служить явление световой мозаики, то есть такое расположение листьев, при котором они не затеняют друг друга. Очень чувствительны к изменению температуры цветы. На основании этого свойства К. Линней устроил у себя в саду «цветочные часы».

Он подобрал почти на каждый час суток открывающиеся или закрывающиеся цветы. Кроме фото– и термонастий, известны также никтинастии, то есть сужение листьев ночью, и ряд других.

Очень сложные автоматические движения типа настий проявляются у упомянутого нами миксотрофного растения мухоловки. Если на ее лист сядет насекомое, в ответ на раздражение лист захлопывается, и жертва оказывается в западне. Когда насекомое начинает биться, чтобы выбраться, усиливается раздражение секреторных клеток листа, они выделяют сок, содержащий ядовитые вещества, и протеолитический (растворяющий белки) фермент. Насекомое погибает, переваривается и всасывается. После этого лист раскрывается и вновь готов к «охоте».

В эволюции многоклеточных животных большое значение имела их подвижность как свойство, необходимое при добывании пищи. В связи с подвижностью у многоклеточных животных возникли приспособления, обеспечивающие ориентацию в окружающей среде – специальные нервные окончания, так называемые рецепторы, служащие для восприятия определенных изменений среды. В дальнейшем развитии организмов они усложнялись и превращались в специальные органы чувств. В ходе эволюции рецепторы приобретали способность тонко реагировать на ничтожно малые изменения среды, что связано с развитием у них возбудимости.

Наивысшего развития способность отвечать на раздражения достигла у подвижных многоклеточных животных. Это объясняется возникновением и развитием у них специализированных возбудимых тканей, в первую очередь нервной и мышечной.

Возбуждение представляет собой активный ответ данной клетки или ткани на раздражение. Оно сопровождается повышением жизнедеятельности и соответствующими изменениями обмена веществ и выражается в специфической для каждой ткани форме (например, железистая клетка при возбуждении выделяет секрет, мышца сокращается и т. д.). Нервные волокна обладают способностью с большой скоростью проводить возбуждение в виде так называемых нервных импульсов, с помощью которых осуществляется координация деятельности всех частей тела многоклеточных животных и взаимодействие животных с условиями внешней среды. Установлено, что возбуждение у высших животных распространяется со скоростью более чем 100 метров в секунду.

Основной формой раздражимости животных, имеющих центральную нервную систему, служит рефлекс – определенная реакция организма, наступающая в ответ на раздражение органов чувств и других рецепторов. Термин рефлекс (отражение) введен в науку французским философом Р. Декартом в XVII веке. Он впервые сформулировал понятие рефлекса как универсального механизма деятельности человека и животных. Впоследствии рефлекторные реакции исследовались многими физиологами и представления о физиологической сущности рефлекса углублялись и совершенствовались. Много нового в учении о рефлекторной деятельности нервной системы внес основоположник русской физиологической школы И. М. Сеченов. Классический труд И. М. Сеченова «Рефлексы головного мозга» (1863 г.) имел огромное значение для формирования естественнонаучного материалистического мировоззрения передовой революционной интеллигенции 60-х годов прошлого века.

Рефлекторный акт имеет большое приспособительное значение. Животные, обладающие рефлекторной функцией, могут быстро реагировать на различные изменения внешней или внутренней среды.

По мере повышения организации животных усложняется и рефлекторная раздражимость. При развитии сложных центральных систем появляется новая форма рефлекторной раздражимости – образование связи между отдельными рефлексами. В результате возникают сложные цепные рефлексы – инстинкты (от лат. инстинктус – побуждение), то есть врожденная форма поведения животного, типичного для данного вида. Эта форма рефлекторной раздражимости характеризуется тем, что один рефлекс может непосредственно вызвать другой, а этот – следующий и т. д. Таким образом создается сложная цепь рефлексов, строго закрепленные формы поведения, характерные для инстинктов. Возникновение сложных форм инстинктивного поведения было важным этапом эволюции форм раздражимости, скачком в приспособленности животных к условиям среды.

Простые и сложные рефлексы наследуются от родителей. Они проявляются в ответ на соответствующие раздражители независимо от обучения. Создатель материалистического учения о высшей нервной деятельности И. П. Павлов назвал их безусловными рефлексами. В отличие от них условные рефлексы приобретаются в процессе индивидуальной жизни и лежат в основе обучения.


    Ваша оценка произведения:

Популярные книги за неделю