Текст книги "Рассказ о строении вещества"
Автор книги: Владимир Мезенцев
сообщить о нарушении
Текущая страница: 5 (всего у книги 10 страниц)
3. Сколько молекул в капле воды
Человеку, привыкшему иметь дело с большими вещами, трудно представить себе величину отдельного атома, отдельной молекулы.
Возьмём, например, каплю воды. Как вы думаете, сколько молекул воды содержится в этой капле?
Оказывается, около 1 600 000 000 000 000 000 000. Трудно даже назвать такое число. Это – тысяча шестьсот миллиардов раз по миллиарду частиц! Вот насколько малы эти материальные частички.
Представим себе на минуту, что мы отметили каким-то образом молекулы, содержащиеся в капле, так, что узнаём их в любом месте (а сейчас это умеют делать!), и выпустили эту каплю в самый большой водоём мира. Предположим, что через какой-то промежуток времени меченые молекулы разойдутся по всему водоёму. Как вы думаете, легко ли будет найти после этого наши меченые молекулы? Очень легко! Зачерпните в любом месте водоёма ведро воды, и вы найдёте в нем десятки меченых молекул капли воды!
Столь же малы и молекулы твёрдых тел. Возьмите крупинку поваренной соли и бросьте её в ведро с водой. Соль растворится, её молекулы разбегутся по всей воде, находящейся в ведре. На вкус вы не почувствуете этой соли. Но можно легко обнаружить эти невидимые частицы иным путём. Для этого достаточно внести в пламя маленькую капельку воды из нашего ведра. Пламя огня сразу сделается жёлтым. Это значит, что в капельке есть молекулы соли – пламя желтеет от металла натрия, входящего в состав поваренной соли.
Таким путём можно обнаружить в капле воды одну миллиардную долю грамма соли! Значит, вес одной молекулы соли должен быть уж никак не больше этой величины.
Ещё меньшее количество вещества можно обнаружить при помощи обоняния. Вот какие, например, опыты были проделаны однажды двумя учёными. Один из них распылял в пустой комнате небольшие количества различных пахучих веществ и затем тщательно перемешивал воздух. После этого сюда входил второй учёный и определял, чем пахнет в комнате. Если человек чувствовал запах, то, зная количество распылённого пахучего вещества в комнате и объём этой комнаты, было уже нетрудно определить, какое количество вещества мы сможем уловить обонянием.
Оказалось, что мы способны чувствовать запах некоторых особенно пахучих веществ даже в том случае, если в нос попадает всего одна пятисотмиллиардная доля грамма этого вещества! Значит, в одном грамме такого вещества содержится никак не меньше чем 500 миллиардов молекул.
Нельзя ли, однако, каким-либо способом измерить невидимые молекулы более или менее точно? Можно. И таких способов имеется не один, а несколько. Вот, например, как можно определить величину молекулы масла. Капните капельку масла на воду; масло образует на ней тонкую плёнку. Эту плёнку можно сделать настолько тонкой, что она станет невидимой. Но в том, что плёнка существует, нетрудно убедиться при помощи кусочка камфары. Брошенная в чистую воду камфара, растворяясь, энергично движется по поверхности. Но если на воде находится плёнка масла, хотя бы и невидимая на глаз, камфара не движется. Используя таким образом камфару для обнаружения плёнки масла, делают плёнку такой тонкой, что она начинает разрываться на части. Но ведь в момент, предшествующий разрыву, плёнка масла, надо думать, состоит, по крайней мере, из одного слоя молекул. Значит, если подсчитать, какую площадь занимает в этот момент маленькая капля с известным нам объёмом, то нетрудно уже и определить путём расчёта размер масляных молекул.
Такие расчёты показали, что диаметр молекулы масла лежит в пределах между десятимиллионной и двадцатимиллионной долями сантиметра.
Рассчитанные другими способами еще в прошлом веке размеры атомов и молекул различных веществ оказались примерно того же порядка – в пределах между одной десятимиллионной и одной стомиллионной долями сантиметра.
В настоящее время размеры многих атомов и молекул определены очень точно. Так, например, диаметр молекулы водорода равен 2,4 стомиллионной доли сантиметра; диаметр атома серебра составляет 2,9 стомиллионной доли сантиметра и т. д.
Надо заметить, что способы, при помощи которых учёные так изумительно точно определяют размеры невидимых «кирпичиков» мира, подчас бывают исключительно остроумны.
Учёные установили, что атомы различных химических элементов по величине не отличаются особенно сильно один от другого.
Иное дело молекулы. Между этими частичками существуют и очень «большие», например молекулы белков, и совсем «небольшие», близкие к размерам отдельных атомов, скажем, молекулы воды. Это вполне объяснимо. Ведь молекулы представляют собой группы атомов, причём в каждой такой группе может быть как два-три атома, так и десятки и даже сотни и тысячи атомов. К последним относятся молекулы многих сложных веществ органического происхождения – нередко они состоят из многих сотен и тысяч атомов. Неудивительно, что эти молекулы по своим размерам во много раз больше своих собратьев. Однако диаметры и таких молекул – порядка миллионных долей сантиметра.
Именно такие молекулы и увидели учёные в электронный микроскоп.
Таковы размеры молекул, определённые учёными. Но этого для них было мало. Они постарались также взвесить невидимые частички. И взвесить опять-таки совершенно точно, словно атомы и молекулы были обычным товаром в магазине. Правда, для этого, конечно, не потребовалось класть на весы каждый отдельный атом или отдельную молекулу.
Можно поступить иначе. Вот, скажем, вы хотите узнать вес одной горошины, но у вас под рукой имеются только грубые десятичные весы, на которых взвешивают товар лишь в десятки килограммов весом. Вес одной горошины такие весы и не почувствуют. Как быть в этом случае? Очень просто. Надо взять не одну горошину, а, скажем, тысячу, или десять тысяч таких горошин и взвесить все вместе. А зная общий вес тысячи горошин, совсем нетрудно высчитать и вес каждой отдельной горошины. Точно таким же путём можно определить и веса некоторых отдельных атомов и молекул, если знать, какое число их содержится в каком-либо определённом объёме.
Нашли учёные и другие способы определения веса невидимых частичек. Мы не будем здесь рассказывать обо всех этих способах. Приведём лишь в качестве примера веса отдельных атомов и молекул. Вот сколько весит один атом водорода:
1,66/1 000 000 000 000 000 000 000 000 грамма.
Это самый лёгкий атом в мире.
Атомы всех других элементов весят несколько больше. При этом атомы различных химических элементов имеют свой собственный, отличный от других вес!
Были взвешены и различные молекулы. Они имели самые различные веса. Крупные из них, например молекулы белка крови, весят примерно в 8 тысяч раз больше, чем молекула водорода.
Существуют и ещё более тяжёлые молекулы: это молекулы пластических масс, молекулы-гиганты. Некоторые из них в сотни тысяч раз тяжелее атома водорода.
Надо сказать, что атомные веса всех известных элементов определялись химиками уже очень давно – с самого начала прошлого столетия. Дело в том, что для каждого химика в его повседневной работе важно знать вес атомов элементов. Ведь, зная «сорт» и вес атомов в молекуле какого-то сложного вещества, можно вычислить состав этого вещества, то-есть узнать, что это за вещество, разработать способы его получения и использования и т. д.
Но здесь следует оговориться. Определяя веса атомов различных элементов, химики определяли не истинный вес того или иного атома, а его относительный, сравнительный вес, то-есть, другими словами, вес одного атома сравнивали с весом другого и определяли, во сколько раз один атом весит больше другого.
В этом случае учёные также прибегли к взвешиванию не отдельных атомов, а многих миллиардов их.
Уже давно наукой был установлен один замечательный факт: в одинаковых объёмах любых газов, если только эти газы имеют одно и то же давление и одинаковую температуру, содержится всегда одинаковое количество молекул.
Этим обстоятельством и воспользовались химики при определении относительных атомных весов. Вот как, например, были определены относительные атомные веса водорода и кислорода. При одинаковом давлении и температуре были взвешены две бутылки равного объёма, наполненные одна – чистым кислородом, другая – чистым водородом. При этом получилось, что все молекулы газа кислорода, заключённые в одной бутылке, весят почти в 16 раз больше, чем все молекулы водорода, содержащиеся в другой. Но ведь число молекул кислорода и водорода как в той, так и в другой бутылках одинаково. Что же означает разница в весе? Только то, что каждая молекула кислорода тяжелее молекулы водорода почти в 16 раз. А отсюда были определены и веса атомов этих газов – элементов. Было установлено, что каждая молекула кислорода состоит из двух атомов кислорода, а каждая молекула водорода в свою очередь также из двух атомов водорода. Выходит, что и каждый атом кислорода весит почти в 16 раз больше атома водорода.
Таким способом, а позднее и многими другими, были определены с большой точностью атомные веса всех известных нам элементов. При этом сначала вес атомов различных элементов сравнивали с весом самого лёгкого атома – атома водорода, вес которого был принят равным единице. Благодаря этому относительные атомные веса всех других элементов оказываются больше единицы: атомный вес углерода, например, равен 12, азота – 14, серы – 32, железа – около 56 и т. д.
Позднее веса атомов стали сравнивать с весом атома кислорода, принятым равным 16; при этом точный атомный вес водорода оказался равным 1,008.
Между прочим, во многих случаях определить атомные веса можно, пользуясь законом кратных отношений. Действительно, вспомните пример с окисью азота. В ней, как говорилось, на 46,7 весовой части азота всегда приходится 53,3 части кислорода. Выходит, каждый атом кислорода тяжелее атома азота в 1,14 раза. Но мы уже знаем, что атомный вес кислорода равняется 16. Отсюда нетрудно рассчитать, что атомный вес азота должен равняться 14.
Такова арифметика атомов.
4. Единство живой и неживой природы
Итак, атомы и молекулы это – действительность. Весь мир, всё многообразие тел природы действительно состоит из мельчайших частичек. Чрезвычайно малы эти частички, но человек, вооружённый всемогущим знанием, не только убедился в их существовании, он даёт всё более подробное их описание.
Самые разнообразные тела состоят из различных комбинаций атомов.
Таково же устройство и всех живых существ мира. Не составляет исключения и сам человек; он также состоит из разнообразных молекул.
Долгое время люди резко делили природу на две совершенно различные части – живой и неживой мир. Живой природе приписывали особую духовную «жизненную силу» и считали, что ничего общего между двумя мирами – живым и неживым – нет и не может быть.
Что может быть общего между мясом и кровью животных и, скажем, какой-нибудь горной породой или воздухом? – говорили защитники такого деления мира на две части.
Такой ненаучный, ошибочный взгляд всячески поддерживали церковники. В таинственной «жизненной силе» они видели поддержку религиозных представлений о бестелесной, нематериальной душе.
Но действительность разбила и это суеверие. Когда химики научились определять, из каких веществ состоят различные живые и неживые тела природы, то оказалось, что многие совершенно, казалось бы, несравнимые вещи состоят из одних и тех же простых веществ. Было установлено, что все живые тела содержат в себе те же самые элементы, что и неживые тела природы! В составе различных живых существ были найдены такие элементы, как углерод, водород, кислород, азот, сера, фосфор, железо, кальций, кремний и другие.
Вот, например, какой средний химический состав имеет человек: кислорода – 65 процентов; углерода– 18,2 процента; водорода – 10 процентов; азота – 2,7 процента; кальция – 1,4 процента; фосфора – 0,8 процента; калия – 0,3 процента; натрия – 0,3 процента; хлора – 0,25 процента; серы – 0,2 процента; магния и железа – несколько сотых процента; цинка и кремния – несколько тысячных долей процента; алюминия, брома, меди, фтора, иода, марганца – несколько десятитысячных долей процента; мышьяка, бора, свинца и титана – по нескольку стотысячных долей процента.
Вот и всё, из чего состоит человек! Но ведь из этих же самых химических элементов построены и многие другие, повсеместно встречающиеся тела неживой природы!
Когда это было установлено, защитники особой «жизненной силы» стали говорить, что в живых существах, хотя и из тех же материалов, строятся с помощью этой «силы» такие сложные вещества, построить которые искусственно невозможно.
Но и это, последнее утверждение было опровергнуто наукой. В 1828 году удалось получить мочевину – соединение, которое до того времени вырабатывалось только в живых организмах. В 1842 году крупнейший русский химик Н. Н. Зинин создал искусственно основу красителей – анилин, вещество, которое раньше получали только из естественного красителя – индиго. Теперь из анилина получают краски, лекарства и многое другое, что раньше получали из растений. Химическая реакция, при помощи которой русский учёный получил искусственно анилин, дала в руки химиков способ получения многих других веществ «живого происхождения». С тех пор химики научились изготовлять искусственным путём многие соединения живой природы. Более того, теперь человек умеет даже получать много и таких органических веществ, которые не обнаружены в природе.
Единство живого и неживого мира было доказано. Все тела природы состоят из немногочисленных элементов; а так как каждое простое вещество построено из атомов и молекул, то и все мы и все окружающие нас тела построены, состоят в конечном счёте из мельчайших частичек – атомов и молекул, различных по размерам и весу. Существует столько «сортов» атомов, сколько имеется в мире химических элементов.
Но сколько в мире химических элементов? Естественно-научные основы для решения этого вопроса дал великий русский химик Дмитрий Иванович Менделеев.
V. ВЕЛИКОЕ ОТКРЫТИЕ РУССКОГО ХИМИКА
1. История открытия
В 1871 году в III томе «Журнала Русского физико-химического общества» появилась статья, в которой были даны подробные характеристики нескольких ещё никем не виданных элементов. Автор статьи предсказывал, какие еще должны быть открыты химические элементы, подробно описывал их свойства.
Что это было? Неосторожные высказывания какого-то химика, пытающегося на счастье угадать будущее? Нет, это было обоснованное научное предвидение крупного учёного. Это означало конец той неизвестности, той случайности, которые существовали до сих пор в науке об основных веществах мира.
В конце XVII и начале XVIII века было известно около 15 веществ, которые считались неразложимыми. Наступает вторая половина XVIII столетия, и учёные устанавливают, что число химических элементов значительно больше 15. К этому времени учёные открывают один за другим несколько ранее не известных газов, в том числе азот, водород, кислород, убеждаются в том, что сера и фосфор – это простые, неразложимые вещества, и т. д.
В конце этого же столетия был составлен первый наиболее полный для того времени список всех химических элементов. В этом списке уже 35 различных названий. Правда, лишь 23 из них – действительно химические элементы. Остальные 12 – это или несуществующие, невещественные элементы – теплород и другие, либо сложные вещества, такие, как едкий натр и едкий калий.
Но и этот список продолжает расти. С начала XIX столетия открытия новых химических элементов начинают происходить ещё более часто.
Теперь уже почти не проходит года-двух без того, чтобы кто-нибудь из химиков не открывал новый вид атома, новое химически не разложимое вещество.
«Охота» за новыми химическими элементами становится основным занятием многих крупных учёных-химиков.
Вместе с этим идёт изучение свойств вновь открытых элементов, определение их атомных весов.
Устанавливаются единые для всех стран химические обозначения – значки химических элементов. Каждый химический элемент получает свой значок, состоящий из начальной или начальной и одной из последующих букв его латинского названия. Так, углерод отныне отмечается буквой С, водород – Н, сера – S, ртуть – Нg и т. д.
А число «начал» мира растёт и растёт!
К 50-м годам прошлого столетия в химических руководствах описывалось уже свыше 50 различных неразложимых веществ.
И тогда новые сомнения начали одолевать учёных. Всё новые и новые элементы присоединяются к ранее открытым. И таким открытиям не видно конца. Не означает ли это, что различных сортов атомов в природе может быть почти так же много, как и самих тел?
Правда, узнавая состав сложных тел, химики видят, что большинство веществ состоит из небольшого числа элементов. Так, им уже известно, что в состав десятков тысяч веществ органического, «живого» происхождения входит всего-навсего каких-либо 6–8 простых веществ – углерод, водород, азот, кислород и некоторые другие.
Анализ наиболее распространённых на Земле минералов говорит о том же: и здесь чаще всего встречаются одни и те же немногие элементы – железо, кремний, кислород, алюминий, магний, кальций.
Однако поскольку всё время открывались, пусть редкие, но новые элементы, вопрос о числе элементов для химиков прошлого века не терял своей остроты.
И всё это усугублялось ещё одним обстоятельством. Открытия новых элементов были совершенно случайными. Учёные работали вслепую. Никто не знал, где мог оказаться новый элемент, каковы должны быть его свойства.
Действительно, так, например, был открыт новый элемент иод. Изучая золу морских водорослей, химик прибавил к ней однажды большее количество серной кислоты, чем обычно. И вдруг над раствором показались пары фиолетового цвета. Это оказался иод.
Так же случайно были впервые обнаружены бром, кадмий и другие элементы.
Всё было случайно!
А число элементов увеличивалось.
Где же был конец этим случайностям? Где тот закон, которому подчиняются сами атомы?
Ответ пришёл из России.
В марте 1869 года на заседании Русского физико-химического общества было зачитано замечательное сообщение молодого, но уже известного к тому времени химика Д. И. Менделеева. В своём сообщении Менделеев писал, что им создана естественная система всех химических элементов. На основе этой системы автор смело предсказывал также свойства новых, еще не известных ни одному человеку, простых веществ мира.
Помещённая через два года в журнале Русского физико-химического общества статья Менделеева уже более подробно излагала основы великого открытия. Статья называлась «Естественная система элементов и применение её к указанию свойств неоткрытых элементов». В ней Д. И. Менделеев писал:
«Свойства простых тел (элементов), а также формы и свойства соединений их находятся в периодической зависимости от величины атомных весов элементов».
Таким образом, Менделеев открыл давно искомое родство химических элементов, установил связь между разрозненными отдельными элементами мира, единство основных веществ мира, единство материи. Это было открытие нового великого закона природы, закона, которому подчинялись атомы всех элементов.
Дмитрий Иванович Менделеев родился в 1834 году в семье директора Тобольской мужской гимназии. Получив высшее образование в Петербургском педагогическом институте, Дмитрий Иванович очень быстро становится известным учёным. Двадцати двух лет он защищает диссертацию на степень магистра химии. В 1865 году, на тридцать втором году жизни, Менделеев получает учёную степень доктора наук.
Трудно немногими словами рассказать хотя бы об основных работах, выполненных великим русским химиком. В самых различных областях знания работал Менделеев. Он был одним из пионеров воздухоплавания; он разработал новый способ изготовления бездымного пороха; он подготовил введение в нашей стране метрической системы мер и весов; он первый указал на возможность подземной газификации углей, на значение подземных богатств Донбасса и Урала, на необходимость более полной, комплексной переработки нефти, на огромную энергию русских рек. И это только незначительная часть сделанного им.
Великий русский учёный Дмитрий Иванович Менделеев.
Но, несомненно, главнейшей заслугой Менделеева перед наукой и человечеством является его знаменитая периодическая, как ее называют, система элементов.
Какими же путями пришёл Менделеев к открытию великого закона природы и в чём сущность этого закона?
Еще студентом, досконально изучив всё, что было известно химикам его времени, Менделеев много думал над тем, каково общее число различных видов атомов, образующих различные элементы, что именно роднит, связывает друг с другом все химические элементы. Ответить на этот вопрос, интересовавший многих учёных и до Менделеева, было очень трудно. Слишком различные свойства имели известные химикам простые вещества. Тут были твёрдые тела, жидкости и газы; металлы и землистые вещества; вещества твёрдые и мягкие, стойкие и неустойчивые, тяжёлые и лёгкие.
Как найти общее в пестроте всех этих свойств? Как установить порядок в самих элементах? Чем объяснить их свойства?
Ответить на эти вопросы до Менделеева оказалось не под силу ни одному химику. Для этого нужен был человек с блестящими химическими знаниями, учёный, обладающий необыкновенным даром обобщения и предвидения, убеждённый в правоте своих взглядов и выводов, человек, мыслящий диалектически. Именно таким человеком и был Менделеев.
Отыскивая родство между столь различными по своим свойствам веществами, Менделеев настойчиво ищет то общее свойство, которое было бы присуще всем химическим элементам.
Что же может быть общего между такими, казалось бы, различными веществами, как мягкий, легко окисляющийся на воздухе, блестящий металл натрий и жёлтый, с резким удушающим запахом, легко окисляющий другие вещества газ хлор? Или сравним гибкую легко тянущуюся в виде проволоки, хорошо проводящей электричество, медь и хрупкую, не проводящую электричество, легко загорающуюся на воздухе серу.
Понадобился гений Менделеева для того, чтобы взять за основу общее свойство, которое присуще всем столь различным веществам, свойство, на основе которого можно было найти искомое родство химических элементов. Это общее всем элементам свойство – их атомный вес.
Не является ли атомный вес элементов в то же время свойством, их связывающим?
Не зависят ли свойства простых тел от массы, веса их атомов? Ведь не могли же химики назвать двух различных простых веществ с совершенно схожими свойствами, как не могли указать и двух элементов с совершенно одинаковыми атомными весами.
Так Менделеев приходит к убеждению, что количественная характеристика элемента, общая всем веществам, – его атомный вес – должна быть связана с его качеством, с его свойствами.
«Я был с самого начала глубоко убежден в том, – пишет Менделеев, – что самое основное свойство атомов, атомный вес или масса атомов, должно определять основные свойства каждого элемента… Я уже… в первые годы самостоятельного труда чувствовал, что должно существовать обширное обобщение, связывающее атомный вес со свойствами элементов… Я искал это обобщение с помощью усидчивого труда во всех возможных направлениях. Только весь этот труд дал мне необходимые точки опоры и вселил уверенность, позволившую мне преодолевать препятствия, казавшиеся тогда непреодолимыми…В короткое время я пересмотрел массу источников, сопоставляя огромный материал. Мне надо было, однако, совершить большое усилие, чтобы в имевшихся сведениях отделить главное от второстепенного, решиться изменить ряд общепризнанных атомных весов, отступить от того, что было признано лучшими тогда авторитетами. Сопоставив все, я с неотразимой ясностью увидел периодический закон и получил полное внутреннее убеждение, что он отвечает глубочайшей природе вещей».
Чтобы наглядно сопоставить различные элементы друг с другом, Менделеев записал все химические элементы, а их было известно к тому времени уже 63, на отдельные небольшие карточки. На каждой такой карточке были указаны, кроме названия элемента, его атомный вес и основные свойства. После этого учёный расположил карточки в таком порядке, что все элементы следовали друг за другом по мере увеличения их атомных весов. Первым в этом ряду был водород – атомы его имели самый маленький вес.
Много дней изучал Менделеев полученный ряд элементов и не находил в этой последовательности никакой закономерности. И действительно, ни один элемент не походил по своим свойствам в ряду Менделеева на своего соседа. Но учёный не сдавался. Он был твёрдо уверен в том, что в созданном им ряду элементов в порядке увеличения атомных весов должна существовать какая-то закономерность. И Менделеев снова и снова всматривался в ряд элементов, ещё и ещё раз сопоставлял их свойства друг с другом.
И победа пришла. Великий учёный подметил, наконец, ту не заметную для глаза последовательность в изменении свойств химических элементов, сходство свойств различных элементов в зависимости от их атомных весов. Это сходство наблюдается не у рядом стоящих элементов, а у веществ, отстоящих друг от друга на некотором расстоянии, разделённых иными, несходными элементами. В самом деле, вот, например, в ряду Менделеева на втором месте стоит элемент литий (рис. 6).
Рис. 6. Первая таблица химических элементов, составленная Д. И. Менделеевым в 1869 году.
Этот лёгкий металл по химическим свойствам относят к так называемым щёлочным металлам. Если бросить кусочек лития в воду, он будет соединяться с ней, образуя щёлочь. Следующие за литием шесть элементов ничем на него не похожи. Но седьмой элемент – натрий – оказывается по своим свойствам близким «родственником» лития; это так же щёлочной металл, он так же бурно и жадно соединяется с водой и другими веществами[1]1
В современной таблице Менделеева повторение свойств химических элементов наблюдается не через шесть, а через семь элементов, благодаря позднее открытым так называемым инертным газам.
[Закрыть].
Пропустите снова шесть элементов, и вы увидите элемент калий – опять активный щёлочной металл.
Возьмите теперь не второй элемент в ряду, а третий – бериллий. И опять вы увидите ближайших родственников этого элемента не рядом, а дальше в ряду и на таком же расстоянии; следующие за бериллием шесть веществ непохожи на него, но седьмой – магний – по всем своим химическим свойствам очень похож на бериллий. Ещё через шесть элементов – новый родственник бериллия – кальций и т. д.
В четвёртом ряду Менделеева стоит элемент бор; этот элемент входит в состав борной кислоты и буры. Его ближайший родственник – алюминий, седьмой по счёту от бора элемент.
Таким образом, определённые свойства элементов в ряду Менделеева повторялись через определённый промежуток, через период элементов. Поэтому Менделеев и назвал свою таблицу элементов периодической системой элементов.
Наблюдая свойства элементов, заключённых в каком-либо одном периоде, скажем, в первом – от лития до натрия – Менделеев заметил и другую замечательную закономерность. Оказывается, свойства находящихся в одном периоде элементов изменяются не случайно, а строго следуя определённому закону.
Свойства элементов одного периода отражают всё многообразие свойств различных химических элементов!
В самом деле, в таблице в начале периода стоит литий; это активный элемент с ярко выраженными металлическими свойствами. За ним следует бериллий; это чуть менее активный металл; он уже не так похож на типичный металл. Третий элемент – бор – ещё менее похож на металл, химическая активность его ниже, чем у двух первых элементов. Дальше идёт углерод – основа всех органических веществ. Это уже «переходный» элемент – от металлов к неметаллам. Следующий элемент азот – первый в периоде металлоид[2]2
Слово «металлоид» означает неметалл.
[Закрыть] и самый малоактивный среди них. Он входит в состав воздуха и носителей жизни – белков. Идущий за азотом кислород уже более активен – он легко вступает в химическое соединение со многими веществами. Заканчивает период элемент фтор; это самый активный и ярко выраженный металлоид.
Так, в одном периоде мы видим полный набор самых различных элементов. Тут есть и металлы и неметаллы с их характерными признаками, и химически активные элементы и неактивные, с трудом вступающие в соединения элементы.
Неудивительно поэтому, что за такой группой элементов, охватывающей все их различные свойства, следуют элементы, свойства которых повторяют свойства веществ первого периода.
Таким образом, Менделеев открыл естественную последовательность элементов, ту последовательность, какую подсказывает сама природа.
Но и это было ещё не всё! Самое замечательное было в тех выводах, которые сделал Менделеев из своего открытия.
Располагая элементы в порядке возрастания их атомных весов, Менделеев делал это не ради того, чтобы любой ценой связать их свойства с их атомными весами. Совсем нет. Великий химик только искал более всеобъемлющую связь простых тел природы, указывающую на единство всех известных элементов. И вот, когда он нашёл периодическую зависимость свойств этих элементов от их места и от их атомного веса, то сразу же сделал правильный, гениальный вывод. Ведь теперь, зная, как именно должны изменяться свойства рядом стоящих элементов, зная, сколько элементов и с какими именно свойствами должно находиться в каждом отдельном периоде, можно проверить правильность атомных весов у различных элементов; мало того, можно видеть, где, в каких местах нет элементов с нужными для полного периода качествами, то-есть можно строго научно предсказать, какие элементы должны еще существовать в природе, предсказывать свойства этих неоткрытых веществ.
Вот какой замечательный вывод сделал из своего открытия Менделеев.
А сделав такой вывод, учёный смело приступил к исправлению и дополнению своей таблицы. Так, если строго следовать установленным атомным весам элементов, то элементы иод и теллур, например, нарушали последовательность свойств элементов в природе. Если же их переставить местами, то эта последовательность восстанавливается. Значит, так именно и нужно поместить эти элементы – иод за теллуром, а не наоборот, как следовало бы сделать, руководствуясь только атомным весом.
Атомный вес урана в то время считался равным примерно 120. Если верить этому весу, уран должен располагаться в середине менделеевской таблицы. Однако химические свойства этого элемента говорили о том, что его место должно быть в самом конце таблицы, там, где расположились химические элементы с большими атомными весами. И Менделеев смело исправляет ошибку – он увеличивает атомный вес урана вдвое. Так говорит периодический закон, и так должно быть в действительности. С новым атомным весом уран становится на последнем месте таблицы.
Проверка атомного веса урана, проведённая после этого, устанавливает, что Менделеев оказался прав.