Текст книги "Атеизм и научная картина мира"
Автор книги: Виктор Комаров
Жанр:
Религия
сообщить о нарушении
Текущая страница: 11 (всего у книги 16 страниц)
За последние десятилетия астрономы обнаружили во Вселенной ряд нестационарных объектов, где протекают бурные физические процессы и за сравнительно короткие промежутки времени происходят весьма существенные качественные изменения.
Начало этим исследованиям было положено открытием в 1962 г. так называемых радиогалактик, т. е. галактик, радиоизлучение которых во много раз сильнее теплового радиоизлучения, присущего любому космическому объекту, температура которого выше температуры абсолютного нуля. В качестве наиболее яркого примера можно привести двойную радиогалактику в созвездии Лебедь (радиоисточник Лебедь А). Хотя эта космическая «радиостанция» находится от нас на огромном расстоянии около 600 миллионов световых лет, ее радиоизлучение, принимаемое на Земле, имеет такую же мощность, как и радиоизлучение спокойного Солнца. А ведь расстояние до Солнца составляет около восьми световых минут, т. е. в 400 миллиардов раз меньше!
Для того чтобы работала любая радиостанция, в том числе и природная, ее надо питать энергией. Каковы же те энергетические источники, которые способны на протяжении миллионов лет обеспечивать мощное радиоизлучение радиогалактик?
В последние годы накапливается все больше фактов, свидетельствующих о том, что эта энергия вырабатывается в результате бурных физических процессов, протекающих в ядрах галактик – сгущениях материи, расположенных в центральных частях многих звездных островов Вселенной.
Несомненные признаки активности проявляет, например, ядро нашей собственной Галактики. Как показали радионаблюдения, оно непрерывно выбрасывает водород в количестве, достигающем полутора солнечных масс в год.
Если принять во внимание, что возраст нашей Галактики составляет около 15–17 миллиардов лет, то получится, что из ее ядра было выброшено около 25 миллиардов солнечных масс, что составляет уже около одной восьмой части массы всей Галактики.
При этом явления, которые мы наблюдаем в ядре нашей звездной системы в настоящее время, представляют собой скорее всего лишь слабые отголоски былых, гораздо более бурных процессов, происходивших в ту эпоху, когда наша Галактика была моложе и богаче энергией. Во всяком случае, известны галактики, ядра которых ведут себя значительно активнее, а у некоторых звездных систем эта активность приобретает даже взрывной характер. Например, в ядре галактики М-82, судя по всему, несколько миллионов лет назад произошел грандиозный взрыв, в результате которого было выброшено колоссальное количество газа. И сейчас эти газовые массы с огромной скоростью мчатся от центра Галактики к ее окраинам.
Астрофизики подсчитали, что кинетическая энергия взрыва в М-82 составляет около 3"1052 Дж. Чтобы сделать это число более ощутимым, достаточно сказать, что для получения такой энергии надо было бы взорвать термоядерный заряд с массой, равной массе 15 тысяч солнц…
Эти и другие подобные факты указывают на то, что ядра галактик, видимо, не только являются мощными источниками энергии, но и оказывают весьма существенное влияние на развитие звездных систем.
Еще более грандиозными источниками энергии оказались знакомые нам квазары, открытые в 1963 г. и расположенные на очень больших расстояниях от нашей Галактики, вблизи границ наблюдаемой Вселенной.
По своим размерам квазары не идут ни в какое сравнение с галактиками. Данные астрономических наблюдений свидетельствуют о том, что поперечники их ядер составляют от нескольких световых недель до нескольких световых месяцев, в то время как поперечник нашей Галактики равен 100 тысячам световых лет. Однако полная энергия излучения квазаров примерно в сто раз превосходит энергию излучения самых гигантских известных нам галактик.
Более того, сейчас почти не остается никаких сомнений в том, что окружающая нас Вселенная также произошла в результате гигантского взрыва и последующего расширения компактного сгустка сверхплотной горячей плазмы.
Все эти открытия показали, что во Вселенной происходят сложнейшие физические процессы, связанные с необратимыми изменениями космических объектов, исключающими возможность возврата к прежним состояниям. И подобные изменения совершаются не только медленно и постепенно, но и за сравнительно короткие промежутки времени, скачкообразно.
Таким образом, исследования последних десятилетий привели ученых к заключению, что, вопреки существовавшим ранее представлениям, для многих фаз процесса развития космических объектов характерна резкая нестационарность, которая выражается во взрывных явлениях, дезинтеграции, рассеянии и т. п. Подобные процессы связаны с образованием новых космических объектов, их превращениями, а также переходами материи из одного физического состояния в другое,
"…Развитие скачкообразное, катастрофическое, революционное, – писал В. И. Ленин, – "перерывы постепенности"; превращение количества в качество;…взаимозависимость и теснейшая, неразрывная связь всех сторон каждого явления;…связь, дающая единый, закономерный мировой процесс движения, – таковы некоторые черты диалектики…" [Ленин В. И, Карл Маркс, – Пола, собр. соч., т. 26, с. 55. 135].
Открытие нестационарных процессов во Вселенной убедительно подтверждает, что диалектический характер присущ не только процессу научного познания, но и самой природе.
Если с этой точки зрения взглянуть на нестационарные явления в космосе, станет ясно, что они представляют собой "поворотные пункты" в развитии космических объектов, где совершаются переходы материи из одного качественного состояния в другое, возникают новые небесные тела.
Стало ясно: представления классической науки о стационарном характере большинства космических процессов в действительности оказались лишь одним из первых приближений к истинной картине мира, приближением, возможности которого были ограничены как уровнем развития методов исследования, так и общим состоянием естествознания,
С другой стороны, надо отметить, что найти удовлетворительное объяснение природы нестационарных явлений во Вселенной в рамках современных фундаментальных физических теорий пока не-удается. С точки зрения этих теорий такие явления представляются весьма необычными, в высшей степени «диковинными».
Удастся ли объяснить их с точки прения существующих фундаментальных физических теорий или для этого потребуются совершенно новые идеи?
Одна из таких идей была выдвинута известным советским астрофизиком академиком В. А. Амбарцумяном. Согласно гипотезе Амбарцумяна, в ядрах галактик присутствуют сверхплотные сгустки «дозвездной» материи.
Весьма возможно, что эти сгустки непосредственно связаны с тем «первоначальным», сверхплйтньм веществом, в результате распада которого возникла Метагалактика. Не исключено, что в процессе взрыва и расширения «первоначальное» вещество прореагировало не все сразу.
Часть сгустков по тем или иным причинам могла на длительное время сохраниться в устойчивом состоянии; их последующий распад, возможно, и приводит к тем энергетическим «всплескам», которые происходят во Вселенной.
Но что может представлять собой сверхплотная дозвездная материя? Какова ее физическая природа? К сожалению, в настоящее время для сколько-нибудь обоснованного ответа на этот вопрос в нашем распоряжении слишком мало данных.
Складывается впечатление, что свойства дозвездной материи, если она действительно существует, столь необычны, что вряд ли их удастся описать с помощью известных физических теорий. Очень может быть, что здесь действуют какие-то физические закономерности, еще неизвестные современной науке.
Впрочем, с подобным выводом соглашаются далеко не все современные физики и астрофизики.
Вполне возможно, что объяснение гигантских космических энергий будет получено на совсем иных путях.
Термояд или…?
Проблема космических энергий связана не только с активными явлениями в ядрах галактик и квазарами, но и с отрицательными результатами нейтринных наблюдений Солнца.
Американский физик Р. Девис создал весьма чувствительную установку для регистрации солнечных нейтрино, Наблюдения проводились в течение длительного времени и принесли весьма неожиданный результат. Оказалось, что поток солнечных нейтрино по крайней мере в шесть раз меньше, чем это следует из существующей теории, основанной на предположении о термоядерной природе источников солнечно" и звездной энергии.
О необходимости серьезной проверки этой теории говорят и некоторые другие результаты исследований Солнца, выполненных в последнее время.
Несколько лет назад на Крымской астрофизической обсерватории АН СССР был создан высокочувствительный прибор для измерения чрезвычайно слабых магнитных полей на Солнце – солнечный магнитограф. Наблюдения, проведенные с помощью этого прибора, позволили обнаружить весьма интересный факт. Оказалось, что солнечная поверхность ритмично пульсирует с периодом около 2 час. 40 мин., поднимаясь при каждой пульсации на высоту около 20 км.
Как считает академик В. А. Амбарцумян, открытие крымских астрономов имеет первостепенное значение.
Оно не только свидетельствует о качественно новом процессе на Солнце, но и должно дать важную информацию о внутреннем строении нашего дневного светила. Как показывают теоретические расчеты, значение периода пульсации Солнца непосредственно связано с его внутренним строением. Периоду, равному 2 час. 40 мин., соответствует более однородное распределение плотности и температуры, а также более низкие значения этих физических величин для центральной части дневного светила, чем это следует из современной теории строения Солнца. В частности, температура в центре Солнца в этом случае должна составлять не 15 миллионов градусов, а всего 6,5 миллионов.
Но при таких физических условиях термоядерная реакция не может обеспечить наблюдаемого выхода солнечной энергии.
Есть и еще одно независимое соображение, ставящее под сомнение справедливость термоядерной гипотезы. Дело в том, что в атмосфере Солнца (как и в атмосферах других подобных ему звезд) в значительных количествах присутствуют литий и бериллий. Но в случае термоядерных реакций эти элементы должны были бы давно «выгореть».
В последнее время вывод о пульсации Солнца, полученный крымскими астрофизиками под руководством академика А. Н, Северного, нашел подтверждение и в работах английских астрономов, проводивших наблюдения на известной французской обсерватории Цик дю Мюди.
Были предприняты и первые попытки объяснить это явление. Так, ученые Кембриджского университета (Англия) высказали предположение, что в центральной части Солнца содержится в два раза больше тяжелых элементов, чем предполагалось ранее. Однако подобная гипотеза неизбежно ведет к кардинальному пересмотру современных физических представлений о строении Солнца и звезд.
Дальнейшая проверка термоядерной гипотезы связана прежде всего с осуществлением новых нейтрипных наблюдений дневного светила. Не исключена возможность, что нейтрино от Солнца все-таки летят, но их энергия ниже того порогового значения, на которое была рассчитана установка Девиса.
В связи с этим советские физики работают над созданием более чувствительных детекторов для регистрации нейтрино – на галии и литии. Предполагается, что с помощью таких детекторов, которые будут установлены в подземной лаборатории, в недалеком будущем удастся осуществить новую, более точную проверку интенсивности потока солнечных нейтрино и тем самым установить, действительно ли термоядерная гипотеза нуждается в коренном пересмотре.
Интересна оценка, которую дает новым результатам исследования Солнца академик В.А.Амбарцумян.
Вопрос. Можно ли считать результаты, полученные академиком Северным, а также отрицательный результат нейтринных наблюдений Солнца неожиданными, поскольку они противоречат общепринятой гипотезе о термоядерном источнике внутрисолнечной и внутризвездной энергии?
Амбарцумян. Необходимо понять, что существующие теоретические модели являются настолько ориентировочными, что не выдерживают точных количественных сравнений, когда речь идет о новых явлениях.
Вопрос. Следовательно, когда речь идет о явлениях, изученных еще недостаточно, наблюдения важнее теоретических разработок?
Амбарцумян. Астрономия – наука прежде всего наблюдательная. Одно наблюдательное открытие такого рода, какое выполнено в Крыму, стоит больше тысячи неудачных теоретических работ, не имеющих под собой точной количественной основы. Будучи сам теоретиком, я решаюсь высказать это мнение откровенно.
Гравитационный коллапс и «черные дыры»
Вернемся к вопросу о геометрических свойствах Вселенной. Как мы уже знаем, они тесно связаны с характером распределения материи.
Представим себе, что Вселенная однородна и изотропна. Что это значит? Разобьем мысленно Вселенную на множество областей, каждая из которых содержит – достаточно большое количество галактик. Тогда однородность и изотропность означают, что свойства и поведение Вселенной в каждую эпоху одинаковы, для всех таких областей в по всем направлениям. Важнейшим свойством однородной и изотропной Вселенной является ее постоянная кривизна во всех точках пространства.
Однако в реальной Вселенной, особенно если рассматривать сравнительно небольшие ее области, материя распределена неравномерно. Ее концентрация различна для различных районов, а следовательно, различна и соответствующая кривизна. Она может быть меньше средней для всего пространства, а может и значительно ее превосходить.
В свое время известный американский физик Р. Оппенгеймер (1904–1967) рассмотрел, исходя из общей теории относительности Эйнштейна, любопытную возможность.
Если очень большая масса вещества оказывается в сравнительно небольшом объеме, то наступает беспрецедентная катастрофа – гравитационный коллапс катастрофическое стягивание вещества в точку, где плотность в принципе может достигать бесконечной величины.
В процессе сжатия величина поля тяготения на поверхности коллапсирующего объекта растет, и наступает момент, когда ни одна частица, ни один луч света не может преодолеть огромного притяжения и вырваться изнутри подобного образования наружу. Для этого надо было бы развить скорость, превосходящую скорость света, а это совершенно невозможно, так как скорость света – это максимальная скорость распространения каких бы то ни было реальных физических процессов в природе.
Таким образом, пространство сколлапсированного объекта как бы захлопывается, и для внешнего наблюдателя он фактически перестает существовать. Образуется так называемая "черная дыра"…
Впрочем, это было лишь чисто теоретическое исследование, проведенное, так сказать, впрок, по принципу, нередко применяемому физиками-теоретиками: если «то», то «это». Иными словами, рассматривается некоторая в принципе возможная воображаемая ситуация и выясняется, к каким следствиям она может привести.
Но в том-то и состоит сила научной теории, что очень часто в процессе дальнейшего развития естествознания воображаемая ситуация оказывается вполне реальной, и тогда заблаговременно, проведенное теоретическое исследование сразу приобретает практический интерес.
Так произошло и с предсказанием относительно существования "черных дыр". За последние годы в глубинах Вселенной был открыт целый ряд явлений, свидетельствующих о возможности концентрации огромных масс вещества в сравнительно небольших областях пространства.
В связи с этим астрофизики вспомнили о теории гравитационного коллапса. Дальнейшее развитие этой теории привело ученых к выводу, что "черные дыры" могут возникать на заключительных этапах жизни массивных звезд, масса которых в 3–5 раз превосходит массу Солнца. После того как источники энергии в недрах подобной звезды исчерпаются, она под действием собственного тяготения начинает сжиматься и превращаться в "черную дыру". Возможно, что "черные дыры" могут возникать во Вселенной и при иных обстоятельствах. Разумеется, для того чтобы убедиться в реальном существовании подобных объектов, одних только теоретических выкладок еще недостаточно. Необходимо обнаружить во Вселенной хотя бы одну реальную "черную дыру".
Однако задача эта весьма сложная. Одиночную "черную дыру" зарегистрировать невозможно: она ничем себя не проявляет. Поэтому возникла идея поиска "черных дыр" в системах двойных звезд. Около половины всех звезд нашей Галактики – это тесные двойные системы, где две звезды обращаются вокруг общего центра масс, причем довольно часто на очень близком расстоянии одна от другой.
Есть двойные системы, в которых одна звезда светит, а другая темная. Если масса темной звезды в 3–5 раз превосходит солнечную, то межно предполагать, что это погасшая звезда, которая после исчерпания внутренней энергии сжалась до стадии "черной дыры". Согласно расчетам советского ученого Р. Сюняева, при этом должен наблюдаться любопытный физический процесс. Если центральным компонентом в двойной системе является достаточно массивная звезда, то, как все подобные звезды, она должна выбрасывать большое количество газа, который будет засасываться в "черную дыру". Но газовые частицы попадают туда не прямым путем, а, так как вся система вращается, движутся вокруг "черной дыры" по спиралевидным траекториям и лишь постепенно приближаясь на критическое расстояние. Вокруг "черной дыры" образуется газовый диск. Вследствие трения газ разогревается до очень высоких температур, при которых возникает и интенсивное рентгеновское излучение.
В 1974 г. был обнаружен объект, как будто бы отвечающий всем указанным требованиям. Он расположен в созвездии Лебедя и получил наименование "Лебедь Х-1".
Это – двойная звезда. Ее светящийся компонент имеет массу, равную двадцати восьми массам Солнца, темныйдесяти. Из этой области идет интенсивное рентгеновское излучение. Есть довольно веские основания предполагать, что указанный объект– "черная дыра".
Однако стопроцентной уверенности в этом пока еще нет. В астрофизике всегда приходится считаться с тем, что обнаруженные нами внешние физические проявления какого-то объекта теоретически могут соответствовать ожидаемым, но порождаться иной причиной. И чтобы окончательно убедиться в том, что "Лебедь Х-1" действительно "черная дыра", необходимы дополнительные разнообразные наблюдения.
Впрочем, во Вселенной имеется немало и других объектов, относительно которых существуют «подозрения», что они относятся к разряду "черных дыр". В какой, однако, мере эти подозрения обоснованы, покажет будущее.
Но если "черные дыры" действительно существуют, то свойства этих объектов весьма необычны. Они, бесспорно, являются достойными представителями "все более странного мира".
Прежде всего нелегко представить себе, каким образом гигантская масса может стянуться в геометрическую точку. Но мало этого…
Вообразим ситуацию, которую нередко рисуют авторы фантастических произведений. Путешественник на космическом корабле неосторожно приблизился к "черной дыре", и его затянуло в роковую бездну. Падая вместе с веществом, наш путешественник в какой-то момент пересечет ту критическую черту, из-за которой не может быть возврата, и устремится к центру "черной дыры". Что с ним произойдет дальше? Попробуем проследить его судьбу.
Приближаясь вместе с коллапсирующим веществом к центру "черной дыры", наш воображаемый наблюдатель обнаружит, что плотность и кривизна стремятся к бесконечности. Что это значит, мы даже представить себе не можем, поскольку наши современные физические теории к подобным состояниям заведомо неприменимы.
Однако есть одна любопытная гипотеза, согласно которой сжатие коллапсирующего вещества в какой-то момент затормозится, и до предела спрессованная материя вновь начнет расширяться.
Разумеется, реальный наблюдатель, попав в "черную дыру", был бы мгновенно скручен и разорван на атомы.
Но допустим, что воображаемый наблюдатель переживет чудовищное уплотнение и прочие «неприятности» и дождется начала обратного расширения. Продолжая двигаться с разлетающимся веществом, он еще раз, теперь уже в обратном направлении, пересечет критическую сферу и вновь окадается в «свободном» пространстве.
Но тут он столкнется с поразительной неожиданностью: это будет не то пространство, из которого он попал в "черную дыру", а пространство, расположенное по отношению к пространству нашей Вселенной в абсолютном будущем. В переводе на более понятный язык, это означает, что, сколько бы мы ни жили в нашем пространстве, в «то» пространство мы никогда не попадем, – только через "черную дыру", ибо смежное пространство, в которое она ведет, возникает, судя по всему, вместе с ее образованием. А обратного хода и вообще не существует.
Если все это действительно так, то "черные дыры" – не что иное, как входные отверстия сквозных тоннелей, соединяющих нашу Вселенную со смежными пространствами, своеобразные стоки, через которые вещество из нашего пространства перегоняется в соседние.
Напрашивается заманчивая возможность сопоставить с этим явлением те бурные выбросы вещества и энергии, которые мы наблюдаем в таких космических объектах, как квазары и ядра галактик. Не связаны ли квазары и ядра галактик с выходными отверстиями "черных дыр", расположенных в смежных вселенных?!
Вспоминается высказывание известного английского астрофизика Джемса Джинса, еще в 1928 г. предположившего, что центры галактик – это "особые точки", где материя втекает в наш мир из некоторого другого, совершенно постороннего пространства.
Не исключена также возможность, что по «тоннелям», связывающим различные миры, проникает не только материя, но и какие-то пока еще неизвестные нам воздействия, которые могут оказывать влияние на многие явления, происходящие в нашей Вселенной.
Однако эта заманчивая идея наталкивается на довольно простое возражение. В самом деле, если смежное пространство, связанное с "черной дырой", образуется лишь в момент ее возникновения, то во всей Вселенной может существовать лишь одно-единственное отверстие, соединяющее нас с той именно "черной дырой", которая-и породила наше пространство. Между тем квазары и активные ядра галактик мы наблюдаем в достаточно большом числе…
Но, может быть, все обстоит значительно сложнее, чем нам представляется? – До недавнего времени мы были убеждены в том, что наше пространство односвязно. Это значит, что во Вселенной нет оторванных друг от друга кусков, разделенных непреодолимыми «пропастями». Наличие "черных дыр" ставит односвязность мирового пространства под сомнение. А может быть, его геометрия еще запутаннее и возможны многочисленные причудливые переплетения смежных пространств, соединенных друг о другом через горловины, берущие свое начало в "черных дырах"?