Текст книги "Портрет трещины"
Автор книги: Виктор Финкель
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 7 (всего у книги 13 страниц)
НЕПРИЯТНЫЕ ПОСЛЕДСТВИЯ
Ломаются зловеще в доме вещи,
как будто их толкнул
капризный невидимка-разрушитель…
П. Неруда
«-Немедленно прекратите стрельбу! – скомандовал военпред и резко склонился над орудием. Даже невооруженным глазом артиллерист заметил на стволе извилистую трещину… Все пять пушек после первых же выстрелов дали ствольные повреждения»!. Причина брака скорее всего была в неправильно проведенной термической обработке орудийных стволов.
Ранее мы говорили о вредном влиянии остаточных напряжений. Между тем они действуют на материал не «откровенно» и прямолинейно, но многими, часто завуалированными путями: например, в детали возникает одна или несколько трещин, ослабляющих конструкцию и способных расти под влиянием всех тех же остаточных напряжений. С опосредствованным участием остаточных напряжений в разрушении мы сталкиваемся довольно часто.
В связи с этим обратимся к термической обработке стали – технологическому процессу, применяемому при изготовлении почти любой ответственной детали механизмов и машин.
В основе большинства видов этого воздействия на сталь лежит структурное превращение аустенита в мартенсит. Аустенит представляет собой плотноупакованную систему атомов, расположенных в форме куба, в вершинах и центрах граней которого находятся атомы железа. В отличие от этого, в более твердом и хрупком мартенсите атомы, занимающие вершины и центр куба, менее уплотнены. В итоге объем, приходящийся на единицу массы в аустените, меньше, чем в мартенсите. Этот факт позволяет понять причины, приводящие к возникновению мощных напряжений при охлаждении стали с высоких температур, при которых она находится в виде аустенита, до низких, когда при достаточно быстром охлаждении она получает мартенситную структуру. Превращение аустенита в мартенсит идет неоднородно и неодновременно по сечению детали. Схематически процесс этог
1 Подкупили Г. В тылу все спокойно//Урал. 1974. № 8. С. 173.
представляется таким образомНаружные слои изделия приобретают мартенситное строение раньше внутренних, и металл на какой-то промежуток времени становится как бы двухслойным: снаружи мартенсит, внутри аустенит. Когда позднее по мере охлаждения внутренних слоев аустенит в них начнет превращаться в мартенсит и объем недр детали начнет расти, наружные слон мартенсита будут этому препятствовать. В итоге, наружные слои окажутся растянутыми, а внутренние – сжатыми. Это и есть внутренние напряжения. Таким образом, после термической обработки мы получили высокую твердость металла, но использовать ее затруднительно из-за огромной напряженности изделия, и, следовательно, возможного в любой момент разрушения.
Подобные же процессы, но в ином масштабе могут протекать при неоднородном распределении химических элементов по сечению изделия. Например, в условиях так называемой химико-термической обработки, заключающейся в насыщении поверхности металла каким-нибудь другим элементом. При этом в области высоких температур формируется аустенит иного химического состава, с иными скоростями и особенностями превращения в мартенсит.
На эти явления налагаются и внутренние напряжения, имеющие собственно термическое происхождение и образующиеся из-за неодинакового расширения и сжатия различных структурных составляющих при охлаждении и нагревании обрабатываемой детали.
Так или иначе, но термическая обработка стали генерирует довольно мощные напряжения, имеющие зачастую пространственный характер и приводящие к появлению в металле разнообразных трещин. Иногда это одинокие и глубокие трещины в изделиях сложной конфигурации, например во фрезах: иногда внутренние дугообразные разрывы, встречающиеся например, в цементированных сталях, то есть сталях, поверхность которых насыщена углеродом. Встречаются и другие виды разрушений – в форме, скажем, множества мельчайших трещин, покрывающих всю поверхность детали.
Чего уж хорошего, если в ответственной детали сто трещин. Ведь мы знаем: достаточно даже одной! Потому, что невозможно предсказать, как такая деталь по-
1 Малинкина Е. И. Образование трещин при термической обра» ботке стальных деталей. – М.: Машиностроение, 1965. С. 13-17.
ведет себя в напряженном рабочем состоянии. Поскольку дальновиднее предусмотреть худшее, можно ожидать разрушения за счет роста какой-то одной трещины, оказавшейся в наиболее «выгодном» положении. И тогда окажется справедливой печальная шутка, согласно которой у жертвы было обнаружено четыре раны: две из них смертельные, а две другие, к счастью, нет. Одним словом, трещины, возникающие при термической обработке, вредны и опасны.
Но, кроме того, существует ряд побочных причин, увеличивающих тревогу за обработанную деталь. Например, может оказаться, что величина приводящих к разрушению напряжений (создаваемых внешним или внутренним усилием) зависит от времени и убывает с его течением. В результате при длительном воздействии нагрузки прочность стали снижается в несколько раз. В некоторых сталях, в частности быстрорежущих, появление поверхностных трещин провоцируется так называемым обезуглероженным слоем, то есть поверхностной пленкой металла, из которой по тем или иным причинам «ушел» углерод. Стали, подвергаемые термической обработке, очень чувствительны к любым концентраторам напряжений (различным надрезам) на их поверхности и внутри материала. Это и понятно. Такой концентратор создает свое упругое (силовое) поле, суммирующееся с остаточными напряжениями и ведущее к преждевременному разрушению. Не последнюю роль играют и разнообразные избыточные фазы в стали, особенно расположенные по границам зерен. Часто они играют решающую роль в образовании трещин после закалки. Словом, серьезных причин много. Но бывают и несерьезные, приводящие тем не менее к серьезным последствиям.
Термическая обработка, в частности закалка стали, повышает ее механические свойства и поэтому совершенно необходима машиностроению. Но вместе с тем она вводит в металл трещины, смертельно опасные для конструкции. К счастью, есть многочисленные методы, позволяющие исключить появление трещин и сохранить тем самым преимущества, которые дает термическая обработка металла. Методы эти не всегда просты, но…
Одна закона грубая скрижаль равна для человека и металла: нужна борьба, чтоб сталью стала сталь…
(Я– Белинский)
Вы, вероятно, помните, что так называемые внутренние напряжения и есть ложка дегтя, которая портит бочку меда при термической обработке стали. Именно они и ведут к появлению трещин. Следовательно, первейшей задачей является гашение напряженного состояния детали. Сделать это можно несколькими путями. Вот один из них. Помимо структурных напряжений, возникают и другие– термические. Они появляются при более высоких температурах, когда металл еще очень пластичен, а фазовые переходы еще не начались. Очевидно, при достаточно высокой скорости охлаждения эти напряжения могут привести к пластической деформации детали и разрядиться, то есть стать не опасными.
Со структурными остаточными напряжениями, как правило, дело обстоит наоборот – быстрое охлаждение при довольно низких температурах вызывает лишь многие трещины. Поэтому целесообразно при температурах ниже начала перехода аустенита в мартенсит вести охлаждение бережно и очень медленно. Такое «нежное» обращение со сталью осуществляют зачастую, закаливая ее не в воде, а в масле, где она «остывает» с меньшей скоростью. Ясно, что во всех случаях внутренние напряжения будут определяться той исходной температурой, с которой начинается закалка. Поэтому рекомендуется эту температуру выбирать максимально низкой.
Надежным методом снятия внутренних напряжений является отпуск, то есть повторный нагрев после закалки, во время которого металл и его структурные компоненты несколько лучше приспосабливаются друг к другу. Что-то вроде встряхивания пассажиров в переполненном троллейбусе: все кое-как разместились, «притерлись» и едут в тесноте, да не в обиде.
На языке термической обработки это означает, что термическое «встряхивание» структурных элементов ведет к снятию внутренних напряжений.
Когда-то Александр Грин сказал, что действительность большей частью завязывает и развязывает узлы в длительном темпе. Закалка не такова – за ничтожные секунды проходит фазовый переход, возникают мощные остаточные напряжения, трещины и следует неизбежное разрушение. Поэтому важно не затягивать с проведением отпуска, помня, что с течением времени прочность напряженной детали падает. Поэтому отпуск и осуществляют немедленно после закалки.
МЕТАЛЛ УСТАЛ..
Что замок, что харчевня – все тщета,
И все растопчет времени пята,
Под этой ногой не устоит
Ни зданье, ни железо, ни гранит.
Ш. Петефи
Человек устает, и это нас не удивляет. Силы металла тоже ограничены. Но если человек может устать при выполнении любой работы, то «усталость» металла – это его реакция на вполне определенный вид нагружения – многократно повторяющееся приложение нагрузки одного и того же или противоположных знаков. Как же проявляется усталость в неживом материале? Вначале он пластически деформируется, а затем разрушается. Но ведь то же самое происходит при обычном нагружении?
Как будто и события те же и составляющие его элементы– пластическая деформация, микротрещины, разрушение– почти такие же. Однако явление это серьезно отличается от разрушения, вызванного действием однократно приложенной нагрузки. Попробуем, читатель, хотя бы поверхностно разобраться в этом вопросе.
Прежде всего металлы окружающего нас мира испытывают постоянные воздействия пульсирующих нагрузок. Железный каркас здания принимает на себя беспрерывную микроскопическую вибрацию почвы – ведь по земле, никогда не перекращаясь, струится поток слабых упругих волн. Это результат сейсмической активности нашей планеты. Корпус цеха с металлообрабатывающими станками также все время находится в состоянии вибрации. Станина станка из-за контакта резца с деталью дрожит. Вибрируют двигатели, корпуса самолетов, машины. Ясно, что эти колебания должны влиять на состояние металла. Вот только как? Иной раз трагически – самолеты разваливаются в воздухе. Рельсы, многократно прогибающиеся под тяжестью железнодорожных составов, лопаются. Оси, несущие мощные маховики и колеса, под действием рабочей нагрузки и несбалансированной центробежной силы изгибаются поочередно в различных направлениях и ломаются. А это страшное зрелище – подпрыгивающее на шоссе оторвавшееся колесо тяжелого грузовика. Итак, усталость, почти следует Шекспиру: «Повторность изменяет лик вещей» и порой проявляется драматически.
Каковы же внешние особенности явления усталости с позиции механики? Прежде всего усталостное разрушение протекает с участием пластической деформации, но масштабы ее очень невелики в сравнении с одноразовым разрушением. Особенно опасная черта усталостного разрушения– это способность начинаться и протекать при напряжениях, намного меньших, чем предел прочности или текучести. По существу, напряжения эти не выходят из упругих рамок, но циклическое нагружение так эффективно использует их, что «с успехом» разрушает материал. В случаях, когда напряжения эти значительны, усталостное разрушение наступает раньше. Но если напряжения очень малы, это тоже «не пугает» усталость. Просто для гибели нужно большее число циклов. Металл как бы располагает некоторым моторесурсом – долговечностью. Он способен выдержать определенное число циклов приложения нагрузки. И это число снижается с увеличением приложенных напряжений, что в общем естественно. Ведь усталость человека тоже зависит от тяжести выполненной работы. Чем она больше, тем быстрее мы «сдаем». Но, конечно, масштабы усталости металлов иные. При разумном приложении внешнего на-гружения сталь способна выдерживать десятки миллионов актов нагружения. Например, рессора автомобиля! Какое огромное число колебаний она должна «вытерпеть»– на каждом камешке и неровности, чтобы обеспечить безопасность и комфорт движения. А разнообразные клапаны в двигателе, работающие непрерывно,
да еще при высокой температуре! Таким образом, процесс усталости развивается за счет того, что невысокие напряжения как бы «компенсируются» многоразовым приложением нагрузки. Это и ведет к утомлению и «одряхлению» металла. Не следует думать, что устают только отдельные непрочные металлы. Нет! Это явление общее и подчиняет себе любую, даже сверхпрочную сталь!
Если механические, так сказать внешние особенности протекания усталости достаточно ясны, то с физическим механизмом процесса дело куда сложнее. Начнем с пластической деформации. Отличительной особенностью пластического течения при усталости является его сосредоточенность в меньшем объеме, чем при одноразовом нагружении. И в том, и в другом случаях механизм пластической деформации дислокационный, однако, вместо появления все большего числа линий скольжения при обычном деформировании усталость сопровождается образованием ограниченного количества линий скольжения с последующим их расширением. Это общая фундаментальная закономерность усталости – высокая неоднородность всех процессов по сечению металла. Усталость– процесс, способный «выбирать» самые слабые звенья прочности и сосредоточивать на них свои подтачивающие усилия. При этом свойства основного массива металла могут быть и не затронуты разрушением. Приведем некоторые примеры «коварства» избирательности усталостного разрушения.
Прежде всего оказывается, что концентрация напряжений при усталости ведет к охрупчиванию металла гораздо быстрее, чем в условиях обычного нагружения. При многоцикловом нагружении металл становится более чувствительным к самым разнообразным концентраторам: дефектам на поверхности, надрезам любых видов и сортов, участкам коррозии.
В частности, такими концентраторами всегда являются неметаллические включения. Но при усталости они становятся подлинно опасными, потому что многоцикловое нагружение сразу же сосредоточивает пластическую деформацию вокруг включений и уже на ранних стадиях, когда основной металл еще здоров, зарождает на включении микротрещину. Этому способствует и то, что со временем включение, которое после выплавки металла было прочно «вклеено» в матрицу, отрывается от нее – теряет связь с металлом; концентрация напряжений сра-
зу возрастает и вероятность протекания скольжения и микроразрушения вокруг включения резко увеличивается.
Эта неоднородность деформирования по сечению «утомляющегося» металла и ведет к тому, что общая энергия, затрачиваемая на пластическую деформацию циклично нагружаемого металла, меньше, чем при обычном деформировании. Вот и получается, что неоднородность и избирательность разрушения «спасают» металл в целом и от деформации, и от разрушения. Но все же в его объеме найдутся одно-два слабых места – пожива для процесса усталости. Таким образом, металл может быть выведен из строя сосредоточенным разрушением на считанных участках, уязвимых для зарождения усталостной трещины. Что касается общих мощнейших ресурсов прочности металла, то они остаются неиспользованными. В этом-то и опасность усталости, выискивающей в металле слабые звенья и обыгрывающей их.
В избирательности и заключается основная проблема обеспечения прочности металла, противопоставляемой возможной усталости. Металл должен быть равнопрочным во всей своей структуре. Но для реального металла это невозможно – он неоднороден от рождения. И потому, что он – поликристалл, и потому, что он – сплав, и потому, что в нем разбросаны разнообразнейшие примеси и дефекты. А следовательно, в нем изобилие слабых мест, которые безошибочно находит усталость. Ведь для разрушения достаточно лишь одного!
Каков физический механизм зарождения микроскопических трещин при циклическом нагружении? Прежде всего ими могут быть едва ли не все дислокационные механизмы, рассмотренные в первой главе. Но есть и специфические «усталостные» модели. Одной из них является схема, предложенная японским физиком Эиихи Фуд-зита. Когда в одной плоскости скольжения сближаются разноименные краевые дислокации, то у одной из них экстраплоскость находится вверху, а у другой – внизу. Естественно, что они соединяются и дислокации исчезают – аннигилируют. А теперь представьте себе те же дислокации, но на разных и очень близких плоскостях скольжения. У основания каждой из экстраплоскостей – пустое пространство, немного большее, чем между атомами в здоровой классической решетке. Эти пустоты двух разноименных дислокаций сливаются и образуют
зародыш микротрещины. Такой же процесс в этом же районе протекает и с объединением двух пар дислокаций. В результате многих подобных актов зародыш подрастает и становится устойчивым. В дальнейшем он увеличивается благодаря втеканию в него дислокаций с полосы скольжения. И, наконец, превращается в трещину. Фуд-зита очень остроумно использовал в дислокационной модели то, что усталость чувствительна к различным включениям и выделениям. Он допустил, что из-за многократного путешествия дислокаций по полосе скольжения туда и обратно – нагружение-то циклическое – происходит окисление материала в окрестностях линий скольжения. Читатель может спросить: а откуда же появляется кислород в середине металла? Ответить можно двояко. Во-первых, кислород и другие газы остаются в металле во время его выплавки. Во-вторых, линии скольжения выходят на поверхность металла, а уж там кислорода сколько угодно. И если этот вопрос снять, то гипотеза Фудзиты означает следующее: в полосе скольжения образуются оксиды. А частица оксида – это барьер для дислокаций. А отсюда, как нам хорошо известно, один шаг до трещины.
Есть много вариантов взаимодействия дислокаций, приводящих к возникновению точечных дефектов, называемых вакансиями. Не вызывает сомнения, что в процессе усталости в металле образуется большое количество вакансий. Это явление и порождает разнообразные гипотезы о скапливании вакансий и объединении их в поры или лакуны. Такие каверны могут стать источником разрушения. Простейшим вариантом превращения полости в трещину является ее «сплющивание» под действием внешнего нагружения.
Советские ученые И. А. Одинг и В. С. Иванова считают, что причины зарождения разрушения связаны с огромной энергией упругой деформации, возникающей в некоторых микрообъемах. Тогда первичное разрушение может «вспыхнуть», например, из-за обычного процесса плавления.
При усталости появляются некоторые эффекты, не встречающиеся в случае обычной деформации. Так, из циклически нагружаемого металла вытесняются тонкие пластинки материала прямо по плоскостям скольжения. Явление это называют экструзией. Известен и обратный процесс втягивания металла – интрузия. Вопрос об их
происхождении спорен. Тем не менее некоторые считают, что образование трещины может быть связано с ними.
Если подвести итоги наших представлений о природе усталости, то оказывается, что он еще не очень богат. Но бояться этого не надо. – «Ведь только мудрый человек способен сказать: «Я этого не знаю»… Ибо только мудрый может знать истинные пределы своих знаний»1.
В этом «нет» и своя прелесть – ведь столько интересного и неизведанного впереди. Конечно, границ для знаний нет. И те, кто сегодня сдает вступительные экзамены в вузы, в свой срок раздвинут границы познанного и решат свои задачи!
Не надо забывать, что проблема усталости – одна из самых важных в современной технике. Нет такой отрасли промышленности, где она не фигурировала бы как обнаженное зло, поражающее разнообразнейшие оси, огромные роторы, коленчатые валы двигателей, лопатки паровых, водяных и газовых турбин. А в авиации? Со времени серии аварий английских пассажирских самолетов «Комета» так называемая малоцикловая усталость – притча во языцех. И неудивительно. Все самолеты при подъеме на большую высоту претерпевают своего рода «раздутие» из-за того, что внутреннее давление воздуха остается почти тем же самым, а внешнее – резко падает. При посадке давления выравниваются. За время жизни самолета таких циклов несколько сотен. И так как в корпусе лайнера есть окна, люки, тысячи заклепок и другие концентраторы напряжений, то может возникнуть трещина, представляющая в этих условиях прямую угрозу жизни сотен пассажиров.
А что такое усталость для глубоководных подводных лодок? При погружении корпус корабля подвергается невероятному обжатию. При подъеме же на поверхность не только люди, но и вся лодка вздыхает с облегчением и расширяется. Повторенный многократно этот процесс тоже должен вызвать усталость металла. И может быть совсем не случайны слова в известной песне: «…когда усталая подлодка из глубины идет домой…» «Усталая» – только ли метафора?
Два последних примера подчеркивают важность и неотложность глубокого понимания всего, что связано
1 Крайтон Р. Тайна Санта-Виттории. – М.: Прогресс, 1970. С. 169.
с усталостью. И поскольку речь идет едва ли не о самых ответственных отраслях промышленности, в проблемы усталости, несомненно, будут вложены и средства, и способности ученых всего мира. А это, конечно же, приведет к решению в целом. Когда это произойдет, сказать трудно. Но, вероятно, в ближайшие десятилетия.