Текст книги "Портрет трещины"
Автор книги: Виктор Финкель
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 6 (всего у книги 13 страниц)
ТАКОВА ПРИРОДА ВЕЩЕЙ
…Жаждень узреть и собрать воедино Все, что известно уму твоему.
Ираклий Абашидзе
Подведем итоги этой главы. Прежде всего нам понятно, что разрушение-процесс неслучайный. Он предопределен самой природой. Возможно, это одно из проявлений второго начала термодинамики, согласно которому всякая физическая система, предоставленная самой себе, рано или поздно распадается.
Если это термический очаг, он потухнет и температуры выровняются. Если это скопление вещества, то со временем оно распылится и равномерно распределится в окружающем пространстве. Если это живое существо, то рано или поздно оно погибнет. Если это металлическая конструкция, она разрушится.
Мы видели, как времени рука
Срывает все, во что рядится время.
Как сносят башню гордую река и рушит медь тысячелетий бремя.
(В. Шекспир)
Трещина, вероятно, и есть своеобразный инструмент второго начала термодинамики. И действительно, весь наш опыт говорит о преходящем характере прочности и о том, что даже металл, обладающий теоретической прочностью, может быть разрушен внешними усилиями.
Все это, конечно, не означает, что прочности вообще не существует и конструкция развалится тотчас после ее создания. Ведь и живой организм до половины своего бытия успешно сражается со «вторым началом». Поэтому, работая над прочностью, нужно быть оптимистом и понимать, что многое в наших руках. Мы можем отодвинуть любой из механизмов разрушения на более поздний срок. Мы в состоянии затормозить процессы, лежащие в основе разрушения. Поэтому, чтобы уметь с ними бороться, а если понадобиться, то и использовать их в наших «корыстных» целях, нам нужно хорошо представлять себе, что же такое разрушение.
Итак, что же такое разрушение? Это смерть материала или конструкции как единого целого, подготовленная прежде всего упругой деформацией, протекающей в условиях статических или динамических нагрузок. В по-
следнем случае она представляет собой распространение в материале упругих волн. Затем это некоторая пластическая деформация, сопровождаемая необратимыми изменениями структур. Осуществляется эта деформация движением дислокаций по кристаллографическим плоскостям. Взаимодействуя друг с другом, дислокации способны образовать микротрещины. С этого и начинается собственно разрушение. Микротрещины могут медленно подрастать. Длительность этого периода иногда исчисляется годами. Это так называемый докритический рост трещины, когда конструкция не потеряла способности сопротивляться внешнему нагружению. Это жизнь со злокачественной опухолью, рост которой почему-то остановился… Но вот барьер перейден – трещина перевалила через критический размер. Поток энергии из напряженного объема хлынул в нее, легко скомпенсировал затраты на пластическую деформацию и стремительно «погнал» трещину вперед. Теперь жизнь металла исчисляется не минутами и даже не секундами. При скорости распространения трещины, измеряемой километрами в секунду, речь идет о милли– и микросекундах. Металл обречен.
Акустический, световой, электромагнитный – вот «языки», на которых вначале монолитный, а затем распадающийся металл-полиглот рассказывает нам о своем состоянии все это время – от упругой деформации до полного разрушения.
Такова краткая история разрушения. Очень образно «смоделировал» ее на примере погибающего дерева польский писатель А. Минковский:
«…Я увидел, как убивают дерево: с одной стороны топором делают глубокую зарубку, а с другой – пилят вдвоем. Сначала ничего особенного не происходит. Огромная сосна, ни о чем не подозревая, стоит себе спокойно, растопырив игольчатые сучья. Вдруг по ней пробегает озноб. Легчайшая дрожь, вслед за нею тревожный шум ветвей. И спокойствие, нарушаемое только ритмичным повизгиванием пилы. Потом тихий треск лопающихся волокон, шелест кроны: сосна как будто осматривается, испуганная, полная изумления… Треск нарастает, ряд одиночных выстрелов – сосна шатается, напрасно пытается удержать равновесие, в отчаянии трясет пучками игл. Края раны раздвигаются, лесорубы вынимают пилу, отскакивают в сторону. Дерево еще защищается, еще балансирует, как канатоходец, у которого под куполом цирка вдруг закружилась голова. Наконец, сначала медленно, а потом все быстрее, стремительнее хвойная громада с треском рушится, задевая соседние деревья, тяжело ударяется о землю, пружины сучьев ломаются и неподвижно замирают на придавленных кустах. Борьба окончена…»1
1 Минковский А. Дороги воспоминаний. – 1967. С. 36.
М.: Молодая гвардия,
Как маятник остановив рукою, Цвет времени от времени спасти?
В. Шекспир
ВОЗМОЖЕН ЛИ ПРОГНОЗ
…Однако эта неопределенность ничуть не омрачила его радостного настроения.
Мэлвин Брэгг
9 марта 1934 года мощная балка, предназначавшаяся для термодинамической лаборатории Льежского университета, самопроизвольно раскололась по всей своей 12-метровой длине1.
2 декабря 1942 года в обшивке цельносварного танкера, находившегося еще на стапелях, без влияния какой-либо внешней нагрузки образовалась трещина длиной 13 метров. Танкер «Скенектеди» водоизмещением 7230 тонн попросту разломился пополам в спокойной воде.
В 1973 году обрушился мост с пролетом 336 метров через реку Огайо у города Уиллинг. Вот свидетельство очевидца: «В течение нескольких минут мы следили с тревогой за колебаниями, подобными качке корабля в шторм. Один раз мост поднялся почти на высоту пилонов и затем опустился: при этом вдоль всего пролета произошло скручивание, и одна половина проезжей части почти перевернулась. Затем огромная конструкция с головокружительной высоты устремилась в реку с ужасным треском и грохотом»2.
Совсем недавно, в 1976 году, на глазах многих в центре Вены над Дунаем возник огромный столб пыли, земля задрожала и важнейшая транспортная артерия австрийской столицы, связывающая ее с пригородами – мост Рейхсбрюкке – рухнул в воду. К счастью, катастрофа произошла ранним воскресным утром, когда на мосту почти не было машин и пешеходов (в часы «пик» по Рейхсбрюкке проходило до 18 тысяч машин в час). Однако без жертв все-таки не обошлось. Обломки моста блокировали Дунай, из-за чего в районе Вены скопились сотни грузовых судов и барж3.
Печальной особенностью многих разрушений являются их труднопредсказуемые последствия, что кстати
1 Остаточные напряжения./Под ред. В. Р. Осгуда. М.: ИЛ, 1957. С. 9, 54.
г Пановко Я. Г., Губанова И. И. Устойчивость и колебания упругих систем. -М.: Наука, 1967. С. 349.
3 Мост рухнул от «усталости»?//За рубежом. 1976. № 33. С. 20.
и следует из буквального смысла греческого слова «катастрофа» – переворот, внезапное бедствие, влекущее за собой тяжелые последствия.
Разнообразие видов разрушения трудно себе представить. На морских судах, например, сталкиваются с кавитацией. Это явление связано с возникновением в жидкости разрывов сплошности в виде крохотных пузырьков. Появляющиеся при этом упругие импульсы вырывают из винта корабля частицы металла и быстро разрушают его.
Я привел лишь несколько примеров аварий. Может сложиться впечатление, что их причины необъяснимы. Но это неверно. Тысячи и тысячи разнообразных катастроф, крушений и аварий известны человечеству в прошлом и, к сожалению, случаются в настоящем. Однако в подавляющем большинстве случаев наука обстоятельно проанализировала их природу. Это, правда, не может исправить произошедшее, но служит хорошим уроком на будущее. И, конечно же, каждая конкретная катастрофа, будь то падение моста, разрушение самолета или взрыв цистерны, имеет свои собственные корни.Именно о физических процессах, ведущих к появлению трещины при различных условиях эксплуатации, и пойдет речь ниже.
ПЕНЬ У ДОРОГИ
Печален мой удел.
Каким я хрупким счастьем овладел!
В. Шекспир
«Темной южной ночью на палубе французского научного судна «Жан Шарко», проводившего исследовательский рейс в районе Азорских островов, неожиданно раздался грохот. Встревоженные моряки и ученые, высыпавшие на освещенную прожекторами палубу, обнаружили, что взрываются глыбы обсидиана, накануне поднятые драгой с глубины около трех километров. Камни высоко подпрыгивали на палубе, с глухим звуком рассыпались в воздухе и дождем осколков падали на палубу.
Утром, когда улеглось волнение, вызванное ночным переполохом, геологи объяснили странное поведение камней. Видимо, в обследованном районе не так давно
(по геологическим масштабам, конечно) произошло извержение вулкана. Излившаяся магма застыла, испытывая огромное давление воды. Образовавшаяся при этом порода, как пружина, хранила в себе сильное внутреннее напряжение»1.
При производстве разнообразных металлических конструкций сварка – один из ведущих технологических процессов, позволяющих образовать монолит из одинаковых или различных металлов и сплавов или изготовить пространственно сложное изделие, не воспроизводимое другими методами. Ценный это метод, жизнью оправданный и имеющий большое будущее. Но он нелишен недостатков. Об одном из них мне хочется рассказать.
Дело в том, что сварка сопровождается серьезным повышением температуры в небольшом объеме, в то время как остальная часть детали остается холодной. Такой температурный перепад часто вызывает появление в изделии больших внутренних напряжений. Иногда они настолько значительны, что способны сами по себе разрушить конструкцию. Чаще их величина хоть и «весома», но недостаточна для самопроизвольного разрыва. Однако в процессе эксплуатации внутренние напряжения суммируются с внешними и ведут к внезапным катастрофам.
В одной из своих книг сатирик Ф. Кривин пишет: «Пень стоял у самой дороги, и пешеходы часто спотыкались об него.
– Не все сразу, не все сразу, – недовольно скрипел пень. – Приму сколько успею: не могу же я разорваться на части! Ну и народ, ни шагу без меня ступить не могут!»2
Роль такого пня у широкой магистральной дороги сварочного производства и прочности играют внутренние напряжения. Вот некоторые примеры3. Из 52 сварных мостов, построенных в Бельгии в 1934-1938 гг., почти одна пятая их часть к 1940 году была выведена из строя вследствие серьезным дефектов. Так, в марте 1938 года разрушился мост через канал Альберта возле
1 Взрывы в океане//Наука и жизнь. 1971. № 3. С. 38.
2 Кривин Ф. В стране вещей.–М.: Советский писатель, 1961. С. 18.
3 Гатенко М. И. Хрупкое разрушение сварных соединений и конструкций. – Москва – Киев: Машгиз, 1963. С. 8.
Хассельта с пролетом 73,5 м, а в январе 1940 года – сразу два моста через тот же канал с пролетами 61 и 48,8м. Между 1940 и 1950 годами в Бельгии зарегистрировано 14 случаев хрупкого разрушения элементов мостов. В декабре 1951 года в Чехословакии обрушился временный железнодорожный мост с пролетами 12 м. Одна из наиболее заметных аварий – разрушение автодорожного моста в Квебеке (Канада), случившееся 31 января 1951 года при сильном морозе. Мост обрушился, когда по нему проезжала всего одна машина. И этого оказалось достаточным, чтобы все три пролета длиной 54 метра каждый упали в реку.
Соединенные Штаты Америки построили во время второй мировой войны примерно 5000 торговых кораблей. К апрелю 1946 года более чем в пятой их части обнаружили трещины. С ноября 1942 по декабрь 1952 года образовались трещины более чем на 200 судах. Десять танкеров три грузовых судна типа «Либерти» разломились пополам. На 25 других судах трещины разрушили палубу или днище. Например, в марте 1943 года на небольшой зыби переломился танкер «Эссо Манхеттен» водоизмещением 10344 т. Напряжения в его корпусе были ничтожны. Танкер «Закетс Харбор» ока-
зался перерезанным трещиной сразу же после постройки, прямо на верфи.
Казалось бы, приведенных примеров достаточно, чтобы понять, сколь опасны внутренние напряжения и «спровоцированная» ими трещина? Да, конечно, случаев много и стоимость описанных аварий исчисляется миллионами рублей.
Попробуем объснить, откуда у термических напряжений такая чудовищная сила?
Начнем с того, что удивляться этому не следует. Ведь ни для кого из читателей не секрет, что толстостенный стакан лопнет, если его быстро наполнить кипятком. Ясно, что в этом случае мгновенно расширяющиеся слои внутренней поверхности стакана вступают в конфликт с не успевшими прогреться холодными внешними слоями. Последние оказываются растянутыми и, если тепло внутри стакана не поглотить металлической ложечкой, погрузив ее в кипяток, произойдет разрыв. Трещина, возникшая на поверхности стакана, «опояшет» его, двигаясь вначале по образующей, затем по днищу, и завершит «разгром» по второй образующей1. Иногда
1 Васильев В. Почему лопнул остывший стакан с чаем?//Наука и жизнь. 1974. № 11. С. 117.
тонкие стаканы лопаются от кипятка, если их поставить в подстаканник, слишком плотно охватывающий стакан: подстаканник не дает стакану расшириться и чем тоньше стенки стакана, тем легче они разрушаются. Стакан может лопнуть и через длительное время после того, как в него был налит горячий чай. Это бывает, если он конической формы или плотно вошел в подстаканник под действием, скажем, вибрации железнодорожного вагона во время движения. При охлаждении чая металлический подстаканник, сжимаясь быстрее стекла, раздавливает стакан.
Описанное явление есть проявление того, что физики называют внутренними напряжениями первого рода. Говорят, что напряжения эти уравновешиваются в объеме всего изделия и вызывают его деформирование и разрушение как единого целого.
С подобными внутренними напряжениями термического происхождения мы встречаемся часто и довольно неожиданно. Зимой в сильные морозы в лесу раздаются звуки гулкие, точно выстрелы. Чаще всего они вызваны быстрым разрушением дуба, причем на поверхности коры образуются трещины – морозобоины. Акустически это проявляется в достаточно мощном «выстреле», подобном тому, который мы слышим при изломе почти любого хрупкого тела.
Это и естественно, ведь причина явления заключается в термических напряжениях, вызванных перепадом температур – низкой на поверхности дерева и более высокой в его сердцевине. Разрушение стволов в мороз – явление достаточно общее, и от него страдают деревья многих пород.
Поэт С. Островой подметил интересное явление – еще один вид поражения ствола в результате термических напряжений:
Такой был холод адский, Что все сучки подряд выскакивали с треском, Как пушечный заряд.
Вспомним примеры со стаканом и металлическим подстаканником: роль первого может играть сучок, а второго – сердцевина древесного ствола.
Особенность этих случаев в появлении термических напряжений непосрественно после приложения термического воздействия. Между тем внутренние напряже-
ния, во-первых, могут быть не связаны с температурой, а во-вторых, безотносительно к причине, их создавшей, могут неограниченно долго сохраняться в изделии и детали. В последнем случае их называют остаточными или внутренними напряжениями. Простым примером являются напряжения, искусственно создаваемые в рояле, скрипке, виолончели или гитаре при их настройке, заключающейся, в частности, в натягивании струн. В результате струны оказываются растянутыми, а корпус инструмента – сжатым. Доказательством этого являе-ется разрыв струн при особенно темпераментном исполнении. Известны случаи разрушения даже рамы рояля, сжатой натяжением многих струн с силой в несколько тонн.
Не случайны строки Л. Мартынова:
Я чуток, Напряжен я, Как рояль…
Отличительной особенностью таких напряжений является, однако, их обычная сбалансированность. Деформируя части упруго напряженной конструкции, остаточные напряжения компенсируются прочностью изделия. В результате вся система, состоящая из двух противоборствующих сил – внутренних остаточных напряжений и силы сопротивления, как бы застывает во временном равновесии. Выходов из этог о состояния несколько. Простейший из них «мирный» – постепенное уменьшение напряжений за счет повышения температуры или длительного вылеживания, называется он релаксацией. У струнных инструментов она проявляется в нежелательном, но постоянно действующем удлинении струн (говорят: инструмент расстраивается). Есть и другой способ – «аварийный», при котором либо за счет понижения прочности конструкции со временем, либо под действием внешних нагружающих усилий, либо по обеим этим причинам одновременно равновесие напряженной системы теряется и происходит ее разрушение с выделением аккумулированной упругой энергии. Вот как это выглядит в случае так называемом батавских слезок. Капельки жидкого стекла падают в сосуд с водой. В процессе полета они приобретают грушевидную форму с искривленным тонким хвостиком, как у головастика. Эта стеклянная «запятая» быстро застывает снаружи, оставаясь жидкой внутри. В результате создаются боль-
шие внУтРенние напряжения. В сердцевине «слезки» они имеют сжимающий характер, а в поверхностных слоях – растягивающий. Удивительная прочность «ба-тавских слезок», способность выдерживать удары молотком по утолщенной части, обусловлена как раз сжимающими напряжениями, препятствующими зарождению микротрещин. Но не следует забывать, что корни этой высокой прочности проистекают из внутренних напряжений, уравновешенных и «запертых» в объеме всей «запятой» и, чтобы нарушить эту прочность, достаточно отбить крохотный кусочек хвоста «головастика». Мощные напряжения сжатия, теперь уже не сдерживаемые прочным ремнем растянутого поверхностного слоя, взрывают стекло, превращая прозрачную и красивую «батав-скую слезку» в разлетающееся облако мелких стеклянных зернышек.
Подобные процессы нередки и в металлических конструкциях. Так, в феврале 1943 года вблизи Нью-Йорка разрушился сварной сферический резервуар для хранения водорода. Его диаметр превышал 11 м, а толщина стенки 16 мм. Газгольдер, рассчитанный на рабочее давление 5 МПа, не выдержал… 0,35 МПа. Перед аварией температура окружающего воздуха понизилась до – 12°С, а затем с одной стороны, сосуд нагрелся на солнце. Этого оказалось достаточным, чтобы разрушение, сопровождаемое взрывом, привело к распаду оболочки на 20 кусков. На нефтеперерабатывающих заводах США за 35 лет (с 1918 по 1953 год) разрушилось 32 резервуара, причем убытки составили полмиллиона долларов.
Чаще всего аварии происходили главным образом из-за низкого качества сварки и высоких термических напряжений в конструкциях. Трещины возникали либо в основном металле вблизи мест скопления сварных швов, либо в стыковых швах, имеющих непровары. В большинстве случаев в результате аварий металл разлетался иногда на расстояние до 40 м. Справедливости ради нужно сказать, что помимо внутренних напряжений, здесь действовали и другие причины: преже всего плохое качество основного металла и дефекты в самом сварном шве, которые сыграли роль зародышевых трещин. Немаловажным оказалось и охрупчивание металла в связи с понижением окружающей температуры. Об этом явлении речь пойдет в другом разделе.
ХОЛОДА, ХОЛОДА
У природы всегда в запасе какой-нибудь козырь.
Артур Кларк
Гигантские пространства, ранее совершенно пустынные и необитаемые, заселяет человек: Крайний Север и Сибирь в нашей стране, Аляску в США, северные районы Канады, Гренландию, Антарктиду… Многие препятствия встречают покорители этих районов. Одно из них имеет прямое отношение к материалам. Вот бы что произошло, если бы основной конструкционный материал машиностроения – сталь – захворал.
Гигантский состав из сотен вагонов, идущий со скоростью в 70-100 км/ч, рухнул под откос. Причина проста – лопнул рельс. Огромная мостовая ферма через широкую реку внезапно обрушилась вниз вместе с электровозом. Тяжелые грузовики и автопоезда останавливаются из-за массовой поломки деталей. Железобетнные перекрытия цехов длиной в сотни метров падают, казалось, бы без всякого влияния извне. Портальные краны и самосвалы, трубы нефте– и газопроводов, драги для добычи золота и алмазов лопаются как спички. Мощные экскаваторы, в том числе и шагающие, разнообразные грузоподъемные механизмы рушатся, как будто они фарфоровые.
Быть может автор, драматизируя, искусственно раскрасил, а возможно и пропросту придумал эти события? Оказывается нет, может быть даже преуменьшил, затушевал.
Судите сами. Спусковым рычагом, проводящим к разрушению сталей, является понижение температуры. В этом отношении подавляющее большинство сталей подобно нездоровым людям – при малейшем переохлаждении они «заболевают». Для иных, например низкоуглеродистых, «воспаление легких», то есть разрушение, наступает при (-60) -т– (-70) °С, для других, высокоуглеродистых– уже при комнатных температурах. И совсем хрупок в любых условиях чугун. Между тем климат в некоторых районах нашей страны весьма суров. Отрицательная температура в Норильске, Якутске и на Магадане держится свыше 8 месяцев в году. Минимальная температура, зарегистрированная в Норильске, -57, а в Магаданской области – 65, в Устье-Нере
(Якутия) -72°С. В северо-восточных и северных областях среднегодовая температура находится в пределах (-4)4– (-17), а в декабре, январе (-20) ч-(-50) °С.
При таких условиях металл, не защищенный от морозов и шквальных ветров, подвергается большой опасности1.
Справедливости ради нужно сказать, что хладноломкость – не всегда следствие природных условий. Чаще она результат технологических процессов, нуждающихся в низких температурах, протекающих, например, в установках, получающих жидкий воздух (-180°С),кислород (-183°С), гелий (-268°С), водород (-253°С), азот (-195,7 °С), а также в разнообразных холодильных агрегатах. С крайне низкими гелиевыми температурами и особыми свойствами металлов мы вынуждены встречаться в технике получения сверхмощных магнитных полей, основанной на использовании сверхпродводников.
1 Григорьев Р. С, Ларионов В. Н., Новиков Г. А., Яковлев Н. Г. Хладостойкость сталей при статическом и циклическом нагружени-ях.– М.: Наука, 1969. С. 5.
Наконец, все космические полеты протекают в условиях температур, близких к абсолютному нулю. У В. Э. Мейерхольда была забавная присказка: «Кто с коня не падал, кто бабушке не внук, под кем санки не подламывались? – неродившиеся души!» Верно. Но как быть нам? Ведь цена, которую мы платим за хладноломкость, невероятно велика. Иногда из-за этого конструкции на стройках Сибири и Севера месяцами не работают. Наконец, разрушение всегда опасно.
В чем же причина удивительного и коварного явления-охрупчивания металла при низких температурах?
Существуют два ответа. Убедительный – металлурга и металлловеда и неубедительный – физика.
Хорошо известно, что хладноломкости подвержены стали с объемноцентрированной кубической решеткой. А большинство сталей с гранецентрированной решеткой, то есть аустенитных, не боится понижения температур. И вообще металлы, а не только стали с атомами, выстроенными по гранецентрированному кубу, почти никогда не ломаются из-за охлаждения, например медь и алюминий. Однако подавлющее большинство металлоконструкций изготовлено из обычных сталей с объемно-центрированной решеткой, потому что они относительно дешевы и беззащитны перед «простудными заболеваниями».
Но сами эти стали подразделяют на две группы: кипящие и спокойные. В процессе изготовления стали возникает вопрос: как быть с растворенным в ней кислородом? Удалять насильственно или предоставить ему возможность выделяться самому? Первое достигается технологической операцией, называемой раскислением. Она заключается в том, что в ковш с жидким металлом вводят марганец, кремний и алюминий, связывающие кислород и переводящие его в соединения, нерастворимые в металле. При последующем застывании такая сталь «спокойна», не бурлит, так как из нее уже не выделяются газы. Что касается кипящей стали, то она раскисляется не полностью и при застывании в изложнице «кипит»: из нее выделяются пузырьки окиси углерода. Выход газов искусственно предотвращают, и окись углерода в виде рассеянных газовых пузырей и раковин остается в металле. При прокатке эти дефекты завариваются. Однако, как показывает практика, «кипящая» сталь более подвержена охрупчиванию, чем «спокойная», и детали, изготовленные из нее хотя и дешевле, но зато и легче разрушаются в зимнее время.
Довольно определенные ответы дают металлурги и на вопрос о влиянии состава стали на поведение ее в морозы. Углерод вызывает охрупчивание, марганец, наоборот, повышает хладостойкость. Благоприятно действие такого раскислителя, как кремний. Очевидным злом, влекущим за собой понижение сопротивляемости стали хрупкому разрушению, являются азот, сера фосфор, водород, кислород.
Издавна известны легирующие элементы, снабжающие сталь надежным щитом от меча хладноломкости. Это в первую очередь никель, молибден, цирконий, титан. Могут быть полезны добавки небольших количеств ванадия, хрома, меди, алюминия. Существуют и так называемые модификаторы – малые добавки, вводимые в сталь. В первую очередь к ним относятся редкоземельные элементы.
Итак, с точки зрения металлурга1 проблема хладноломкости решена и сводится к следующему. Если температура окружающего воздуха не ниже -4-20 °С, можно использовать углеродистые кипящие стали при ударных нагрузках. В условиях статического нагружения те же стали способны работать при температурах до (-20)4-
1 Попов К. В., Савицкий В. Г. Низкотемпературная хрупкость стали и деталей машин. – М.: Машиностроение, 1969. С. 4-12.-
ч– (-30) °С. Полуспокойные и спокойные углеродистые стали проявляют «терпимость» до (-30) 4– (-50) °С. Но при дальнейшем усилении морозов без легирования не обойтись. Так, стали, содержащие 3,5 % никеля, работоспособны от -70 до -120°С. А углеродистые стали, содержащие 8,5-9 % никеля, даже до -200°С. Что касается более низких температур, то для них нужны уже аустенитные стали, способные противостоять морозам до -253 °С, не разрушаясь. Суммируется это коротко. Для эксплуатации металлоконструкций в климатических районах с низкими температурами нужны стали «в северном исполнении», то есть высоколегированные. И хотя они очень дороги, все же вездеход для антарктических условий, сделанный из легированной стали, подвергнутой соответствующей термической обработке, будет гарантирован от внезапных разрушений при любых морозах.
Но достаточно ли этого? Можно ли считать, что тысячелетний опыт прошлого, непоправимые ошибки и невосполнимые потери научили человека бороться с такими разрушениями? Очевидно, еще не вполне. Потому что нужны точные знания.
Не случайно вкладывает в уста Бориса Годунова великий поэт:
Учись, мой сын: наука сокращает Нам опыты быстро текущей жизни. Но до глубокого осмысления природы явления хладноломкости, к сожалению, еще далеко. И если бы мне пришлось дать названия всему тому, что знают физики о хладноломкости, я, пожалуй, вместо слова «мнения» употребил бы «сомнения».
Вот, например, одна из точек зрения. Металл способен разрушаться двумя путями: хрупким и вязким. При хрупком осуществляется как бы прямой разрыв межатомных связей. При вязком вначале происходит пластическое течение и лишь затем разрушение. Жизненный опыт будто подтверждает сказанное. Когда вы ударом молотка разбиваете стекло или когда в ваших руках ломается и крошится грифель, глаз не отмечает существования какой-то деформации – вы увидете просто разрушение и все. Но попробуйте разорвать полихлорвиниловую ленту, сломать медную или алюминиевую проволоку. Вы видите и ощущаете большую деформацию еще до наступления собственно разрушения. Причем эта деформация служит буфером, гасящим внешнее усилие, съедающим его энергию еще до разрыва межатомных связей.
Известно мнение, что в этой пластической деформации– ключ к пониманию явления хладноломкости. В отличие от межатомных сил связи, практически не меняющихся в интервале (+50)-=-(-50) °С, величина пластической деформации крайне чувствительна к температуре у металлов, склонных к хладноломкости. При этом с понижением температуры она ослабевает, что уменьшает ее амортизирующее влияние. В результате внешнее усилие передается непосредственно на устье трещины, где и затрачивается на разрыв межатомных связей.
В действительности, однако, все гораздо сложнее. Деформация напоминает двуликого Януса. Она не только поглощает энергию нагружения, но и сама зарождает микроскопические трещины, способные подрастать еще во время деформирования.
Согласно другим точкам зрения хрупкость стали при низких температурах обусловлена изменением межатомных сил связи, уровень которых падает. Некоторые авторы приписывают хладноломкость особым процессам упорядочения, при которых вращение электронов вокруг своей оси (так называемый спин) происходит преимущественно в определенных направлениях. Некоторые ученые считают, что хладноломкость означает появление какого-то нового полиморфного превращения, то есть перехода кристаллической решетки металла из одной формы в другую… Однако все это лишь гипотезы. Правильны они или неправильны – проверит будущее.