355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виктор Ткачёв » О связи хаббловой и гравитационной постоянных (СИ) » Текст книги (страница 4)
О связи хаббловой и гравитационной постоянных (СИ)
  • Текст добавлен: 5 октября 2016, 01:50

Текст книги "О связи хаббловой и гравитационной постоянных (СИ)"


Автор книги: Виктор Ткачёв



сообщить о нарушении

Текущая страница: 4 (всего у книги 11 страниц)

С псевдоветром разобрались. Достаточно полно. Что провоцирует в той же полноте высказаться и о квазидавлении на тело, наличном со стороны разрастающегося пространства. Как добавить полноты? А переизлагать наговоренное, хоть сколько-то меняя ключ. Есть сферический квазипоток пространства от тела? Значит, бедное тело, по первому закону Ньютона стремясь остаться неподвижным относительно пространства, с равной силой пытается улететь сразу по всем возможным в пространстве направлениям, и тем в итоге застывает на месте, никуда не улетая. Как ясно, то не просто у тела застывшесть, а застывшесть в так называемом силовом равновесии, когда любое определённонаправленное его устремление двигаться нейтрализовано обратнонаправленным его устремлением. То есть что? Равноустремляясь сразу во все стороны, мат. тело тем само прессирует себя со всех сторон. Что и обозначили как то, что тело квазисдавливается пространственно разбухающей Вселенной.

Переизложить же это более образно, получится следующее. Сферический квазипоток пространства, оттекающий от тела, наводит "большесть присутствия" пространства дальше от того тела. То есть получается, что пространство как бы нависает над телом − окружным образом. И бедное тело "стремится убежать" от этой нависаемости (и тем привести свои отношения с пространством в порядок: чтоб оно окрест него было по-старому однородным, без флюктуаций). Но коль нависшесть со всех сторон, то и бежать тело норовит сразу во все стороны! Ну, понятно: пространство "нависает" справа, соответственно тело норовит убежать влево, но поскольку и слева − точно так же пространство "нависает", то тело тем же макаром норовит убежать и вправо. И так по всем возможным парам противных направлений, в сумме оказываясь самопрессирующим "поведением" тела.

Итак, при каждом одиночном мат. теле наличествует всеокружной квазипоток пространства. Который не смещает тело потому лишь, что равно "давит" на него со всех сторон. Выступая уравновешенным всеокружным квазипотоком. Теряя же свою уравновешенность, он вполне исправно сносит тело, с одной из его сторон оборачиваясь бóльшим на него "давлением", чем с противоположной. Такая потеря происходит, когда он перекрывается с другим уравновешенным квазипотоком (что бывает, когда к породившему его телу подносят другое тело, находящееся при своём уравновешенном квазипотоке). И что же будет значить, что тело сносится (к другому телу) неуравновешенным всеокружным к нему квазипотоком? А то и будет значить, что даёт пространству себя нести, то есть остаётся неподвижным по отношению к нему − ценой своей приближаемости к тому другому телу.

Сближаемость мат. тел можно трактовать и иначе. Когда одно из них подносишь к другому, то та часть окружного квазипотока первого, что со стороны поднесения, попросту подхватывает второе и несёт к первому, поскольку оно, второе, не находится в центре симметрии того квазипотока, как первое. Другими словами, порождающийся первым телом окружной к нему квазипоток заведомо обещает быть неуравновешенным к подносимому второму телу − как раз оттого, что уравновешен к первому.

О квазипотоке пространства в связи с телом добавим ещё следующее: в наличке квазипоток, как бы оттягивающий часть приповерхностного к телу пространства, делая его пространством неприповерхностным. Можно даже сказать, что происходящее попросту есть квазиоткачка пространства от тела! Уменьшающая его прителесное "количество". И неспециально производимая самим телом (ведь онó же, а не кто другой, не допускает новое пространство в свою округу, и чем ближе к своим границам, тем выраженней, − вот мы в этом и видим фактическую откачку).

А чтó хотим сказать, присовокупляя к понятию откачки "квази"? Да что откачки − как таковой − в качестве процесса нет, но есть, тем не менее, откачанность как плод её! И если недалеко от того тела поместить другое, то из промежутка меж ними "откачивают" оба, тогда как позади за собой каждое, можно считать, "качает" в одиночку (потому как соседнее помогает здесь "качать" в заметно меньшей степени, нежели в промежутке). Тем самым, взаимопритяженье тел объяснить теперь имеем право так: перманентная собираемость природой пространства больше зá телами, нежели в промежутке меж ними, оказывается фактической придвигаемостью тел друг к другу. Поскольку придвинуться вам к объекту, лежащему перед вами, это − чисто житейски! − и значит ведь оставить за собой больше пространства, чем только что было (а перед собой − соответственно меньше, чем было). Впрочем, это мы уже где-то повторяемся.

С некоторой теоретизационной натяжкой всё тут можно переизложить ещё вот как. Ежели одно тело помещено в виду другого на некотором расстоянии, то пространственный "поток" − как воплощаемость квазиоткачки от себя пространства первым телом − в своей неизбежной набегаемости на второе в каком-то смысле всё ж предстаёт тому виртуальным пространственным ветром. И как таковой "ветер" не давит на его наветренную сторону (на то он и виртуальный, чтоб в ключе реальности не воздействовать!), но нарабатывает себя − ну, дополнительное количество того, чем он там вообще выступает − с его подветренной стороны, того второго тела (на то он и ветер, чтобы в результате его что-то было всё же перенесено!). В нашем случае "то, чем выступает ветер", суть вакуумный объём, соответственно с подветренной стороны второго тела − непрерывная наработка дополнительного объёма, неизбежная вытягиваемость которого в некую продлённость оказывается фактической смещаемостью того тела в подветренно-наветренном направлении. То бишь к первому телу. С которым происходит аналогичное, ежели рассматривать его со стороны второго тела.

Или можно даже проще. Без привлечения понятия виртуальности. Пробно взять мат. тело, так оно − при порождаемом им окружном к себе градиенте прибытости пространства. Подносимое же к нему другое имеет некую протяжённость по этому градиенту, тем самым со стороны его, смотрящей на первое, прибытость пространства меньше, чем с противоположной, тыловой его стороны. Что и можно интерпретировать, как квазиперекачку первым телом пространства с лицевой стороны второго на его тыловую сторону. Квазиперекачку такую как физ. явление, заставляющее второе тело двигаться к первому. Ну, чисто явочным порядком раз за разом оказываться чуть придвинувшимся к нему.

А привлечь понятие виртуальности снова, то квазиперекачка пространства с лицевой стороны тела на тыловую − это повышаемость давления виртуальной материи на тело с той тыловой стороны. Ведь вакуум-пространство − как раз такая материя. Составляемая виртуальными элементарными частицами, число коих увеличивается с тыловой стороны − из-за квазиперекачки, а с лицевой стороны − по той же причине уменьшается. Что в слагаемости и приводит к толкаемости тела в тыло-лицевом направлении. Только вот, из-за виртуальности своей материя такая и толкаемость продуцирует виртуальную! То есть "хитрую", которая увеличивает скорость тела без подвергания его настоящему (ну, ощущаемому) давлению со стороны, противной стороне, в которую направлен вектор увеличивающейся скорости. Другими словами, давление есть, но реализуется не толкающим соприкосновением виртуальных частиц с телом − как большей выраженности на тыловой его стороне. Материя виртуальна, так и давление её на тела − давление именно виртуальности.

Вот такая возможна теоретизационная зарисовка − на базе понятия виртуальности. Привлечение этого понятия в физнаучных объяснительностях − лишь пол-шага отступленья в них от привычных вещественно-материальных отношений. Ментальность, навеянная последними, довлеет у человека, потому и решается он поначалу лишь именно на пол-шага: сохраняем и понятие давления, и понятие частиц материи − как его породителей. Только что частицы берём уж виртуальными, а потому и продуцируемое ими давление на тело должны признавать "хитрым". Нет, лучше уж наши объяснительности без привлечёнки виртуальности (ну, которые замешаны были на первом законе Ньютона). Ими, похоже, наша человеческая ментальность делает необходимый полный шаг.

То есть получается, что категория виртуальности − в физнаучности категория "костыльная". Костыль, он что? Позволяет передвигаться по-старому, несмотря что возможность к тому утрачена. Ну, продолжать ходить − несмотря что утратил такую возможность, − а не начинать летать. Вот и у нынешней науки: привлечёнка виртуальности позволяет не отказываться от "ходьбы" − в лице использования понятий частиц и давления от них. Привлечение этих понятий в фоне понятия виртуальности впервой произошло при объяснении эффекта Казимира, а дале и мы поступили сходно в вопросе гравитации − просто чтоб удобно (для ортодоксальных читателей) обозначить параллель тому эффекту, которую у гравитации усмотрели.

И стоит добавить, что виртуальность, как все костыльные категории, внутренне противоречива. Отчего понимать, что теоретизировать на её основе допустимо только с особым самоконтролем. Ну, например, ежели вакуум-пространство − виртуальная материя, то возможно его течение, да? Не квазитечение − как происходящесть от тела, затрудняющего разрастательность вселенскому пространству, а именно течение? Вот тут-то и надо быть осторожным! Это вам не вещественная материальность, вакуум-пространство-то, и не стоит "совсем серьёзно" находить его текущим. Ну, в смысле, находить его текущим в полной подобности текущести какого-либо газа. Движение виртуальных эл. частиц друг относительно друга − это можно теоретизационно взять, но лишь настолько, насколько само понятие движения (а заодно уж и взаимоотносительности!) подходит к таким штуковинам. В касаемости их им − как раз некая неопределённость. Какая же именно − оставляю решать читателям.

В силу сказанного и последнюю излагательную грань конструируем не на базе виртуальности: пробное тело, с ростом расстояния от себя убывающе придерживая прибывание пространства, наводит в своей округе градиент его прибытости, оказывающийся фактической сдвинутостью пространства в той округе, устойчиво переходящей из момента в момент при плавной сходящести на нет вдали от тела. Попадая в ту область, вещественная материя на такую сдвинутость пространства компенсационно реагирует, тем выступая без видимых причин ускоренно приближающейся к пробному телу (ибо именно такое приближение оказывается у ней созданием себе противной сдвинутости пространства).

Вот теперь, разобравшись, можем перейти к вопросу чёрных дыр. К ним как следствию из ОТО, обнаруженному после Эйнштейна. Горизонтом событий чёрной дыры называют некую очерталь относительно её центра, за которую не способен выйти свет (если он под неё попал или там родился). Как это соотносится с нашими воззрениями? Ну, более-менее соотносится! Строго говоря, никто не знает, чтó под сферой Шварцшильда. Вещественноматериальное может, например, занимать весь объём, очерченный гравитационным радиусом небесного тела. Такое − просто в порядке первой стадии коллапсирования того тела. Тем самым в сфере Шварцшильда не остаётся места для чистого пространства. Хотя, "чистым" ведь пространство нашей Вселенной вобще нигде не бывает, даже в межгалактической пустоте. Что-то из вещественной материи там да есть, в смысле что вкраплено. Так что для анализа вообще годен и этот случай − с "неоставшестью места для чистого пространства". И всё ж для простоты возьмём случай, когда вещественноматериальное занимает объём, меньший описываемого сферой Шварцшильда, но ещё не бесконечно малый − и такое вообще может быть, в качестве одной из последующих стадий коллапсирования мат. объекта. Так берём, чтоб меж тем материальным и горизонтом событий чёрной дыры было пространство, не дающее особых помех свету. Тут оказывается, что квазипоток пространства, возбуждаемый тем материальным по линиям, восставленным от своей поверхности, на участке от той поверхности до горизонта событий имеет квазискорость не меньшую, чем скорость изнутри дыры атакующего тот горизонт луча света. Ну, луча, испускаемого вовне с поверхности того материального − перпендикулярно сфере Шварцшильда как поверхности. Вот оно как всё выглядит по-нашему! Световая волна, благодаря фронтальному сносу из-за означенного "потока", стоит на месте, − с точки зрения наблюдателя, не входящего в сферу Шварцшильда. А что, стоящие волны физикам хорошо известны! И даже надо сказать сильнее: стоящесть есть свойство, которое обязана обретать волна, если она таки волна. И коль скоро свет есть волна, то получается мало сказать, что стоящесть ему не заказазана, надо говорить об обязаловке её ему, − только вот найти б условия её у него возникновения. Вот мы их и нашли! Возникает там, где сказываемость недоприроста пространства критически выражена. Ну, в смысле, где фронтальный квазинапор пространства на луч − критически велик (с тем что порождается сей квазинапор разностью прирастаемости пространства вдоль по линии луча). А вспомнить понятие псевдоветра, то всё прозвучит вот как: светолуч, стремящийся выйти из сферы Шварцшильда по перпендикуляру к ней, не силует преодолеть встречный псевдоветер пространства, порождаемый мат. наполнением чёрной дыры.

Согласно нашим наработкам, всё это можно обсказать в другой форме. Дескать, срабатывает квазиоткачка приповерхностного − к тому срединному вещественно-материальному конгломерату − пространства в пределах сферы Шварцшильда. Из-за неё светолуч, стартовав с поверхности конгломерата в направлении горизонта событий, до последнего добраться всё никак не может: перед его фронтом постоянно оказывается − как дополнительное − означенное приповерхностное пространство, только что "перекачанное".

Приведём, с подробностями, ещё одну зарисовку происходящего. Пусть за некоторое время световолновой цуг, испущенный из недр чёрной дыры, покрывает − ежели считать по переднему "торцу" его как лучевого отрезка − пространство до горизонта событий. Но со стороны заднего его "торца" − из-за действия чёрной дыры − пространства за то же время недоприбыло столько же (сравнительно с тем, что должно было прибыть, не будь там чёрной дыры). Чем получается, что свет пространство исправно покрывал, но нисколько относительно чёрной дыры не сместился, поскольку вместе с пространством, по которому распространялся, де факто оказался сдавшим назад − к центру дыры − на величину своей распространившести. То есть что? Свет от чёрной дыры исправно убегает, а она его так же исправно догоняет, хотя в смысле движения себя как тела и не гонится за ним: догнавшесть наступает просто благодаря тому, что перманентно дыра как бы всасывает в себя то самое пространство, по которому распространяется свет. Или скажем вот как: присутствие в том месте чёрной дыры просто засталяет Вселенную непрестанно тáк распределяться своим пространством, что расстановка предметов в ней оказывается та, в которой чёрная дыра − перманентно догнавша тот луч (ну, цуг, ибо луч догнать нельзя − из-за принципиального отсутстствия у него заднего конца). А радиусом сферы Шварцшильда оказывается расстояние, которое передняя волна цуга, испущенного из её центра, успевает пройти за время, за которое чёрная дыра на пределе ещё способна пространственно его скомпенсировать, то расстояние. Большее уже не смогла бы − хоть и за соответственно большее время, потому что скорость света относительно пространства та же на любом расстоянии от центра чёрной дыры, тогда как её способности компенсировать (нейтрализовав "засосом" в себя пространства) его перемещение относительно того центра − убывают по мере удаления от него, того центра.

Не спутать, однако, стоящую волну со стоячей. Последняя фактически есть один из случаев интерференционной картины − так сказать, предельно возможный её случай, но и только. Первая же − производное явления под названием "движение среды перенесения". Если бросить в реку камень, по поверхности пойдёт круговая волна. Так вот та часть её фронта, что движется против течения − параллельно ему, может оказаться несмещающейся относительно тебя, стоящего на берегу. Если скорость речного течения достаточно велика. То и будет стоящая волна − для тебя. Но не для массы речной воды: относительно неё та волна исправно бежит − с той же скоростью, какую имела бы относительно стоячей воды озера (брось вы в него точно такой же камень, и точно так же).

Ещё раз. В случае стоячести − волна неподвижна и относительно того агента, который волнуется (если, скажем, волна на глади озера − то относительно воды). А в случае стоящести − не неподвижна относительно такого агента: движется как обычно.

Для порядка приведём пример стоячих волн. Волнение от колеблющей воду доски доходит до пирса, отражается от него и идёт назад, тем налагаясь на самоё себя (интерференция!), и оттого поступательно останавливаясь и относительно воды (ну, водной поверхности), и относительно пирса. Остановка такая понятна: волнение, противоходно наложенное на самоё себя, в одну сторону тогда за единицу времени проходит ровно столько, сколько в противоположную, а значит − фактически стоит.

Так что и у света не будем путать стоящую и стоячую волны. Последняя, ежели у света её таки можно экспериментально добиться, фактически суть крайний случай его интерференции. А первая − явление сугубо относительное. Относительно нас, пребывающих за пределами горизонта событий чёрной дыры, световолна безусловно стоит, то бишь не идёт к нам, а значит − и не доходит до нас от той дыры как небесного тела. Потому-то мы ту световолну и не воспринимаем (читай: не видим чёрную дыру). И относительно материи чёрной дыры она, думаю, тоже стоит. А вот относительно пространства − движется, причём с характерной световой скоростью. Как то и положено свету. Пространство, значит, приоритетный определитель светоскорости! И даже надо сказать круче − единственный настоящий её определитель. Поскольку остальные, как видим, могут давать сбой, зануляясь. К таковой роли вакуум-пространства для света − мы подробнее вернёмся позже, когда читатель будет больше поднаторевшим в разводимых нами идеях.

Но как же одинаковость скорости света относительно любого мат. предмета − из всех наличных во Вселенной на разбираемый момент, в каком бы состоянии движения они ни прибывали? Об этом выскажемся, но сначала разберём, как такую неизменность светоскорости примирить − для световолнового цуга, уходящего от небесного тела по нормали к его поверхности − с наводимой тем телом квазиперекачкой пространства из-под заднего "торца" того цуга − под его передний "торец"? Она что же, не сносит цуг назад, тем замедляя его относительно нас, рассматривающих то небесное тело? Или хотя бы относительно самого того тела? То есть фронтального сноса световой волны квазисдвигающимся в самом себе пространством − нет? Нет, и залогом тому − так называемое гравитационное красное смещение, как опытный факт. На уходящую от него световую волну мат. тело влияет лишь тем образом, что увеличивает её длину − для наблюдателя, к которому она летит от того тела, при неизменности расстояния между ним и телом. Точно как длина увеличивается для нас, ежели волна испускается телом, достаточно быстро уходящим от нас (это, так сказать, обычное красное смещение, негравитационное). В русле нашей идеи тяготения напрашивается утверждение, что оба красных смещения есть одно и то же: влияемость "набегающего" пространства на непосредственный испускатель световой волны. Совсем конкретно говоря, на "выстрел" возбуждённого атома, волнующий светоносную среду. Такой "выстрел" − переход электрона с врéменной высокой орбиты на постоянную низкую, переводящий атом из возбуждённого в нормальное состояние и испускающий порцию света. И "выстрел" это потому, что подобное движение элемента электронной оболочки атома "бьёт" по границе вселенского пространства с эфиром, вспучивая её и тем полагая начало световой волне. Что же касается "набегания" пространства, то в разбираемых случаях (ну, гравитационного и обычного красных смещений) оно возникает разным путём касательно тела, но это − несущественная разница, ибо главное, что оба раза оно присутствует и одинаково срабатывает.

Итак, утверждение, что оба красных смещения есть одно и то же: влияемость "набегающего" пространства на непосредственный испускатель световой волны. Всё действительно так! Ведь естественное состояние мат. тела в пространстве района Солнца − увеличивающеся-ускоренное падение на Солнце, но происходящее без испытываемости ускорения. Ускорением обладает, но не испытывает его! Такого вот сорта удаляемость от нас тела, ежели находится оно меж нами и Солнцем, к которому мы как наблюдатели неподвижны, причём удаляемость то − без испытываемости видимого удаляющего воздействия. А это заставляет подозревать, что не тело взаимодействует с пространством, а пространство с телом! То есть что пространство района Солнца активно, и способно предъявить собой свету те условия, в какие ставит свет по отношению к пространству тело, удаляющееся от нас со светоиспусканием в нашу сторону (имеется в виду, что последнее − это уже вдали от Солнца, дабы теоретически не портилась картина). Сказать короче, идущий от Солнца свет заставяляет краснеть для нас особый режим тамошнего пространства.

Итак, околосолнечное пространство пребывает во внутреннем режиме, имитирующем удаляемость от нас всякого тела, расположенного в нём меж Солнцем и нами с неподвижностью (вместе с нами) относительно Солнца. И свет, идущий к нам от такого тела, реагирует на этот режим уменьшением для нас своей частоты. Как, впрочем, и свет от самого Солнца.

Логику разводить здесь возможно и вот ещё как. В случае уходящести от нас тела (как случае непрерывной ставящести им меж собой и нами дополнительного пространства) можно считать, что между нами и смотрящей на нас стороной его, самим по себе стоящего касательно нас, непрерывно возникает новое (ну, дополнительное) пространство. И точно то же происходит с телом, зафиксированным в гравитационном поле звезды (ну, находящимся в состоянии покоя относительно неё): организуемая звездой "перекачка" пространства от ближнего к ней конца тела − к дальнему и оказывается появлением дополнительного пространства за тем дальним, то есть меж ним и нами (мы ведь расположены за телом ещё дальше от звезды − в наблюдательной неподвижности относительно неё). Значит, можем считать, что это тело самочинно уходит от нас в сторону звезды − в "неподвижном" зато уже пространстве. И, стало быть, должно давать нам негравитационное красное смещение у света, им испускаемого в сторону нас. Теоретизационный круг замкнулся! Такая вот демонстрация обратимости в отношениях пространства с пребываяющими в нём телами.

Также ясно, что ежели наблюдаете достаточно быстро уходящее от вас и притом достаточно массивное тело, то приходящий к вам его свет оказывается при удвоенном красном смещении, так сказать. Одно из-за его ухода от вас, а второе − из-за его гравитации.

Какова физическая конкретика влияния "набегающего" пространства на "выстрел" возбуждённого атома? Такового атома, содержащегося в теле, на которое "набегает" пространство, а? Ну, скорость убегания от нас тела вычитается из скорости того элемента атома, что "бьёт" по пространственно-эфирной границе, отчего "удар" получается более вялым и возбуждает более пологую − читай: более красную − световую волну. Так потому, что атом поверхностного телесного слоя свой "удар" по границе всегда направляет в сторону, куда смотрит тело. (Ну, в смысле, проводит за счёт именно этой стороны, из чего, однако, нисколько не следует, что пространственно-эфирная граница именно в этой стороне и лежит, − не стоит "покупаться"! Тут подобно, как с кормы корабля бросаете камень − против хода того корабля: водная поверхность вовсе не лежит тогда в направлении броска, но камень её таки достигает, тем прилагая к ней сообщённую ему вами скорость, уменьшенную вычетом из неё скорости корабля.) Убегающее от нас тело "смотрит на нас" − в смысле, что атомам поверхностного слоя своего задника оставляет открытым пространство только в нашу сторону, прочие собой от них заслоняя. Вот "удары" атомов в эту сторону и происходят. Ну, в смысле, за счёт использования этой стороны и реализуются.

А в силу обратимости, показанной нами, то же в сущности происходит с возбуждённым атомом тела и в гравитационном поле (когда мы в том поле − дальше от того тела, ежели отмеряюще соотноситься с порождающим поле телом).

Это мы невзначай даём оригинальную версию происхождения эффекта Доплера! На наш взгляд, вполне жизненную, несмотря что эффект Доплера для света привычно объясняется разницей времён у тел, испускающих на нас свет: одно неподвижно к нам, другое от нас удаляется, отчего ход времени его испытывает релятивистскую изменяемость − относительно нас и неподвижного к нам тела, − изменяемость, приводящую в конечном счёте к изменению для нас частоты испускаемого им к нам света (сравнительно со светом той же природы, испускаемым на нас неподвижным к нам телом). Тело же, удаляющееся в испускаемости на нас несветовых волн, физикой как наукой видится удлиняющим цуг тех волн, что начинается с него и упирается в нас, но с оставляемостью числа волн в цуге тем же, что было бы в нём на момент его к нам дотянувшести после испущенности тем телом в своей относительно нас неподвижности. Отчего, как ясно, длины составляющих цуг волн должны увеличиваться.

Итак, сильное гравитационное поле звезды заметно увеличивает длину испускаемых ею на нас световолн. Однако скорость световолны относительно нас не меняет − оно тут так же бессильно, как бессильно её к нам поменять обычное убегание от нас испускающего свет тела. Почему же гравитационное поле не в силах? Точно как и обычная удаляемость от нас светоиспускателя − почему не может? Потому что свет распространяется не в пространстве как некой толще, а по границе последнего с эфиром, как мы уже указывали в своё время. Распространяется так, представляя собой "возмущенческие выпячиваемости" пространства в эфир, организованные в волну. Но ведь чтó бы в пространстве ни происходило, а граница его по эфиру остаётся всё тою же, то бишь принципиально "не замечает" происходящестей в пространстве как "толще", что и оборачивается неизменностью скорости света касательно элементов той "толщи", коль скоро он всецело связан именно с границей.

Гравитационное же поле здесь − то в смысле гравитационного квазиполя. Ведь "сдвигаемость" пространства, которая выглядит для нас силовым полем, на самом деле лишь кáк бы силовое поле, и посему имеет право пройти лишь в статусе квазиполя. Если очень уж захочется именно понятие поля привлечь для характеристики пространства как округи вещественной материи, организованной в тело.

Итак, выпячиваемости пространства в эфир, которое в оных (и из-за оных!) оказывается некими по характеру возмущённостями своими. При имеемости такими возмущённостями-выпяченностями свойства провоцироваться одно другим, тем как явление скользя по пространственно-эфирной границе. Возмущённость пространства в локали своей "выпяченности" − это замутившесть его как чего-то, только что бывшего прозрачным (тáк скажем, имея в виду, что и замутившесть и прозрачность здесь − понятия условные). То есть своею выпячиваемостью пространство изменяет заодно и свой вид: в локали выпяченности оно не то, как всюду (не то, как на ровном месте, так сказать). Ну, не совсем уже такое, во всяком случае. Впрочем, тут трудно сказать, то ли это выпячиваемость заставляет пространство возмущаться, то ли локальновозмущаемость в самом себе оборачивается у пространства выпячиваемостью (ну, атрибутивно выражается в ней). Но это и не столь важно − главное, что локально выпячивается и возмущается, в сопряжённости.

Для теорподстраховки обо всём об этом стоит выразиться пообтекаемей: материя в лице вакуум-пространства выпячивается в эфир по своей границе с ним, при автоматической у тех выпяченностей организуемости в волну по той границе. Волну, оказывающуюся для нас светом.

Вернёмся, однако, к смысловой линии, от которой отклонились. Возврат такой означает задатие вопроса: как выкрутиться из того, что фронтального сноса световой волны пространством − нет, а чёрные дыры меж тем − невидимы? Так отсутствие подобного сноса − это что касается гравитационных квазиполей несколлапсировавших мат. тел. У сколлапсировавших же подобные поля закритически велики, что позволяет всё тут объяснять квантованием: фронтальный снос световой волны отсутствует, пока вдруг (!) не возникает сразу в предельном своём выражении, превращающем ту волну в стоящую, и такое, по нашей идее о гравитации, должно происходить в пределах сферы Шварцшильда. В смысле, что именно там и больше нигде. Пространственный "поток" там обладает иным качеством − квазискоростью, не меньшею скорости света! Эта квазискорость делает качественно другим захваченное "потоком" пространство (ну, пространство, подлежное ему, − так сказать, участвующее в нём). Другим, в чём-то не худшим, нежели вещество мат. тел. А уж последнее, двигаясь встречь свету, его как раз увлекает (читай: притормаживает!), что доказал ещё в девятнадцатом веке Физо − своим знаменитым опытом. Так что если свет − в своём скоростном постоянстве относительно пространства − покрывает за "квант времени", прошедший с момента его испускания телом, пространства на "квант длины" больше, чем того − за его как лучевого цуга задним "торцом" − недоприбыло за это же время, он отрывается от означенного тела, и далее идёт как ни в чём не бывало, то есть для всех имеет свою "фирменную" скорость. А то тело стоит на грани бытия чёрной дырой, но ещё не чёрная дыра. И наоборот: когда − из-за критической плотности небесного тела − изошедшему из него свету не удалось в своём движении − за тот же условный временной квант − и на один квант длины (ну, условный пространственный квант) опередить порождаемое тем телом недоприбытие пространства, он как волна продолжает существовать, но останавливается, не отрываясь от того тела: наличествует волновым цугом, задним концом упёртым в породивший его атом (ну, в породившее его место тела, ибо какие уж там могут быть атомы, при таких-то высоких плотностях). А тело выступает тогда чёрной дырой − наислабейшей из возможных, в случае если уже за два временны́х кванта, прошедших с момента испускания света, недоприбытие пространства опережается светом на один квант длины.

Но это в зависимости, чтó считать такими квантами. Выше квант времени молчаливо не исключался как нечто такой величины, за которую свет успевает покрыть несколько квантов длины. Тогда анализ будет именно этаким. Но, похоже, всё несколько по-другому. Обратимся к историзму. Задавшись вопросом, до каких расстояний справедливы эффекты, рассчитанные ОТО, физики − общим строем своей науки − были вынуждены упереться в понятие кванта длины. Как того, что ставит предел таким расчётам. И из чего естественным образом выходит понятие кванта времени − ежели тот квант длины разделить на скорость света. Тем самым получается, что за квант времени свет может покрыть только один квант длины. Вот при использовании таких пониманий квантов − анализ будет другим. Наислабейшей из возможных чёрная дыра оказывается, ежели её горизонт событий определяется одним квантом длины. Ну, в смысле, за временной квант свет покрывает квант длины, выйдя из центра чёрной дыры, но и недоприбытие пространства, провоцируемое этим центром, умудряется за это время оказаться квантом длины тоже. И свет тем самым остаётся в дыре. Но если он распространяется вовне, выходя из точки, на квант длины отстоящей от центра, то за квант времени чёрная дыра там не справляется организовать пространственный недоприрост величиною в квант длины. Просто потому, что воздействие вещественной массы на пространство тем слабее, чем дальше от её центра. Свет же за квант времени там квант длины проходит, чем и оказывается вырвавшимся из дыры.


    Ваша оценка произведения:

Популярные книги за неделю