Текст книги "Вертолет, 2004 №1"
Автор книги: Вертолет Журнал
Жанры:
Транспорт и авиация
,сообщить о нарушении
Текущая страница: 5 (всего у книги 9 страниц)
Аэродинамические особенности винта схемы «ножницы»
Работы по совершенствованию аэродинамической схемы винта вертолета ведутся на Московском вертолетном заводе в нескольких направлениях. Это и разработка совместно с Центральным аэрогидродинамическим институтом новых, более совершенных профилей, имеющих более высокое качество при относительно невысоком уровне шарнирных моментов, и поиск оптимальной формы лопасти в плане, что выразилось в целом комплексе работ по исследованию форм законцовок лопастей. В статье, которую мы прерагаем вниманию читателей журнала, анализируются результаты работ по исследованию характеристик винта с неравномерным расположением лопастей в плоскости вращения, получившего название винт схемы «ножницы», или х-винт.
Концепция винта схемы «ножницы» впервые была реализована на вертолете Apache более 30 лет назад, примерно в то же время были опубликованы результаты исследований фирмы Bell Как выяснилось, они имели принципиальные отличия от результатов исследований характеристик х-винта, проведенных на МВЗ позже, около 20 лет назад. Испытания модели винта схемы «ножницы» в Китае, в Нанкинском университете аэронавтики и астронавтики подтвердили результаты, полученные на МВЗ, но обозначили новую проблему – значительное падение эффективности х-винта при угле между модулями винта, равном 60°.
Решено было повторить испытания х-образного винта, проведя их в более широком диапазоне чисел М, шага винта и угла «ножниц», и уделить особое внимание обозначенной китайскими исследователями проблеме. Для испытаний был выбран рулевой винт вертолета Ми-2, из двух комплектов лопастей которого был собран винт схемы «ножницы». А для исследования влияния на аэродинамические характеристики винта таких параметров, как азимутальный угол между парами лопастей в плоскости вращения и превышение одной пары над другой вдоль оси винта, была разработана и изготовлена специальная втулка, позволявшая варьировать эти параметры. Геометрические параметры экспериментального винта представлены в табл. 1.
Конструкция втулки позволяла собрать и испытать винт в двух типах конфигурации:
– нижняя лопастъ впереди верхней – Н-форма;
– верхняя лопасть впереди нижней – В-форма.
Под нижним и верхним положением лопастей понимается их положение относительно направления тяги винта при положительных углах установки лопастей (рис. 1).
Испытания винтов проводились на башне винтового аэродинамического стенда при натурных скоростях вращения винта. Окружная скорость концов лопастей соответствовала числам М=0,5; 0,6; 0,65; 0,7.
В испытаниях было выявлено существенное влияние на характеристики винта углового положения пар лопастей относительно друг друга. На рис. 2 показано изменение тяги винта в зависимости от азимутального положения лопастей при значении относительного расстояния h=h/R=0,074 между плоскостями вращения модулей винта (приведена размерная тяга винта, чтобы было понятно, каков порядок сил, развиваемых винтом).
Таблица 1. Геометрические параметры экспериментального винта
Диаметр винта | D=2,7 м |
Количество лопастей | k=4 |
Форма лопасти в плане | прямоугольная |
Хорда лопасти | b=0,22 м |
Коэффициент заполнения винта | s=0,2076 |
Крутка лопастей | D j=0° |
Профиль сечения лопасти | NACA-0012 |
Меньший угол между парами лопастей (угол «ножниц») | Ψ=0°, 15°, 30°, 45°, 60°, 90° |
Расстояние между плоскостями вращения лопастей (модулями) | h=h/R=0,074; 0,102; 0,126 |
Рис. 1. Положение лопастей относительно направления тяги винта
Рис. 2. Зависимость тяги винта от угла «ножниц» при шаге 18°, М=0,65
Рис. 5. Влияние расстояния между плоскостями вращения пар лопастей на тягу винта, O=18°
Испытания показали, что оптимальной конфигурацией винта является Н-форма, когда впереди идет нижняя лопасть. При этом существует диапазон угла «ножниц» между лопастями, оптимальный для получения наибольшего прироста силы тяги. Для h=h/R=0.074 это Ψ=45–60°. И наоборот, как видно из графика, минимальная тяга получена при расположении пар лопастей одна над другой – схема «биплан». В этой компоновке падение величины тяги относительно тяги винта при ортогональном. расположении лопастей составило более 20 %. Очевидно, что в этом случае проявляется отрицательное индуктивное влияние лопастей друг на друга.
Максимальное увеличение тяги винта относительно величины тяги при у =90° при изменении азимутального положения лопастей составило около 7 %. На рис. 2 приведены результаты измерения силы тяги винта для угла установки лопастей 18°, при котором был получен наибольший по величине прирост силы тяги. Увеличение тяги винта было получено и при других углах установки лопастей.
Существенное влияние угла «ножниц» на величину тяги винта отмечено в диапазоне углов установки лопастей от 10 до 20 градусов: увеличение тяги винта достигает 7 % по сравнению с тягой винта с ортогональным расположением лопастей. В диапазоне шагов винта от -9° до +9° зависимости ty(O) для различных значений угла «ножниц», кроме 0°, практически совпадают при соответствующих значениях чисел М.
Исследование зависимости тяговых характеристик винта от азимутального положения лопастей производилось при трех значениях расстояния между плоскостями вращения. На рис. 3 представлены некоторые результаты этих исследований для двух конфигураций винта при окружной скорости, соответствующей числу М=0,65. Левая часть графика соответствует В-форме винта, правая – Н-форме. Рассмотрев данные графика, можно сделать совершенно определенный вывод: конфигурация винта с лидирующей нижней лопастью имеет преимущества перед В-формой при всех испытанных расстояниях между модулями винта. Отчетливо видно, что у винта Н-формы зависимости тяги винта от угла ножниц Т(Ψ) имеют максимум в диапазоне углов 30–60°. При этом превышение величины тяги x-винта в оптимальной конфигурации над величиной тяги винта с ортогональным расположением лопастей составляет от 5 до 8 %. У винта В-формы также имеется оптимум, расположенный в районе 30°, но максимальное значение тяги на 5-10 % меньше, чем у винта Н-формы. У винта этой конфигурации наблюдается существенное падение величины тяги в диапазоне азимутальных углов 45–60°, что может быть объяснено отрицательным влиянием вихревого следа идущей впереди выше расположенной лопасти на лопасть, идущую следом, но расположенную ниже по оси винта. На этот факт впервые обратили внимание китайские специалисты.
При расположении пар лопастей одна над другой (схема «биплан») обращает на себя внимание резкое падение величины тяги винта, из чего следует, что зависимость тяги винта от угла установки в компоновке «биплан» с увеличением шага винта растет гораздо медленнее, чем при других конфигурациях винта (рис. 4). Очевидно, что в этом проявляется отрицательное индуктивное взаимодействие между лопастями верхнего и нижнего ярусов винта. С уменьшением расстояния между плоскостями вращения пар лопастей действие этого фактора увеличивается и, соответственно, увеличивается величина падения тяги винта.
Рис. 4. Зависимость тяги от угла установки лопастей для различных компоновок винта
Рис. 5. Зависимости коэффициента тяги от угла «ножниц» при постоянном
Рис. 6. Зависимости КПД винта от коэффициента тяги для Н– и В-форм винта
Анализ результатов испытаний был проведен с целью выявления зависимости величины силы тяги винта от варьируемых параметров. При этом не затрагивался вопрос о влиянии этих параметров на величину потребляемой мощности и КПД винта на режиме висения. В то же время было отмечено, что зависимость коэффициента тяги винта от угла «ножниц» при постоянном значении коэффициента крутящего момента имеет отчетливо выраженный максимум (рис. 5).
Такой подход может быть правомерен для рулевого винта вертолета, для которого необходимо получить максимальный выигрыш в величине силы тяги, обеспечивающей необходимые характеристики маневренности и запасы управления на режиме висения и малых скоростях. Величина КПД винта при этом, как правило, уходит на второй план, однако и об этом параметре приходится вспоминать, когда необходимо определять максимальную величину мощности, передаваемой трансмиссией рулевого винта. Очевидно, что для несущего винта вертолета вопрос получения максимального значения КПД винта на висении является важнейшим.
На рис. 6 показана зависимость КПД винта от коэффициента тяги в Н– и В-конфигурациях при различных значениях угла «ножниц» между лопастями. Зависимости приведены для относительного расстояния между парами лопастей h=0,102 и для числа М конца лопасти, равного 0,65. Видно, что максимальные значения КПД, полученные на винте Н-формы, выше, чем у винта В-формы.
Представляет интерес сопоставление величины относительного КПД винта схемы «ножницы» с КПД винта с ортогональным расположением лопастей. На рис. 7 показано влияние угла «ножниц» Ψ на КПД х-образного винта с межэтажным расстоянием h=h/R=0,102. По оси ординат отложена величина Δη =η 0 x-винта/η 0-90°то есть отношение КПД х-винта к КПД винта с ортогональным расположением лопастей.
Представленные зависимости со всей очевидностью демонстрируют преимущество Н-формы по сравнению с В-формой. Выявлен отчетливо выраженный максимум КПД винта в диапазоне угла «ножниц» 30–45° для компоновки Н-формы. Преимущество х-образного винта по КПД относительно винта с ортогональным расположением лопастей достигает 10–12 %.
Аналогичные зависимости получены и для других исследованных величин межэтажного расстояния. На графиках рис. 8 сопоставлены зависимости величины приращения КПД винта в конфигурации Н-формы от угла «ножниц» для двух крайних значений расстояния между модулями винта, при которых проводились испытания. Обращает на себя внимание тот факт, что при величине межэтажного расстояния h=h/R=0,126 с увеличением коэффициента тяги t yнаблюдается существенное смещение максимума зависимостей Δη(Ψ) в сторону меньших значений угла «ножниц». Такое же смещение имеет место и при меньших расстояниях между модулями винта, однако оно проявляется в меньшей степени.
Заметное увеличение КПД х-винта наблюдается при значениях t y> 0,1. То, что увеличение КПД х-винта происходит с ростом t y, весьма важно, поскольку это означает снижение максимальной величины мощности, потребляемой рулевым винтом х-образной схемы, по сравнению с обычным винтом при максимальных значениях шага.
Завершая описание и анализ результатов исследований аэродинамических особенностей винта схемы «ножницы», нужно отметить, что они в значительной мере отличаются от результатов, изложенных в работе У. Соннеборна и Дж. Дриза, представленной в 1974 году на 30-м форуме Американского вертолетного общества. По словам авторов, в испытаниях модельного винта был получен удивительный результат: «Ни изменение азимутального положения от 90 до 30°, ни изменение расстояния между плоскостями вращения лопастей не вызвали измеримых изменений в характеристиках винта на висении».
Рис. 7. Коэффициент изменения КПД х-винта для Н– и В-форм в зависимости от угла «ножниц»
Рис. 8. Влияние угла «ножниц» на приращение КПД винта
Исследования же аэродинамических характеристик винта схемы «ножницы» на МВЗ им. М.Л. Миля (как было показано выше) привели к принципиально другому результату: выявлено влияние на характеристики винта как угла «ножниц», так и межэтажного расстояния. Объяснить «удивительный резулътат», полученный западными коллегами, можно, на наш взгляд, следующим:
– они проводили исследования на модели винта малого размера (D=61 см) и, соответственно, измеряли чрезвычайно малые силы и моменты;
– испытания проводились при числах оборотов винта в минуту в 3 раза меньших, чем при испытаниях на МВЗ. Отсюда и то, что наши исследования привели к другому результату: с уменьшением числа оборотов и, соответственно, числа М на конце лопасти влияние угла «ножниц» на характеристики винта уменьшается (рис. 9).
Рис. 9. Влияние числа М на характеристики х-винта, h/R=0,102
Выводы, которые можно сделать на основе сказанного выше, состоят в следующем.:
– компоновка четырехлопастного винта схемы «ножницы» с нижней лидирующей лопастью имеет преимущество по тяге и по коэффициенту полезного действия как перед винтом с ортогональным расположением лопастей, так и перед винтом схемы «ножницы» с верхней лидирующей лопастью;
– оптимальной по величине тяги компоновкой винта Н-формы является компоновка с углом «ножниц» в диапазоне от 30 до 60°. Увеличение тяги достигает 7 % по сравнению с винтом с ортогональным расположением лопастей;
– винт схемы «ножницы» с расположением модулей винта в компоновке «биплан» является наихудшим по величине тяги среди всех исследованных компоновок винта. Потери тяги при максимальных шагах достигают 25 % по сравнению с тягой винта с ортогональным расположением лопастей;
– преимущества схемы «ножницы» по величине тяги винта ощутимо проявляются при коэффициентах тяги t y> 0,1;
– оптимальный по КПД винта диапазон углов «ножниц» составляет от 30 до 60°. С увеличением коэффициента тяги максимум зависимости Δη(Ψ) смещается в сторону меньших значений угла «ножниц». Это смещение увеличивается с увеличением, расстояния между модулями винта;
– заметное увеличение КПД х-винта наблюдается при значениях t y> 0,1, при этом отмечена закономерность: чем больше t y, тем больше прирост КПД винта. Максимальное увеличение КПД х-винта достигает 10 % относительно КПД винта с ортогональным расположением лопастей;
– отмечено существенное ухудшение характеристик винта как по тяге, так и по КПД при угле «ножниц» 60° в компоновке винта с верхней лидирующей лопаетъю. На винте с нижней лидирующей лопастью этот эффект отсутствует.
Михаил РОЖДЕСТВЕНСКИЙ, канд. техн. наук, начальник отдела аэродинамики, МВЗ им. М.Л. Миля
ЭКСПЛУАТАЦИЯ
Задача у каждого своя
Ми-8МТПБ
За сорок лет безупречной службы Ми-8 освоил множество мирных и военных специальностей. Вертолет используется в качестве ударного, транспортного, спасательного, санитарного, агитационного (с громкоговорителем на борту) в армиях многих стран мира. При этом любая смена оборудования редко занимает больше часа. В моей практике были случаи, когда один вертолет за летную смену успел отстреляться НУРС, сбросить бомбы, «поработать» миноукладчиком и доставить груз на внешней подвеске. Сегодня можно смело сказать, что эта машина – настоящий рекордсмен по количеству модификаций.
Первым заказчиком при создании вертолета Ми-8 было Министерство гражданской авиации СССР, поэтому он создавался с пассажирским салоном. На вооружение Советской Армии вертолет был принят в транспортно– боевом варианте – с просторной грузовой кабиной и откидными сиденьями десантников. Со временем возникла необходимость в специальном вертолете-салоне для перевозки высшего командного состава армии. Было разработано несколько модификаций Ми-8 ПС, различавшихся количеством пассажирских мест: 7, 9, 11. Общим для них были квадратные окна грузовой кабины, откидная дверь– трап, грузовые створки с трапом. В задней части грузовой кабины оборудовались гардероб и туалет. Армейские вертолеты отличались от своих гражданских «собратьев» только окраской и системой связи. Позже аналогичные модификации были разработаны на базе Ми-8МТ. Но в войсках всегда не хватало вертолетов-салонов. Поэтому появилось большое количество самодельных салонов. На обычные Ми-8Т, Ми-8МТ прямо в частях устанавливали мягкие кресла, диваны (нередко обычную мягкую мебель, используемую в быту), стол для работы, дополнительное освещение. При необходимости на вертолет подвешивали фермы вооружения и использовали как транспортно-боевой. Правда, как грузовой вертолет использовался уже у. ало: убирать мебель долго, а места в салоне она занимает много.
Более широкое распространение в войсках получили вертолеты боевого управления, воздушно-командные пункты. Учтя опыт эксплуатации вертолетов аналогичного назначения, первые Ми-8ВКП оборудовали сами военные. На авиаремонтных предприятиях устанавливались дополнительные комплекты связи, включавшие радиостанции и радиоретрансляторы. Штатных источников электроэнергии для нового оборудования было недостаточно, поэтому на фермах по бокам фюзеляжа крепились контейнеры с дополнительными аккумуляторами. Появились и дополнительные антенны, придающие характерный внешний вид этой модификации Ми-8. Серийная модификация вертолета управления появилась в 1977 году и получила обозначение Ми-9. В этой машине был учтен и опыт эксплуатации Ми-8ВзПУ: для уменьшения аэродинамического сопротивления дополнительные источники электроэнергии убрали внутрь вертолета, антенны тоже стали располагаться там, где создавали минимальнее сопротивление. При этом учитывалась и возможность эффективной работы самих антенн. Внутренние объемы грузовой кабины были заняты радиоаппаратурой, что исключало установку штатных дополнительных бочек для топлива. В связи с этим использовались расширенные подвесные топливные баки. Вертолет получился тяжелее базовой модели и требовал о? летчиков более высокого уровня подготовки. Именно вследствие недостаточной обученности летчиков, к примеру, в 1982 году произошла катастрофа вертолета в Прикарпатском военном округе: выполняя полет на предельно малой высоте, пилот не принял во внимание особенности машины и не смог перелететь опору ЛЭП.
Вертолеты Ми-8ВзПУ и Ми-9 обычно использовались вместе, в отдельных эскадрильях, приданных мотострелковым, танковым и авиационным дивизиям, и в отдельных вертолетных полках связи и управления.
Особое место заняли модификации Ми-8 радиоэлектронной борьбы. Первым в этом, ряду стал Ми-8СМВ. Созданный в 1971 году, он предназначался для обеспечения боевых действий самолетов фронтовой авиации во фронтовой зоне и на тактической глубине. Вертолетный вариант комплекса радиоэлектронной борьбы «Смальта-В», смонтированный в грузовой кабине, обеспечивал надежную защиту от зенитно-ракетных комплексов (ЗРК) «Хок». Внешне вертолет отличался от базовой модели отсутствием ферм, подвески вооружения, лебедки ЛПГ-2. По бокам располагалось по две небольшие приемно-передающие антенны. Задачи по обеспечению работы ударных групп самолетов обычно выполняло звено вертолетов. Имея предварительные данные разведки о наличии в районе ЗРК «Хок», вертолеты начинали барражировать на расстоянии, немного превышающем дальность пуска ракет – 35 км (модернизированный «Хок» – 42 км). Вертолет принимал сигнал комплекса наведения приемной антенной, многократно усиливал его бортовым оборудованием, создавая тем самым отметку ложной цели, которая отвлекала на себя ракеты.
В 1974 году появилась модификация Ми-8ПП, предназначенная для постановки помех наземным РЛС противника а также радиоразведки. После доработок в 1980 и 1982 годах боевые возможности вертолета расширились, и он стая называться Ми-8ППА. Аппарат, перегруженный аппаратурой, получился очень тяжелым. Свободного места внутри не нашлось даже для съемного трапа. Под дверью грузовой кабины установили неубирающуюся лесенку. Два обтекателя аппаратуры по бокам фюзеляжа и два блока антенн з задней грузовой кабине создали оригинальный облик вертолета. Для отвода тепла вырабатываемого аппаратурой, за передней стойкой шасси было установлено шесть мощных радиаторов, для сохранения дальности полета – увеличенные подвесные топливные баки (левый на 1140 л, правый – 1030 л, расходный – 435 л, общий запас топлива составлял 2605 л). Ради экономии веса с хвостовой балки был убран датчик измерения высоты (ДИВ). Мощности двигателей ТВ2-117 явно не хватало. Летчики, летавшие на Ми-8ППА, вспоминают, что в жаркую погоду вертолет мог висеть только в метре от земли.
Несмотря на недостатки, комплекс вертолета работал очень эффективно, создавая помехи в широком диапазоне радиочастот, парализуя работу станций обнаружения, наведения и целеуказания противника. После учений летчикам показывали результаты их работы – фотографии полностью засвеченных экранов РЛС. Вертолетами Ми-8СМВ и Ми-8ППА комплектовались отдельные эскадрильи РЭБ, например, такая эскадрилья из 10 вертолетов Ми-8СМВ и 10 Ми-8ППА базировалась в Борисполе. Здесь хотелось бы сделать небольшое отступление. В начале 80-х годов армейская авиация активно развивалась, формировались новые вертолетные части, на вооружение поступали новые вертолеты. Военные училища не успевали готовить летчиков. Большое количество молодых летчиков подготовили в ДОСААФ. Упомянутая эскадрилья РЭБ почти полностью была укомплектована «досаафовцами», лейтенантами и младшими лейтенантами, имевшими 10 и 3 месяца подготовки соответственно. То, что им доверяли эксплуатировать такую сложную технику и решать не менее сложные боевые задачи, говорит о высоком профессиональном уровне подготовки выпускников ДОСААФ.
С принятием на вооружение модернизированного вертолета Ми-8МТ на его базе появились аналогичные модификации. Больше десятка различных модификаций РЭБ: Ми-8МТИ (Ми-13), Ми-8МТПБ, Ми-8МТПИ, Ми-8МТПШ, Ми-8МТД, Ми-8МТС, Ми-8МТР1, Ми-8МТР-2, Ми-8МТУ, Ми-8МШ1, Ми-8МТШ2, Ми-8МТШЗ, Ми-8МТЯ, Ми-МТ-1С должны были заменить «ветеранов». Каждая из этих машин имеет свою специфику и предназначена для работы по разным станциям противника. Комплектуются авиачасти РЭБ вертолетами различных модификаций.
Ми-9
Ми-8МТЯ активно использовался во многих «горячих» точках, начиная с Афганистана. В составе 50 смешанного авиационного полка базировавшегося в Кабуле, в 1987–1988 годах было четыре таких вертолета. Эти машины в целях снижения температуры были оборудованы системой впрыска воды в двигатели, что увеличивало мощность двигателей на взлетных режимах и рабочий потолок полета. Установленная на борту аппаратура позволяла прослушивать переговоры противника (вместе с экипажем летали переводчики с фарси, иранского, индийского), пеленговать и определять местонахождение передающих станции. Это помогало сузить район поиска радиостанции, быстрее установить ее точное местоположение и передать координаты для нанесения ударов. Полеты были очень рискованными, так как моджахеды располагали уже достаточным количеством ПЗРК «Стрела» и «Стингер» с дальностью до 5000 м, а полеты проходили на высоте 4000 м. К концу 1988 года из четырех вертолетов Ми-8МТЯ было сбито три!
Вертолеты этой модификации активно использовались в первую и вторую чеченские кампании, доставляя ценные разведывательные данные нашему командованию. К сожалению, нехватка обычных транспортных вертолетов приводит к тому, что демонтируется сложная аппаратура и вертолет эксплуатируется как обычный транспортный. Так, в одной из частей был «раздет» Ми-8МТИ и отправлен на Северный Кавказ.
В завершение хотелось бы отметить, что я коснулся далеко не всех специальных модификаций легендарного Ми-8, который, думается, еще долгое время будет выполнять самые разные гражданские и военные задачи.
Александр АРТЮХ, начальник группы вооружения вертолетов