Текст книги "Эксплуатация электрических подстанций и распределительных устройств"
Автор книги: Валентин Красник
Жанры:
Справочники
,сообщить о нарушении
Текущая страница: 9 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]
3.7. Осмотры СК и контроль за его работой
Особое внимание при осмотрах и контроле за работой СК следует обращать на недопустимость длительных перегрузок. Кратковременные перегрузки СК по току статора допускаются в пределах, указанных в табл. 3.1.
Таблица 3.1
Внешний осмотр СК должен вестись в строго установленные периоды, а именно:
осмотр работающего СК дежурным персоналом производится не реже 1 раза в смену;
периодические осмотры должны производиться инженерно-техническим персоналом соответствующих участков и служб ПС.
При осмотре проверяются:
режим работы СК и температура его активных частей;
сопротивление изоляции цепи возбуждения и подшипников;
вибрация подшипников;
работа систем охлаждения и смазки;
внешнее состояние СК и системы возбуждения.
Контроль за режимом работы и температурой активных частей машины ведется по измерительным приборам. При логометрах с переключателями должны быть таблицы максимальных значений измеряемых температур. Показания приборов записываются в щитовой журнал (ведомость) не реже 2 раз за смену.
При отклонении теплового режима СК от номинального после проверки показаний приборов убеждаются в нормальном поступлении охлаждающей воды, открытии задвижек газоохладителей; проверяют напряжение, величину и симметрию тока нагрузки СК. Если причину повышения температуры выявить не удается, необходимо разгрузить СК и проконтролировать снижение температуры. В случае отсутствия эффекта принятых мер СК отключают от сети.
Мощность СК при работе в емкостном и индуктивном режимах различна. В режиме перевозбуждения (индуктивный квадрант) мощность СК составляет не более 50 % его номинальной мощности при постоянных температуре и давлении охлаждающего газа. При работе в индуктивном квадранте мощность ограничивается из-за появления местных нагревов лобовых частей обмотки и магнитный частей машины.
Температура обмоток с изоляцией класса В и стали СК в установившемся режиме не должна превышать следующих значений, °С:
обмотка статора при охлаждении:
воздушном – 105;
водородном при избыточном давлении, кПа:
5 – 105;
50 – 100;
100 – 95;
200 – 90;
обмотка ротора (независимо от вида охлаждающей среды и давления) – 130;
сердечник статора (независимо от вида охлаждающей среды и давления) – 105.
Температура воды, поступающей в охладитель СК, не должна превышать 30 °C, а охлажденного газа – 40 °C. Перепад температур охлаждающего газа, а также воды в газоохладителях при номинальной мощности СК должен быть в пределах 6,5–9,5 °C.
По условиям нагрева активной стали работа СК с напряжением более чем 1,1Uном не допускается.
При напряжении менее 0,95Uном СК не может длительно работать с номинальной мощностью, так как для этого необходимо увеличить ток статора, который не должен быть выше 1,05Iном. Лишь в аварийных режимах допускается кратковременная перегрузка СК по току статора и ротора. Длительность кратковременной перегрузки в зависимости от кратности тока статора, отнесенного к его длительно допустимому значению при данной температуре и давлении, не должна превышать значений, указанных в табл. 3.1.
Ток ротора при перегрузке устанавливается соответствующим токовой нагрузке статора.
При контроле изоляции цепи возбуждения необходимо учитывать следующее:
запрещается работа СК с замыканием на землю в цепи возбуждения. Причиной такого строгого требования является опасность появления второго замыкания на землю, из-за чего часть витков и даже отдельные катушки могут оказаться зашунтированными, что может привести к тяжелым повреждениям СК;
цепи напряжения обмотки возбуждения для измерения и подключения устройства АВР должны выполняться отдельным кабелем с повышенным уровнем изоляции без захода через обычные ряды зажимов.
Для выявления дефектов изоляции систематически (не реже 1 раза в смену) контролируется состояние изоляции цепей возбуждения относительно земли. При этом измеряются напряжение U между контактными кольцами, а также напряжения U1 и U2 между каждым контактным кольцом и валом ротора.
Сопротивление изоляции Rиз определяется по следующей формуле:
Rиз = RвU/(U1 + U2), (3.1)
где Rв – внутренне сопротивление вольтметра (80-100 кОм).
При хорошей изоляции цепей возбуждения U1 и U2 близки к нулю. Если одно из них окажется равным нулю, а другое – полному напряжению возбуждения, то это является признаком наличия замыкания на землю. В этом случае СК необходимо отключить от сети с дальнейшим выводом в ремонт.
Контроль изоляции подшипников необходим, поскольку нарушение изоляции приводит к образованию пути для прохождения через подшипники, вал и станину токов, появляющихся в стали ротора вследствие несимметрии магнитной системы машины. Эти токи могут привести к повреждению шейки вала и поверхности вкладышей подшипников.
Состояние изоляции проверяется измерением и сравнением между собой двух напряжений: между концами вала ротора и на изоляционной прокладке стойки. При таких измерениях масляные пленки в подшипниках должны шунтироваться временной перемычкой, присоединяемой с помощью контактных щупов к валу и стойке подшипника.
При хорошей изоляции оба напряжения должны быть равны. Если изоляция неисправна, напряжение на прокладке будет меньше напряжения на валу ротора. Для контроля изоляции подшипников СК применяются специальные схемы измерения.
Проверка вибрации. Вибрация СК возникает как по причине механической неуравновешенности ротора, так и из-за несимметрии электромагнитных сил в машине.
Вибрация из-за механических причин практически не зависит от изменения нагрузки СК и появляется уже на ХХ.
Несимметрия электромагнитных сил, действующих на ротор, может возникнуть из-за нарушения равномерности воздушного зазора в машине или вследствие виткового замыкания в обмотке ротора. Вибрация из-за такого вида несимметрии зависит от нагрузки СК и возрастает с увеличением тока возбуждения.
Вибрация приводит к форсированному износу отдельных деталей с последующим выходом СК из строя.
При осмотре СК его вибрационное состояние проверяется обычно на ощупь. При резком повышении вибрации СК разгружают и отключают от сети.
Проверка работы систем охлаждения и смазки. В первую очередь при осмотре следует проверить положение вентилей водяной и газовой систем охлаждения, которое должно соответствовать режиму работы системы.
Все вентили и краны должны быть пронумерованы, и на них перед номером вентиля и крана должны быть нанесены индексы:
М – в системе смазки;
В – в газовой системе, заполненной водородом;
У – в системе, заполненной диоксидом углерода.
Проверке подлежат уровень воды в брызгальных бассейнах, работа сопел, давление и температура воды в напорном и сливном коллекторах СК. На ощупь проверяется температура электродвигателей циркуляционных насосов и уровень масла в подшипниках, а также температура полупроводниковых выпрямителей.
При наличии установок противонакипной магнитной обработки воды проверяют соответствие значений напряжения и выпрямленного тока испытательным наладочным параметрам.
На ощупь и на слух при осмотре масляной системы проверяются работа маслонасоса, давление и температура циркулирующего масла и уровень его в маслобаке. Снижение уровня масла в баке до уровня сливного маслопровода вызовет подсос воздуха в маслосистему, срыв струи масла и отключение СК.
Состояние газовой системы проверяется по давлению водорода и отсутствию утечек водорода на слух, а также путем контрольных замеров давления по манометру, проводимых через 1 ч при постоянной температуре СК. Отбирается проба газа из СК и производится ее химический анализ. По результатам анализа проверяют правильность работы автоматического газоанализатора. При его неисправности он отключается, а состав газа контролируется химическим анализом, проводимым не реже 1 раза в смену.
Проверка состояния СК и оборудования систем возбуждения производятся разными способами, например такими, как прослушивание (при исправно работающем СК характер его шума не изменяется), осмотр щеточного аппарата на кольцах ротора и коллекторе, которые не должны иметь искрение, способное привести к появлению огня или к КЗ.
Вероятность возникновения кругового огня и перекрытия коллекторных пластин возрастает в режиме форсировки возбуждения. Причинами искрения щеток на кольцах коллектора могут явиться недостаточное нажатие щеток, их плохая подгонка к кольцам, заклинивание щеток в щеткодержателе, вибрация щеток и др. Работе щеток без возникновения искр способствуют винтовые канавки на их рабочей поверхности, а при отсутствии канавок – диагональные прорези, наносимые ножовочным полотном на глубину 6–8 мм. При работе электрических машин поверхности их коллекторов и колец покрываются тонким слоем темной политуры, представляющей собой пленку закиси меди, покрытую частицами графита. Такие поверхности изнашиваются медленнее по сравнению со свежеотполированной медью.
При проверке нагрева возбудителя следует знать, что допустимая температура нагрева их обмоток составляет 70 °C, стали и коллектора – 80 °C.
При тиристорной системе возбуждения при осмотре следует обращать внимание на положения ключей, переключателей, накладок, автоматических выключателей, указателей реле, сигнальных устройств и сигнальных ламп. Исправность тиристоров контролируется горением неоновых ламп, а перегорание всех тиристоров приводит к срабатыванию быстродействующих предохранителей.
Кроме того, при осмотре необходимо следить за отсутствием течей в системе охлаждения тиристоров, проверять температуру охлаждающей дистиллированной воды и поддерживать ее в пределах 15–35 °C, контролировать перепад давления дистиллята (должен быть не менее 0,2 МПа), а также протекание воды через охладители.
Поскольку все устройства и оборудование в шкафах тиристорного возбуждения находятся под напряжением 380 В, то работы в цепях преобразователя без отключения напряжения запрещаются.
Контроль за работой системы бесщеточного возбуждения ведется по измерительным приборам и сигнальной аппаратуре, размещенной на панели АРВ. При осмотре проверяется положение сигнальных устройств, реле, переключателей, а также состояние и охлаждение тиристоров.
Система бесщеточного возбуждения снабжена защитой от внутренних КЗ в цепях ротора и защитой тиристорного преобразователя от сверхтока. При получении со щита управления сигнала о неисправности в системе возбуждения персонал обязан принять меры по выяснению причин и устранению неисправностей. В случае потери и неуспешных попыток восстановления возбуждения СК он должен быть отключен от сети, так как потребляя реактивную мощность, СК увеличивает потери в сети и понижает напряжение на шинах ПС.
Глава 4. Обслуживание коммутационных аппаратов
4.1. Термины, определения и классификация коммутационных аппаратов высокого напряжения
Коммутационный электрический аппарат (аппарат) представляет собой электрический аппарат, предназначенный для коммутации электрических цепей и проведения тока (ГОСТ 17703-72).
Коммутация электрической цепи (коммутирование) – процесс переключений электрических соединений элементов электрической цепи, выключение полупроводникового прибора (ГОСТ 18311-80).
В качестве коммутационных аппаратов на ПС и в РУ высокого напряжения применяются выключатели, разъединители, отделители, короткозамыкатели и установки приготовления сжатого воздуха. Последние служат для приведения в действие пневматических приводов выключателей и разъединителей.
Выключатель – это контактный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение нормированного времени и отключать токи при нормированных ненормальных условиях в цепи, таких как КЗ (СТ МЭК 50(441)-84).
В соответствии с ГОСТ Р 52565-2006, выключатели по принципу устройства (видам) разделяются на масляные, воздушные, вакуумные, электромагнитные, газовые.
По размещению дугогасительного устройства различают выключатели:
с дугогасительными устройствами, расположенными в заземленном корпусе (баке), – баковые выключатели;
с дугогасительными устройствами, расположенными в корпусе (баке), находящемся под напряжением, – колонковые или подвесные выключатели.
По конструктивной связи между полюсами различают выключатели:
трехполюсного исполнения: с тремя полюсами в общем кожухе и с тремя полюсами на общем основании (фиксированное междуполюсное расстояние);
однополюсного исполнения – с полюсами на отдельных основаниях (нефиксированное междуполюсное расстояние).
Выключатель масляный – выключатель, контакты которого размыкаются и замыкаются в масле (СТ МЭК 50 (441)—84).
Характерными примерами масляных выключателей являются выключатели с малым объемом масла в баке, находящемся под напряжением, и выключатели с большим объемом в заземленном баке.
Выключатель воздушный – выключатель, в котором дуга образуется в потоке газа, воздуха высокого давления (ГОСТ Р 52565—2006).
Выключатель газовый – выключатель, в котором дуга образуется в потоке газа, кроме воздуха (ГОСТ Р 52565—2006).
Выключатель вакуумный – выключатель, контакты которого размыкаются и замыкаются в оболочке с высоким вакуумом (ГОСТ Р 52565-2006).
Выключатель электромагнитный – выключатель, в котором гашение дуги осуществляется за счет ее охлаждения при перемещении под действием электромагнитного поля (ГОСТ Р 52565—2006).
Разъединитель – это контактный коммутационный аппарат, предназначенный для коммутации электрической цепи без тока или с незначительным током, который для обеспечения безопасности имеет в отключенном положении изоляционный промежуток.
Под незначительными токами в данном случае понимаются токи измерительных цепей, токи утечки, емкостные токи выводных шин, коротких кабелей, токи ХХ трансформаторов (ГОСТ 17703—72).
Разъединитель в отключенном положении должен создавать ясно видимый разрыв цепи, соответствующий классу напряжения установки.
Приводы разъединителей должны иметь устройства фиксации в каждом из двух оперативных положений: включенном и отключенном. Кроме того, они должны иметь надежные упоры, ограничивающие поворот главных ножей на угол больше заданного.
В соответствии с требованиями ГОСТ Р 52726—2007, разъединитель способен размыкать и замыкать цепь при малом токе или малом изменении напряжения на выводах каждого из его полюсов. Он также способен проводить токи при нормированных условиях в цепи и проводить в течение нормированного времени токи при ненормированных условиях, таких как КЗ.
Малые токи – это такие токи, как емкостные токи вводов, шин, соединений, очень коротких кабелей, токи постоянно соединенных ступенчатых сопротивлений выключателей и токи ТН и делителей напряжения (ГОСТ Р 52726—2007).
Для номинальных напряжений до 330 кВ включительно ток, не превышающий 0,5 А, по этому определению считается малым током; для номинального напряжения 500 кВ и выше и токов, превышающих 0,5 А, необходимо проконсультироваться с изготовителем, если нет особых указаний в руководствах по эксплуатации разъединителей.
К малым изменениям напряжения относятся изменения напряжения, возникающие при шунтировании регуляторов индуктивного напряжения или выключателей (ГОСТ Р 52726—2007).
Для разъединителей номинальным напряжением 110 кВ и выше может быть установлена коммутация уравнительных токов.
В соответствии с ГОСТ Р 52726—2007, разъединители разделяются на следующие классы:
разъединитель класса М0 – разъединитель, имеющий механическую износостойкость 1000 рабочих циклов, применяемый в распределительных и передающих системах для выполнения общих требований настоящего стандарта;
разъединитель класса М1 – разъединитель, имеющий механическую износостойкость 2000 рабочих циклов, в основном применяемый для совместной работы с выключателем одного класса;
разъединитель класса М2 – разъединитель, имеющий повышенную механическую износостойкость 10 000 рабочих циклов, в основном применяемый для совместной работы с выключателем одного класса.
Отделитель – это коммутационный электрический аппарат, предназначенный для быстрого отсоединения поврежденного участка электросети в бестоковую паузу, а также для отключения и включения намагничивающих и зарядных токов. Его контактная система не приспособлена для операций под током нагрузки. Отделители по конструкции токоведущих частей не отличаются от разъединителей.
Отделители применяются в основном на ПС без выключателей со стороны ВН.
В ЗРУ 6—35 кВ разъединителями и отделителями заводского исполнения допускается включение и отключение намагничивающего тока силовых трансформаторов, зарядного тока ВЛ и КЛ, а также тока замыкания на землю, не превышающих значений, указанных в табл. 4.1.
Таблица 4.1
Предельные значения токов ХХ и зарядных токов, отключаемых и включаемых разъединителями и отделителями 110–500 кВ, указаны в табл. 4.2.
Короткозамыкатель – это коммутационный электрический аппарат, предназначенный для создания искусственного КЗ в электрической цепи (ГОСТ 17703-72).
Конструктивно короткозамыкатель аналогичен заземлителю, но за счет мощной контактной системы может включаться на КЗ.
Короткозамыкатели вместе с отделителями применяются в упрощенных схемах ПС вместо более дорогих силовых выключателей. Такая замена позволяет экономить значительные денежные средства, поскольку стоимость силовых выключателей сравнительно велика. Чем больше присоединений на ПС и чем выше напряжение высокой стороны, тем более значительной становится выгода от использования упрощенных схем на короткозамыкателях и отделителях. В основном упрощенные схемы получили распространение на напряжении 35 и 110 кВ.
В настоящее время при реконструкции и техническом перевооружении ПС и РУ предусматривается замена отделителей и короткозамыкателей на выключатели.
4.2. Обслуживание выключателей высокого напряжения
4.2.1. Требования к выключателямВыключатели высокого напряжения в качестве коммутационных аппаратов предназначены для коммутации электрических цепей с целью включения и отключения токов нагрузки, токов намагничивания силовых трансформаторов и зарядных токов линий и шин, а также отключения токов КЗ, включая коммутацию при изменениях схем электроустановок.
Выключатели рассчитываются для работы практически во всех режимах электрической цепи, в том числе в тяжелом режиме отключения токов КЗ.
Исходя из этого, к выключателям предъявляются следующие требования:
надежное отключение любых токов нагрузки в пределах их номинальных значений;
быстродействие при отключениях, связанное с гашением дуги в возможно минимальный промежуток времени;
пригодность для АПВ после отключения электрической цепи под действием защиты;
обеспечение взрыво– и пожаробезопасности при всех видах коммутации;
удобство в обслуживании, в частности, каждый выключатель (или его привод) должен иметь хорошо видимый указатель положения «Включено» и «Отключено». Если выключатель не имеет открытых контактов, а его привод установлен отдельно (например, за стенкой) от выключателя, то указатели положения должны быть и на выключателе, и на его приводе.
Отключение и включение под напряжение и в работу присоединения, имеющего в своей цепи выключатель, производится дистанционно. При этом кнопка (ключ управления) выключателя удерживается в положении «Отключить» или «Включить» до момента срабатывания сигнализации, указывающей на окончание операции.
При отказе в отключении выключателя при дистанционном управлении во избежание несчастных случаев не допускается его отключение воздействием на кнопку местного управления, защелку привода или сердечник отключающего электромагнита. Для вывода выключателя в ремонт в этом случае обесточивается соответствующая секция или участок электроустановки. Отключение такого выключателя по месту допустимо лишь при настоятельной необходимости, например, для снятия напряжения с пострадавшего, если нет других вариантов.
Из многочисленных типов и конструкций выключателей на практике наибольшее распространение получили масляные выключатели с большим объемом масла, выключатели с малым объемом масла и воздушные выключатели. Все более широкое применение получают элегазовые и вакуумные выключатели.
Общими для всех выключателей основными конструктивными частями являются токопроводящие и контактные системы с дугогасительными устройствами, изоляционные конструкции, корпуса и вспомогательные элементы (газоотводы, предохранительные клапаны, указатели положения и др.), передаточные механизмы и приводы.