Текст книги "Очерки по истории географических открытий. Новейшие географические открытия и исследования (1917–1985 гг.). Том 5"
Автор книги: Вадим Магидович
Соавторы: Иосиф Магидович
Жанры:
История
,сообщить о нарушении
Текущая страница: 12 (всего у книги 18 страниц)
Глава 8.
ИЗУЧЕНИЕ ЗЕМЛИ ИЗ КОСМОСА
Космическая съемка: методы и возможности
Сигнал «бип-бип…» первого советского спутника 4 октября 1957 г. возвестил о начале новой, космической эры в истории человечества. А спустя почти четыре года, 12 апреля 1961 г. Юрий Алексеевич Гагарин совершил первый полет человека в космос, взглянув на Землю со стороны, и стал зачинателем ее изучения с орбиты. 6 и 7 августа того же года Герман Степанович Титов, 17 раз обогнув планету, сделал несколько снимков ее поверхности, – с этого началась планомерная космическая фотосъемка.
С тех пор количество дистанционных наблюдений растет лавинообразно; появились разнообразные фотографические и нефотографические системы, в том числе многозональные фотокамеры, телевизионные камеры со специальной передающей электронно-лучевой трубкой (видиконом), инфракрасные сканирующие радиометры[44]44
Сканирующей называется аппаратура, обеспечивающая получение изображений в видимой или инфракрасной областях электромагнитного спектра путем последовательного построчного прослеживания участка местности.
[Закрыть], микроволновые радиометры для радиотепловой съемки, различные радары для активного зондирования (т. е. посылающие сигналы и регистрирующие их отражение от поверхности Земли). Значительно возросло и количество космических летательных аппаратов – искусственные спутники, орбитальные станции и пилотируемые корабли. Передаваемая ими обширная и разнообразная информация используется в ряде отраслей знания, включая такие науки о Земле, как геоморфология и геология, океанология и гидрография. В результате возникло новое научное направление – космическое землеведение, изучающее закономерности состава и строения геосферы, в частности рельеф и гидрографию суши, акватории океанов и морей.
Информация о любом уголке Земли, получаемая с помощью космических методов землеведения, характеризуется уникальностью, обзорностью и относительной дешевизной на единицу исследуемой площади, большой достоверностью и оперативностью, может повторяться с требуемой периодичностью или быть практически непрерывной. Космические методы позволяют выявить частоту нахождения, ритмичность и силу природных процессов глобального, зонального, регионального и локального характера. С их помощью удается исследовать взаимосвязь всех составных частей геосферы и создавать карты слабо изученных в топографическом отношении субтропических и тропических областей. Наконец, эти методы дают возможность в короткие сроки получить снимки огромных территорий и выявить единство пространственно разобщенных крупных элементов рельефа – гигантских кольцевых и линейных структур. Ранее существование некоторых лишь предполагалось, в лучшем случае недооценивалось, многие же совершенно не были известны. Ныне уже ни у кого не вызывает сомнений, что они имеют самостоятельное значение и определяют основные черты строения земной поверхности.
Космос – картографам
До последнего времени мелкомасштабные физические карты мира, континентов, отдельных государств или крупных регионов создавались путем сведения и преобразования материалов топокарт крупных и средних масштабов, основанных на данных аэросъемочных и наземных топографо-геодезических работ. Такое обобщение контуров зависит от действующих инструкций и приемов картосоставления, а также от ряда чисто субъективных факторов. Благодаря региональным и глобальным космическим снимкам автоматически удалось получить новые объективные физические карты и сопоставить эти реальные изображения лика планеты со старыми сводными. Оказалось, что они не схожи: на прежних отсутствуют не только кольцевые структуры и линеаменты, что мы уже отмечали, но и следы движения ледников, границы ландшафтных зон, ряд вулканов, звездчатые структуры, русла древних рек и высохшие озера.
Так, например, взгляд из космоса выявил неизвестные ранее вулканы в Южной Аравии и Западной Сахаре, в Мексике и на юго-западе США, а также под льдами Земли Элсуорта, у 80° ю. ш. (Антарктида). «С неба» были открыты древние вулканические постройки в Охотско-Чукотском регионе и газообразные выбросы над о. Беннетта (северная часть Восточно-Сибирского моря), зафиксированные четырежды на протяжении 1983–1984 гг.; направленная туда экспедиция обнаружила подводный вулкан.
На космических снимках некоторых районов Скандинавского п-ова и Малой Азии, северо-запада Ирана и Канады, запада США и на востоке Австралии удалось выявить новую форму – звездчатые структуры. По внешнему виду они похожи на трещины в стекле, пробитом пулей. Они установлены также в других областях, например на востоке Западно-Сибирской равнины и в среднем течении Подкаменной Тунгуски, но имеют менее четкие очертания.
Космические снимки позволяют получить объективную информацию об исчезнувшей в наше время гидрографической сети и высохших водоемах. По «небесным» данным на карты нанесены древние долины и дельты Сырдарьи и Амударьи, прежние русла Зеравшана и ряда притоков Амазонки, а также очертания значительных озер, занимавших некогда замкнутые котловины в Восточном Казахстане, Северо-Западном Китае и Южной Монголии. Например, размерами поспорить с Аралом могло подковообразное Джунгарское море: его реликты разбросаны на обширной территории – это Зайсан, Улюнгур, Эби-Нур и ряд мелких джунгарских водоемов. Другим, менее значительным, было Хами-Турфанское озеро, вытянувшееся по параллели на 500 км; оно заполняло обе эти впадины и пространство между ними. Следы древнего озера открыты из космоса и в Западной Сибири, в северной части Кондинской низины, близ 60° с. ш. Оно имело форму вытянутого в широтном направлении овала (300 x 100 км), что подтвердили полевые исследования.
Наконец, благодаря космической информации уточнены контуры Аральского моря, залива Кара-Богаз-Гол, ряда современных озер в Передней Азии (в частности, Зерайе) и в Южном Тибете (Нгангларинг и Тарок); там же открыты небольшие высокогорные водоемы.
Открытие кольцевых структур
На поверхности Земли давно были известны округлые или овальные тела – вулканы, кальдеры, трубки взрыва, метеоритные воронки, массивы. Но их количество и размеры, не превышавшие первых десятков километров, не производили впечатления. Правда, геологи и географы еще в XIX в. описали довольно крупные образования округлых очертаний (например, Парижский бассейн), а в середине нашего века вихревые структуры подробно изучил китайский геолог Ли Сыгуан, в частности, в центре Малой Азии он выделил одну крупную структуру, а на северо-западе Китая – две. Позднее ряд советских геологов, применив обычные («земные») методы исследований, описали несколько значительных кольцевых форм на Украине и в Казахстане, на Дальнем Востоке и Чукотке.
Однако до начала космической эпохи такие образования считались исключением, хотя уже было доказано, что с ними связаны месторождения металлов, включая золото и серебро. Дешифрирование космических снимков (т. е. выявление круговых или овальных форм, созданных дугообразным или концентрическим строением рельефа, берегов морей и озер, гидросети или растительного покрова, а также круговыми аномалиями рисунка и тональности изображения) сразу же изменило представление о распространенности и габаритах образований, названных кольцевыми структурами. Выяснилось, что вся поверхность суши нашей планеты буквально испещрена «оспинами» и «буграми», имеющими в поперечнике в основном 100–150 км; встречаются и огромные – диаметром в сотни и даже тысячи километров; мелкие (30–50 км), количество которых просто не поддается учету, практически всегда «вложены» в более крупные. Из многообразия известных ныне типов кольцевых структур особенно широко представлены купольные и купольно-кольцевые, т. е. положительные формы рельефа.
Особняком стоят гигантские кольцевые структуры, точнее овоидно-кольцевые системы сложного строения, впервые выявленные геологом Маратом Зиновьевичем Глуховским в 1978 г. по результатам геолого-морфологического анализа. Они получили название нуклеаров и отчетливо проступают на космических снимках всех континентов Земли, за исключением Антарктиды; поперечник некоторых достигает почти 4 тыс. км.
Схема расположения нуклеаров Гондваны (по Я.Г. Кацу):
1 – Амазонский, 2 – Западноафриканский, 3 – Аравийско-Нубийский, 4 – Центральноафриканский, 5 – Танзанийский, 6 – Сомалийско-Аравалийский, 7 – Южноафриканский, 8 – Дарваро-Мозамбикско-Пилбарский, 9 – Индо-Австралийский, 10 – Ийлгарнский, 11 – Юклинский
Кольцевые структуры Европы
На Европейском материке М. Глуховский выделил Свеконорвежский (900 км)[45]45
Здесь и далее в скобках приводятся размеры по максимальной оси.
[Закрыть], Свекофеннокарельский (1300 км) и Кольско-Лапландский (550 км) нуклеары. Они приурочены к Скандинавскому п-ову и отдешифрированы по космическим снимкам. Прибалтийский (500 км), установленный им же по геолого-геофизическим данным и «с неба», занимает большую часть акватории Балтики. Скифский и Сарматский гиганты, с поперечником 1 тыс. км каждый, выявленные советским геологом Вильямом Артуровичем Бушем по геолого-морфологическим материалам, расположены в Европейской части СССР. Кроме перечисленных нуклеаров, в пределах континента В. Буш выделяет ряд крупных поднятий; к ним относятся Орденеское (около 600 км) на северо-западе Пиренейского п-ова с четырьмя довольно значительными сателлитами; Чешское (около 400 км), включающее Рудные горы, Чешский Лес, Шумаву и Су– деты; Паннонское (более 500 км), осложненное несколькими положительными и отрицательными структурами. На территории нашей страны он же отдешифрировал три овала диаметром от 300 до 400 км (с севера на юг) – Онежский, Молодечненский и Волынский и пять куполов (около 300 км в поперечнике) – Архангельский, Ленинградский, Тихвинский, Рыбинский и Горьковский.
Из отрицательных структур заслуживают упоминания близкие по размерам (200–260 км) Сегурская (юг Испании), Лигуро-Пьемонтская (север Италии) и Парижская, а также более крупная Будапештская (до 400 км) и самая значительная (около 450 км) Мезенская. Южнее ее располагаются две структуры неясного генезиса – Сухонская и Вычегодская (обе до 400 км в поперечнике). В контурах этих крупных образований, а также вне их обнаружены многочисленные формы, диаметры которых обычно меньше 100 км.
Кольцевые структуры Азиатской части СССР
В пределах Сибири и Дальнего Востока советские геологи отмечают значительное количество кольцевых структур различного «формата». Так, Владимир Васильевич Соловьев, в начале 70-х гг. проведя геолого-морфологический анализ, впервые выделил гигантскую Обскую (1500 км) структуру, захватывающую междуречье нижней Оби и Енисея. Как установлено позднее при дешифровании космических снимков, она является нуклеаром и по периферии осложнена значительно уступающими ей многочисленными образованиями, диаметр которых колеблется от 250 до 400 км. Из них отметим Ханты-Мансийскую и Вартовскую (около 400 км), имеющие концентрическое строение, причем их внешний контур проявляется менее четко, чем внутренний. Восточнее расположен Хета-Оленекский нуклеар (1100 км), занимающий центр и север Среднесибирского плоскогорья; он отдешифрирован по космическим снимкам М. Глуховским. В пределах этой структуры находятся поднятия типа Путорана (300 км) и Анабарского (230 км), выделенные В. Соловьевым, и ряд более мелких.
Южнее, в бассейне Ангары, по геолого-морфологическим материалам В. Соловьев откартировал еще одну крупную форму – Ангарскую (900 км). Он же в бассейне Алдана при анализе топографических карт описал гигантскую морфоструктуру центрального типа, позже получившую название Алдано-Становой (1300 км). В междуречье Вилюя и Лены в 1978 г. М. Глуховский по космическим снимкам выявил Вилюйскую структуру (750 км) с центральным овалом и системой дуг все более увеличивающегося радиуса. Позднее установлено, что все три образования следует причислить к нуклеарам. Контуры еще одного нуклеара – Амурского (1400 км), включающего ряд структур-сателлитов, намечены в основном по космическим снимкам.
Вне пределов перечисленных гигантов обнаружено множество овалов, большей частью приуроченных к северо-востоку материка. Крупнейший из них– Верхнеиндигирский (50UX350 км) с четко вырисовывающимся ядром; Омолонский (400X300 км), открытый В. Соловьевым, имеет концентрическое вихревое строение. Следует отметить и крупную, почти изометричпую (500 км) Верхнеянскую структуру, выделенную по морфологическим и геологическим признакам.
Количество куполовидных или кольцевых поднятий диаметром до 200 км, отдешифрированных па обширных пространствах Северо-Востока, составляет несколько сотен. Они четко выражены в рельефе и располагаются в центральных частях или на периферии более значительных образований. Кольцевые структуры до 00 км в поперечнике исчисляются многими сотнями; обычно они круглой формы, реже имеют овальные контуры.
Анализ космических снимков Казахстана и Средней Азии выявил широкое распространение аналогичных образований размером от десятков до нескольких сотен километров. Из складчатых овалов отметим Кокчетавский (около 600 км), ядро которого впервые обнаружено Гюльсем Зигановной Поповой в начале 60-х гг. по геолого-морфологичеоким признакам; позднее он описан В. Соловьевым. Среди поднятий заслуживают упоминания полукольцевая структура в Каракумах, Северо-Тянынаньская (350 км), охватывающая наиболее высокогорную часть хребтов Кюнгёй– и Терскей-Ала-Тоо, а также Памирская (около 600 км), частично находящаяся в пределах зарубежной Азии. К отрицательным структурам относятся Северокаспийская (900 x 600 км) и менее крупные Южнокаспийская и Южноприбалхашская (до 400 км).
Кольцевые структуры зарубежной Азии
На территории зарубежной Азии В. Буш оконтурил восемь нуклеаров. Из них половина – «чисто» азиатских, расположенных на востоке материка: три (Синокорейский, Северокитайский и Индокитайский) имеют поперечник 600–800 км, а Южнокитайский крупнее – 1200 км. Они выявлены по геолого-геофизическим и геолого-морфологическим данным. Остальные представляют собой лишь обломки гигантских нуклеаров, разорванных при распадении материка Гондваны. Аравалийский является азиатской частью Сомалийско-Аравалийского, включающего также два осколка – п-ов Сомали и север Мадагаскара; Аравийско-Нубийский состоит из двух частей, меньшая расположена в Азии. К Дарваро-Мозамбикско-Пилбарскому нуклеару относится только юг п-ова Индостан, а к Индо-Австралийскому – участок, примыкающий к Бенгальскому заливу.
Карта кольцевых структур Евразии (по В.Н. Брюханову и В.А. Бушу, упрощено):
1 – нуклеары, 2 – овалы, 3 – купола, 4 – поднятия, 5 – депрессии;
1 – Свеконорвежский, 2 – Сиекофиннокарельский, 3 – Кольско-Лапландский, 4– Прибалтийский, 5 – Скифский, 6 – Сарматский. 7 – Прикаспийский. 8 – Обский. 9 – Хета-Оленекский, 10 – Оленекский, 11 – Тюнгский, 12 – Вилюйский, 13 – Ангарский, 14 – Витимо-Олекмииский, 15 – Алдано-Становой, 16 – Амурский, 17 – Синокорейский, 18 – Северокитайский, 19 – Южнокитайский, 20 – Индокитайский, 21 – Индо-Австралийский, 22 – Сомалийско-Аравалийский, 23 – Дарваро-Мозамбикско-Пилбарский, 24 – Аравийско-Нубийский, 25 – Парижская, 26 – Чешский, 27 – Онежский, 28 – Волынский, 29 – Тихвинский, 30 – Рыбинский, 31 – Горьковский, 32 – Ставропольская, 33 – Астраханская, 34 – Серентская, 35 – Ляпинская, 36 – Нижневартовская, 37 – Кокчетавский, 38 – Памирская, 39 – Сейстанская, 40 – Южноприбалхашская, 41 – Североджунгарская, 42 – Бапделькапский, 43 – Мадрасский, 44 – Лхасская, 45 – Алданский, 46 – Шенсийская, 47 – Вьентьянская, 48 – Хамаданская
Кольцевые структуры меньшего размера, как и на других материках, накладываются друг на друга и пересекаются. Они характеризуются в основном почти округлой или овальной формой либо имеют незамкнутые контуры. Помимо овала в уже упоминавшемся Памирском поднятии, аналогичные образования дешифрированы в Южном Китае, в междуречье Ганга и Махапади, на севере и юго-востоке п-ова Индостан (Мадрасский овал, более 500 км), а также в Малой Азии (Киршехирский овал, 250 км).
К самым большим поднятиям континента В. Буш относит Хангай-Хэнтейское (до 1000 км) с незамкнутыми контурами. Более скромные по размерам образования того же типа: Шэньсийское (250 км) в Китае, Хамаданское (400 км), отвечающее наиболее приподнятым участкам горной системы Загроса, а также Диярбакырское (350 км), в междуречье верхнего Тигра и Евфрата.
Среди отрицательных структур выделяются три довольно значительные: Сирийская (750 км), Гильмендская (600 км) и Лхасская (500 x 250 км), полуовальной формы с извилистыми границами. Кроме них, выявлено несколько менее крупных в Малой Азии, Гоби, Монголии и на Аравийском п-ове.
Мелкие образования, представленные куполами или телами гранитных массивов диаметром менее 150 км, по подсчетам В. Буша, составляют более трех четвертей всех оконтуренных кольцевых структур Азии. Они уверенно выявляются во многих регионах материка, в частности на п-ове Индостан.
Кольцевые структуры Африки
В пределах Африканского континента советский геолог Евгений Дмитриевич Сулиди-Кондратъев в 1983 г. впервые выделил различные по размерам и происхождению кольцевые образования. К крупнейшим относятся семь нуклеаров: Западноафриканский, имеющий форму овала (3600 x 3000 км), Аравийско-Нубийский (2200 км), захватывающий часть территории Аравии; Центральноафриканский (2800 км), занимающий почти весь бассейн р. Конго; Танзанийский[46]46
Приоритет в выделении этой гигантской структуры принадлежит советскому геологу Олегу Борисовичу Гинтову (1978), проанализировавшему геолого-морфологические материалы.
[Закрыть] (1400 x 850 км); Сомалийско-Аравалийский (1700 км) – примерно половина его находится в Индостане; Южноафриканский (2400 км); Дарваро-Мозамбикско-Пилбарский (1500 км), разорванный на четыре «куска», разместившихся на трех материках (Африка, Азия и Австралия), а также на о. Мадагаскар. Кроме перечисленных гигантов, на Африканском континенте установлено множество положительных кольцевых структур меньшего диаметра, отнесенных к типу складчатых овалов. Из них самый значительный Габонский (1100 км), внутри которого размещаются два крупных купола – Северо-Габонский (около 500 км) и Шайю (300–350 км). Ахаггарский овал, имеющий поперечник более 1000 км, содержит пять куполов-сателлитов диаметром 300–400 км каждый. Немного уступает ему Северо-Суданский (около 1000 км по большой оси). В Западной Африке, близ атлантического побережья, выявлены три овала поменьше, в том числе Леоно-Либерийский, с нечетко проявляющимся концентрическим строением. В Центральной и Южной Африке отдешифрировано четыре структуры таких же размеров, включая описанный О. Гинтовым овал Зимбабве (с тремя сателлитами диаметром 300 км каждый) и Трансваальский с центральной впадиной.
Структуры типа куполов отдешифрированы не только в контурах овалов, но и за их пределами: на юге материка отмечаются два таких самостоятельных образования: Намаква (250 км) и Капский (200 км). Подавляющее большинство имеет поперечник менее 100 км; купола диаметром от нескольких километров до 20 км в основном соответствуют мелким массивам или вулканам – например Килиманджаро.
К наиболее крупным отрицательным кольцевым структурам относятся Таудени, Конго и Чадская – диаметр любой из них составляет около 1000 км. Менее значительные (450–650 км) впадины приурочены в основном к Северной Африке – Куфра, Алжиро-Ливийская и две к югу от Сахарского Атласа. Приблизительно таких же размеров депрессии выявлены на западе и юге материка, в том числе Калахари (до 600 км в поперечнике).
Кольцевые структуры Северной Америки
Американский геолог Джон Сол в 1978 г. описал самую грандиозную кольцевую структуру Земли – Североамериканскую (3700–3800 км), центр которой приходится на Гудзонов залив. В 1982 г. советский геолог Наталья Валентиновна Макарова отнесла ее к разряду нуклеаров.
В пределах этого гиганта И. Макарова, кроме «наземных» материалов используя космические снимки, отдешифрировала множество кольцевых структур-сателлитов различных типов и размеров. Отметим отчетливо выраженный в рельефе овал Слейв (более 500 км), расположенный между Большим Медвежьим и Большим Невольничьим озерами; овал Дубонт (около 350 км), выделенный по рельефу вокруг одноименного озера. Южнее намечены контуры двух крупных (400–500 км) форм – Атабасской и Виннипегской. К п-ову Лабрадор приурочено несколько образований: поднятия Центрально-Лабрадорское (750 x 550 км) и Унгава (около 500 км), а также две полукольцевые депрессии. Значительная (450 км) структура Уэйджер (по бухте того же названия) расположена у Северного полярного круга; ее северная часть низменная, а южная несколько приподнята. Большие количество куполов и депрессий от 50 до 400 км выделено между овалами и в их контурах; некоторые, наиболее отчетливо выраженные, были отмечены ранее американскими геологами, например горы Адирондак куполовидной формы, восточнее озера Онтарио.
На севере и юге материка Н. Макарова отдешифрировала еще два нуклеара. Северный (1500 км) охватывает весь Канадский Арктический архипелаг, за исключением трех четвертей Баффиновой Земли. В его пределах предположительно оконтурено несколько кольцевых структур, в основном соответствующих островам (например, Виктория, Элсмир) либо полузамкнутым акваториям типа бассейнов Фокс или Кейна. Основная площадь южного, Мексиканского нуклеара (1700–1800 км) приходится на одноименный залив; периферия структуры представлена сравнительно узкой полосой побережья от Флориды до Юкатана.
Колорадский нуклеар (1500 x 1300 км) на западе окаймлен береговыми хребтами, на востоке Скалистыми горами; центральная его часть является огромным сводом с просевшим ядром и дешифрируется как купол-сателлит, соответствующий Большому Бассейну; в его границах отмечено несколько сравнительно небольших (200–300 км) кольцевых образований.
Вне пределов нуклеаров Н. Макарова выявила ряд крупных форм; часть их хорошо выражена в рельефе, например Южноаляскинская (350 км), оконтуренная дугой Аляскинского хребта, Мичигано-Гуронская (500 км), имеющая почти безукоризненный контур. Другие проявляются лишь на космических снимках – к ним относятся Миссури-Иллинойсская (750 км), границами которой на юге и востоке служат давшие ей название притоки Миссисипи; Канзасская (600 км), на юге срезанная дуговыми нарушениями Уачитской полукольцевой структуры; Огайоская (около 500 км) с опущенной южной и приподнятой северной половинами. Два значительных поднятия отдешифрированы на мексиканской территории: Центральномексиканская (более 600 км), отличающаяся сложным строением, и кольцо Мехико (до 400 км).