355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Томас Кун » Структура научных революций » Текст книги (страница 4)
Структура научных революций
  • Текст добавлен: 21 октября 2016, 17:21

Текст книги "Структура научных революций"


Автор книги: Томас Кун


Жанр:

   

Философия


сообщить о нарушении

Текущая страница: 4 (всего у книги 17 страниц) [доступный отрывок для чтения: 7 страниц]

Эти три класса проблем – установление значительных фактов, сопоставление фактов и теории, разработка теории – исчерпывают, как я думаю, поле нормальной науки, как эмпирической, так и теоретической. Они, разумеется, не исчерпывают всю научную проблематику без остатка. Существуют также экстраординарные проблемы, и, вероятно, именно их правильное разрешение делает научные исследования в целом особенно ценными. Но экстраординарные проблемы не должны нас здесь особенно волновать. Они возникают лишь в особых случаях, к которым приводит развитие нормального научного исследования. Поэтому подавляющее большинство проблем, поднятых даже самыми выдающимися учёными, обычно охватывается тремя категориями, указанными выше. Работа в рамках парадигмы не может протекать иначе, а отказаться от парадигмы значило бы прекратить те научные исследования, которые она определяет. Вскоре мы покажем, что заставляет учёных отказаться от парадигмы. Подобные отказы от парадигмы представляют собой такие моменты, когда возникают научные революции. Но прежде чем перейти к изучению этих революций, нам необходим более широкий взгляд на ход нормального исследования, которое готовит почву для революции.

IV
НОРМАЛЬНАЯ НАУКА КАК РЕШЕНИЕ ГОЛОВОЛОМОК

Возможно, что самая удивительная особенность проблем нормальной науки, с которой мы только что столкнулись, состоит в том, что они в очень малой степени ориентированы на крупные открытия, будь то открытие новых фактов или создание новой теории. Иногда, как в случае измерения длины волны, все детали результата, за исключением разве что наиболее тонких, известны заранее, так что спектр ожиданий оказывается лишь немного шире известной картины. Измерения Кулона, вероятно, и не требовали обязательного точного соответствия закону обратной зависимости от квадрата расстояния; тот, кто изучал нагревание при увеличении давления, часто заведомо предполагал один из многих возможных результатов. К тому же даже в подобных случаях область ожидаемых и, следовательно, усваиваемых результатов всегда мала по сравнению с тем, что может охватить воображение. И если результат проекта не попадает в эту более узкую область, то это рассматривается обычно как неудача исследования, которая отражает не отклонение природы от закона, но лишь ошибку учёного.

Например, в XVIII веке мало внимания обращалось на эксперименты по измерению электрического притяжения с помощью таких приборов, как крутильные весы. Поскольку подобные эксперименты не приносили ни устойчивых, ни достаточно простых результатов, их нельзя было использовать для разработки парадигмы, от которой они произошли. Следовательно, они оставались просто фактами, которые не были и не могли быть связанными с непрерывным прогрессом исследований по электричеству. Только ретроспективно, достигнув следующей парадигмы, мы можем понять, на какие свойства электрических явлений они указывали. Конечно, Кулон и его современники также работали на основе этой более поздней парадигмы или же парадигмы, которая обещала те же самые результаты в области проблемы притяжения. Вот почему Кулону удалось сконструировать прибор, который привёл к результату, пригодному для дальнейшей разработки парадигмы. Но по этой же причине подобный результат никого не удивил и несколько современников Кулона смогли в принципе предсказать этот результат. Даже те проекты, целью которых является разработка парадигмы, не стремятся к неожиданным новшествам.

Но если цель нормальной науки не в том чтобы внести какие-либо крупные, значительные новшества, если тщетная попытка достигнуть ожидаемых результатов или приблизиться к ним является обычно неудачей учёного, то почему всё-таки нормальная наука рассматривает и решает свои проблемы? Частично мы уже ответили на этот вопрос. Для учёного результаты научного исследования значительны уже по крайней мере потому, что они расширяют область и повышают точность применения парадигмы. Однако этот ответ не может объяснить тот энтузиазм и увлечённость, которые свойственны учёным, работающим над проблемами нормального исследования. Никто не затрачивает годы, скажем, на создание усовершенствованного спектрометра или на более точное решение проблемы колебания струны в силу одной лишь важности информации, которая при этом приобретается. Данные, получаемые при подсчёте эфемерид или при дополнительных измерениях с помощью имеющихся инструментов, часто столь же значительны, но подобная деятельность постоянно отвергается учёными с презрением, потому что представляет собой в основном просто повторение процедуры, разработанной уже ранее. Этот отказ даёт разгадку всей привлекательности проблем нормальной науки. Хотя её результаты могут быть предсказаны – причём настолько детально, что всё оставшееся неизвестным само по себе уже теряет интерес, – сам способ получения результата остаётся в значительной мере сомнительным. Завершение проблемы нормального исследования – разработка нового способа предсказания, а она требует решения всевозможных сложных инструментальных, концептуальных и математических задач-головоломок. Тот, кто преуспевает в этом, становится специалистом такого рода деятельности, и стимулом его дальнейшей активности служит жажда решения новых задач-головоломок.

Термины «задача-головоломка» и «специалист по решению задач-головоломок» имеют первостепенное значение для многих вопросов, которые будут в центре нашего внимания на следующих страницах. Задачи-головоломки – в самом обычном смысле, подразумеваемом в данном случае, – представляют собой особую категорию проблем, решение которых может служить пробным камнем для проверки таланта и мастерства исследователя. Словарными иллюстрациями к слову могут служить «составная фигура-головоломка» и «головоломка-кроссворд». У этих головоломок есть характерные черты, общие с нормальной наукой, черты, которые мы должны теперь выделить. Одна из них только что упоминалась. Но она не является критерием доброкачественной головоломки, показателем того, что её решение может быть само по себе интересным или важным. Напротив, действительно неотложные проблемы, например поиски средства против рака или создание прочного мира на земле, часто вообще не являются головоломками главным образом потому, что их решение может полностью отсутствовать. Рассмотрим «составную фигуру-головоломку», элементы которой взяты наугад из двух разных коробок с головоломками. Поскольку эта проблема, вероятно, должна таить в себе непреодолимые трудности (хотя их может и не быть) даже для самых изобретательных людей, она не может служить проверкой мастерства в решении головоломок. В любом обычном смысле её вообще нельзя назвать головоломкой. Хотя собственная ценность не является критерием головоломки, существование решения является таким критерием.

Мы уже видели, однако, что, овладевая парадигмой, научное сообщество получает по крайней мере критерий для выбора проблем, которые могут считаться в принципе разрешимыми, пока эта парадигма принимается без доказательства. В значительной степени это только те проблемы, которые сообщество признает научными или заслуживающими внимания членов данного сообщества. Другие проблемы, включая многие считавшиеся ранее стандартными, отбрасываются как метафизические, как относящиеся к компетенции другой дисциплины или иногда только потому, что они слишком сомнительны, чтобы тратить на них время. Парадигма в этом случае может даже изолировать сообщество от тех социально важных проблем, которые нельзя свести к типу головоломок, поскольку их нельзя представить в терминах концептуального и инструментального аппарата, предполагаемого парадигмой. Такие проблемы рассматриваются лишь как отвлекающие внимание исследователя от подлинных проблем, что очень наглядно иллюстрируется различными аспектами бэконовского подхода XVII века и некоторыми современными социальными науками. Одна из причин, в силу которой нормальная наука кажется прогрессирующей такими быстрыми темпами, заключается в том, что учёные концентрируют внимание на проблемах, решению которых им может помешать только недостаток собственной изобретательности.

Однако если проблемы нормальной науки являются в этом смысле головоломками, то отпадает необходимость объяснять подробнее, почему учёные штурмуют их с такой страстью и увлечением. Наука может быть привлекательной для человека с самых разных точек зрения. Среди главных мотивов, побуждающих человека к научному исследованию, можно назвать желание добиться успеха, вдохновение от открытия новой области, надежда найти закономерность и стремление к критической проверке установленного знания. Эти и другие мотивы также помогают учёному определить и частные проблемы, которыми он планирует заняться в будущем. Более того, хотя результатом исследования является иногда крушение надежд, этих мотивов вполне достаточно для того, чтобы вначале привлечь человека, а потом и увлечь его навсегда[33]33
  Разочарование, вызванное конфликтом между ролью личности и всеобщей моделью развития науки, иногда может быть тем не менее довольно серьёзным. По этому вопросу см.: L.S.Kubie. Some Unsolved Problems of the Scientific Career. – «American Scientist», XLI, 1953, p. 596—613; XLII, 1954, p. 104—112.


[Закрыть]
. Научное предприятие в целом время от времени доказывает свою плодотворность, открывает новые области, обнаруживает закономерности и проверяет давние убеждения. Тем не менее индивидуальное исследование проблем нормальной науки почти никогда не даёт подобного эффекта ни в одном из этих аспектов. Учёного увлекает уверенность в том, что если он будет достаточно изобретателен, то ему удастся решить головоломку, которую до него не решал никто или в решении которой никто не добился убедительного успеха. Многие из величайших умов отдавали всё своё внимание заманчивым головоломкам такого рода. В большинстве случаев любая частная область специализации, кроме этих головоломок, не предлагает ничего такого, на чём можно было бы попробовать свои силы, но именно этот факт таит в себе тоже своеобразное искушение.

Вернёмся теперь к другому, более трудному и более содержательному аспекту параллелизма между головоломками и проблемами нормальной науки. Проблема, классифицируемая как головоломка, должна быть охарактеризована не только тем, что она имеет гарантированное решение. Должны существовать также правила, которые ограничивают как природу приемлемых решений, так и те шаги, посредством которых достигаются эти решения. Например, решить составную картинку-загадку не значит «составить картинку». Ребёнок или современный художник мог бы сделать это, складывая разбросанные, произвольно выбранные элементы, как абстрактные формы, на некотором нейтральном фоне. Картинка, созданная таким образом, может оказаться намного лучше и быть более оригинальной, чем та, из которой головоломка была сделана. Тем не менее такая картинка не могла бы быть её решением. Чтобы получить настоящее решение, должны быть использованы все фрагменты, их плоская сторона должна быть обращена вниз и они должны быть собраны без усилий и использованы без остатка. Таковы некоторые правила решения картинки-головоломки. Подобные ограничения, накладываемые на приемлемые решения кроссвордов, загадок, шахматных задач и т. д., вскрываются без труда.

Если мы придадим значительно более широкий смысл термину «правило» (который иногда эквивалентен «утвердившейся точке зрения» или «предпосылке»), тогда проблемы, допустимые в данной исследовательской традиции, имеют большое сходство с множеством характеристик головоломки. Учёный, создающий инструмент для определения длины световых волн, не должен удовлетворяться такой аппаратурой, которая просто сопоставляет особые спектральные линии и особые числа. Он не просто исследует или измеряет. Наоборот, он должен показать, анализируя свою аппаратуру на основе созданной основы оптической теории, что числа, которые даёт его прибор, входят в теорию как длины волн. Если неясности в теории или какой-то неисследованный компонент в его аппаратуре остаются и мешают завершить демонстрацию, его коллеги могут легко заключить, что ему не удалось измерить ничего вообще. Например, максимумы в разбросе электронов, которые позднее были представлены как указание на длины волн электрона, не имели явного значения, когда впервые были открыты и зафиксированы. Прежде чем они стали показателями чего-либо вообще, их необходимо было соотнести с теорией, подсказавшей волнообразное поведение движущихся частиц. И даже после того, как эта связь была установлена, аппаратура должна быть сконструирована заново таким образом, чтобы экспериментальные результаты могли недвусмысленно согласовываться с теорией[34]34
  Краткое рассмотрение эволюции этих экспериментов см. в лекции К. Дж. Дэвиссона в: «Les prix Nobel en 1937», Stockholm, 1938, p. 4.


[Закрыть]
. До тех пор пока эти условия не удовлетворены, ни одна проблема не может считаться решённой.

Подобные виды ограничений связывали приемлемые решения с теоретическими проблемами. На протяжении всего XVIII века те учёные, которые пытались вывести наблюдаемое движение Луны из ньютоновских законов движения и тяготения, постоянно терпели в этом неудачи. В конце концов некоторые из них предложили заменить закон обратной зависимости от квадрата расстояния другим законом, который отличался от первого тем, что действовал на малых расстояниях. Однако для этого следовало бы изменить парадигму, определить условия новой головоломки и отказаться от решения старой. В данном случае учёные сохраняли правила до тех пор, пока в 1750 году один из них не открыл, каким образом эти правила могли быть использованы с успехом[35]35
  W. Whewell. History of the Inductive Sciences, rev. ed. London, 1847, II, p. 101—105; 220—222.


[Закрыть]
. Другое решение вопроса могло дать лишь изменение в правилах игры.

Изучение традиций нормальной науки раскрывает множество дополнительных правил, а они в свою очередь дают массу информации о тех предписаниях, которые выводят учёные из своих парадигм. Что же можно сказать об основных категориях, которые охватывают эти правила?[36]36
  На этот вопрос меня навёл У. О. Хегстром, чья работа в области социологии науки кое-где перекликается с моей.


[Закрыть]
Наиболее очевидные и, вероятно, наиболее обязывающие правила показаны на примере тех видов обобщений, которые мы только что отметили. Это эксплицитные утверждения о научном законе, о научных понятиях и теориях. До тех пор пока они остаются признанными, они помогают выдвигать головоломки и ограничивать приемлемые решения. Законы Ньютона, например, выполняли подобные функции в течение XVIII и XIX веков. Пока они выполняли эти функции, количество материи было фундаментальной онтологической категорией для учёных-физиков, а силы, возникающие между частицами материи, были основным предметом исследования[37]37
  Об этих аспектах теории Ньютона см.: I. В.Cohen. Franklin and Newton: An Inquiry into Speculative Newtonian Experimental Science and Franklin's Work in Electricity as an Example Thereof. Philadelphia. 1956, chap. VII, особенно на стр. 255—257, 275—277.


[Закрыть]
. В химии законы постоянных и определённых пропорций имели долгое время точно такую же силу: с их помощью была поставлена проблема атомных весов, ограничены приемлемые результаты химического анализа и химики были информированы о том, чту представляют собой атомы и молекулы, соединения и смеси[38]38
  Этот пример подробно обсуждается в конце Х раздела.


[Закрыть]
. Уравнения Максвелла и законы статистической термодинамики имеют то же самое значение и функции в наше время.

Однако правила, подобные этим, не являются исключительным и даже наиболее интересным видом правил, открытых при изучении истории. Например, на более низком или более конкретном уровне, чем законы и теории, есть множество предписаний по поводу предпочтительных типов инструментария и способов, которыми принятые инструменты могут быть правомерно использованы. Изменение взглядов на роль огня в химическом анализе сыграло жизненно важную роль в развитии химии XVII века[39]39
  H. Metzger. Les doctrines chimiques en France du début du XVIIe siècle а la fin du XVIIIe siècle. Paris, 1923, p. 359—361; Marie Boas. Robert Boyle and Seventeenth-Century Chemistry. Cambridge, 1958, p. 112—115.


[Закрыть]
. Гельмгольц в XIX веке натолкнулся на сильное противодействие со стороны физиологов, полагавших, что физическое экспериментирование не может помочь исследованиям в их области[40]40
  L. Königsberger. Hermann von Helmholtz. Oxford, 1906, p. 65—66.


[Закрыть]
. В том же веке весьма любопытная история создания химической хроматографии ещё раз иллюстрировала стойкость предписаний относительно инструментов, которые в той же мере, как законы и теории, снабжают учёных правилами игры[41]41
  J. E. Meinhard. Chromatography: A Perspective. – «Science», CX, 1949, p. 387—392.


[Закрыть]
. Анализируя открытие рентгеновских лучей, мы обнаружим основания для возникновения предписаний подобного рода.

Менее локальными и преходящими, хотя всё же не абсолютными, характеристиками науки являются предписания более высокого уровня; я имею в виду квазиметафизические предписания, которые историческое исследование постоянно обнаруживает в науке. Например, приблизительно после 1630 года и в особенности после появления научных работ Декарта, имевших необычайно большое влияние, большинство учёных-физиков допускало, что универсум состоит из микроскопических частиц, корпускул, и что все явления природы могут быть объяснены в терминах корпускулярных форм, корпускулярных размеров, движения и взаимодействия. Этот набор предписаний оказался и метафизическим и методологическим. В качестве метафизического он указывал физикам, какие виды сущностей действительно имеют место во Вселенной, а каких нет: существует лишь материя, имеющая форму и находящаяся в движении. В качестве методологического набора предписаний он указывал физикам, какими должны быть окончательные объяснения и фундаментальные законы: законы должны определять характер корпускулярного движения и взаимодействия, а объяснения должны сводить всякое данное природное явление к корпускулярному механизму, подчиняющемуся этим законам. Ещё более важно то, что корпускулярное понятие универсума указывало учёным множество проблем, подлежащих исследованию. Например, химик, принявший, подобно Бойлю, новую философию, обращал особое внимание на реакции, которые можно было бы рассматривать как превращения вещества. Они показывали более ясно, чем другие, процесс корпускулярного перераспределения, который должен лежать в основании всех химических превращений[42]42
  О корпускуляризме см.: M.Boas. Establishment of the Mechanical Philosophy. – «Osiris», X, 1952, p. 412—541. О его влиянии на химию Бойля см.: Т.S.Kuhn. Robert Boyle and Structural Chemistry in the Seventeenth Century. – «Isis», XLIII, 1952, p. 12—36.


[Закрыть]
. Подобные признаки влияния корпускуляризма можно наблюдать при изучении механики, оптики и теплоты.

Наконец, на ещё более высоком уровне есть другая система предписаний, без которых человек не может быть учёным. Учёный должен, например, стремиться понять мир, расширять пределы области познания и повышать точность, с которой она должна быть упорядочена. Это предписание должно в свою очередь привести учёного к тщательному исследованию – как им самим, так и его коллегами – некоторых аспектов природы с учётом множества эмпирических деталей. И если данное исследование выявляет моменты явного нарушения порядка, то это должно быть для него призывом к новому усовершенствованию приборов наблюдения или к дальнейшей разработке его теорий. Нет никакого сомнения, что есть и другие правила, подобные этим, которыми пользуются учёные во все времена.

Существование такой жёстко определённой сети предписаний – концептуальных, инструментальных и методологических – представляет основание для метафоры, уподобляющей нормальную науку решению головоломок. Поскольку эта сеть даёт правила, которые указывают исследователю в области зрелой науки, чту представляют собой мир и наука, изучающая его, постольку он может спокойно сосредоточить свои усилия на эзотерических проблемах, определяемых для него этими правилами и существующим знанием. От отдельного учёного требуется затем лишь решение оставшихся нерешёнными головоломок. В этих и других отношениях обсуждение головоломок и правил проливает свет на природу нормальной научной практики, хотя, с другой стороны, такой подход может ввести в заблуждение. Очевидно, что существуют правила, которых придерживаются все учёные-профессионалы в данное время, тем не менее эти правила сами по себе не могут охватить всё то общее, что имеется в различных видах нормального исследования. Нормальная наука – это в высокой степени детерминированная деятельность, но вовсе нет необходимости в том, чтобы она была полностью детерминирована определёнными правилами. Вот почему в начале настоящего очерка я предпочёл ввести в качестве источника согласованности в традициях нормального исследования принцип общепринятой парадигмы, а не общепринятых правил, допущений и точек зрения. Правила, как я полагаю, вытекают из парадигм, но парадигмы сами могут управлять исследованием даже в отсутствие правил.

V
ПРИОРИТЕТ ПАРАДИГМ

Чтобы раскрыть отношение между правилами, парадигмами и нормальной наукой, посмотрим прежде всего, каким образом историк науки выделяет особые совокупности предписаний, которые только что были описаны как принятые правила. Пристальное историческое исследование данной отрасли науки в данное время открывает ряд повторяющихся и типичных (quasi-standard) иллюстраций различных теорий в их концептуальном, исследовательском и инструментальном применении. Они представляют собой парадигмы того или иного научного сообщества, раскрывающиеся в его учебниках, лекциях и лабораторных работах. Изучая и практически используя их, члены данного сообщества овладевают навыками своей профессии. Разумеется, помимо этого, историк науки обнаружит и неясные области, охватывающие достижения, статус которых пока ещё сомнителен, но суть проблемы и технические средства для её решения известны. Несмотря на изредка встречающиеся неясности, парадигмы зрелого научного сообщества могут быть определены сравнительно легко.

Однако определение парадигм, разделяемых всеми членами сообщества, ещё не означает определение общих для них правил. Это требует второго шага, причём шага несколько иного характера. Предпринимая его, историк науки должен сравнить парадигмы научного сообщества друг с другом и рассмотреть их в контексте текущих исследовательских сообщений сообщества. Цель, которую при этом преследует историк науки, заключается в том, чтобы раскрыть, какие именно элементы, в явном или неявном виде, члены данного сообщества могут абстрагировать из их более общих, глобальных парадигм и использовать их в качестве правил в своих исследованиях. Всякий, кто предпринял попытку описать или анализировать эволюцию той или иной частной научной традиции, непременно будет искать принятые принципы и правила подобного рода. И, как показано в предыдущем разделе, почти неизменно ему сопутствует в этом по крайней мере частичный успех. Но если он приобрёл опыт, примерно такой же, как и мой собственный, он придёт к выводу, что отыскивать правила – занятие более трудное и приносящее меньше удовлетворения, чем обнаружение парадигмы. Некоторые обобщения, к которым он прибегает для того, чтобы описать убеждения, разделяемые научным сообществом, не будут вызывать сомнения. Однако другие, в том числе и те, которые использовались выше в качестве иллюстраций, будут казаться неясными. Так или иначе, он может вообразить, что эти обобщения почти во всех случаях должны были отвергаться некоторыми членами группы, которую он изучает. Тем не менее, если согласованность исследовательской традиции должна быть понята исходя из правил, необходимо определить их общее основание в соответствующей области. В результате отыскание основы правил, достаточных для того, чтобы установить данную традицию нормального исследования, становится причиной постоянного и глубокого разочарования.

Однако осознание этих неудач даёт возможность установить их источник. Учёные могут согласиться с тем, что Ньютон, Лавуазье, Максвелл или Эйнштейн дали, очевидно, более или менее окончательное решение ряда важнейших проблем, но в то же время они могут не согласиться, иногда сами не сознавая этого, с частными абстрактными характеристиками, которые делают непреходящим значение этих решений. Иными словами, они могут согласиться в своей идентификации парадигмы, не соглашаясь с её полной интерпретацией или рационализацией или даже не предпринимая никаких попыток в направлении интерпретации и рационализации парадигмы. Отсутствие стандартной интерпретации или общепринятой редукции к правилам не будет препятствовать парадигме направлять исследование. Нормальная наука может быть детерминирована хотя бы частично непосредственным изучением парадигм. Этому процессу часто способствуют формулировки правил и допущений, но он не зависит от них. В самом деле, существование парадигмы даже неявно не предполагало обязательного наличия полного набора правил[43]43
  М. Поляни блестяще развил очень сходную тему, доказывая, что многие успехи учёных зависят от «скрытого знания», то есть от знания, которое определяется практикой и которое не может быть разработано эксплицитно. См. его работу: M.Polanyi. Personal Knowledge. Chicago, 1958, особенно главы V и VI.


[Закрыть]
.

Первым следствием этих положений неизбежно является постановка проблем. Что удерживает учёного в рамках той или иной частной традиции нормального научного исследования при отсутствии прочного фундамента правил? Что может означать фраза: «непосредственное изучение парадигм»? Более или менее удовлетворительные ответы на подобные вопросы, хотя и в совершенно другом контексте, дал Л. Витгенштейн в поздний период своих исследований. Поскольку контекст его рассуждений более элементарный и более известный, будет легче рассмотреть прежде всего его форму аргументации. Что необходимо знать, спрашивает Л. Витгенштейн, чтобы недвусмысленно и без излишних аргументов использовать такие слова, как «стул», «лист» или «игра»?[44]44
  L. Wittgenstein. Philosophical Investigations. N. Y., 1953, p. 31—36. Однако Витгенштейн почти ничего не говорит о характере деятельности, необходимой для подтверждения названной процедуры, которую он описывает. Поэтому позиция, излагаемая далее, лишь частично может быть приписана ему.


[Закрыть]

Этот вопрос далеко не новый. Обычно, отвечая на него, говорят, что мы обязаны знать, сознательно или интуитивно, чту представляет собой стул, лист или игра. Иными словами, мы должны иметь способность схватывать некоторую совокупность неотъемлемых свойств, которыми обладают все игры и только игры. Однако Витгенштейн пришёл к выводу, что если задан способ употребления языка и тип универсума, к которому мы его применяем, то нет необходимости в такой совокупности характеристик. Хотя обсуждение некоторых из неотъемлемых свойств, присущих ряду игр, стульев или листьев, часто помогает нам научиться использовать соответствующий термин, нет такого ряда характеристик, которые одновременно применимы ко всем элементам класса, и только к ним. Вместо этого, сталкиваясь с незнакомыми нам ранее действиями, мы применяем термин «игра», поскольку то, что мы видим, обнаруживает значительное родовое сходство с рядом действий, которые мы ещё раньше научились называть этим именем. Короче говоря, для Л. Витгенштейна игры, стулья и листья составляют естественные группы, каждая из которых установлена благодаря сетке частично совпадающих и пересекающихся сходных свойств. Существования такой сетки достаточно для того, чтобы объяснить наш успех в определении соответствующего объекта или деятельности. Но если бы группы, которые мы назвали, пересекались или постепенно сливались друг с другом, то есть, если бы они не были естественными, то только тогда наш успех в идентификации и наименовании обеспечил бы очевидность ряда общих характеристик, соответствующих каждому из класса имён, которые мы используем.

Нечто подобное может иметь силу и для различных исследовательских проблем и технических приёмов, которые связаны с отдельно взятой традицией нормального научного исследования. Общее между ними состоит не в том, что они удовлетворяют некоторому эксплицитному или даже полностью выявленному ряду правил и допущений, которые определяют характер традиции и укрепляют её в научном мышлении, а в том, что их можно отнести на основании сходства или путём моделирования к той или иной части научного знания, которую какое-то научное сообщество признаёт в качестве одного из установленных достижений. Учёные исходят в своей работе из моделей, усвоенных в процессе обучения и из последующего изложения их в литературе, часто не зная и не испытывая никакой потребности знать, какие характеристики придали этим моделям статус парадигм научного сообщества. Благодаря этому учёные не нуждаются ни в какой полной системе правил. Согласованность, обнаруженная исследовательской традицией, которой они придерживаются, может не подразумевать даже существования исходной основы правил и допущений; только дополнительное философское или историческое исследование может их вскрыть. Тот факт, что учёные обычно не интересуются и не обсуждают вопрос о том, чту придаёт правомерность частным проблемам и решениям, наводит нас на мысль, что ответ на них известен им по крайней мере интуитивно. Но это можно считать признаком того, что ни вопрос, ни ответ не являются чем-то непосредственно касающимся их исследования. Парадигмы могут предшествовать любому набору правил исследования, который может быть из них однозначно выведен, и быть более обязательными или полными, чем этот набор.

До сих пор эта точка зрения излагалась чисто теоретически: парадигмы могут определять характер нормальной науки без вмешательства открываемых правил. Позвольте мне теперь попытаться лучше разъяснить эту позицию и подчеркнуть её актуальность путём указания на некоторые причины, позволяющие думать, что парадигма действительно функционирует подобным образом. Первая причина, которая уже обсуждалась достаточно подробно, состоит в чрезвычайной трудности обнаружения правил, которыми руководствуются учёные в рамках отдельных традиций нормального исследования. Эти трудности напоминают сложную ситуацию, с которой сталкивается философ, пытаясь выяснить, что общего имеют между собой все игры. Вторая причина, в отношении которой первая в действительности является следствием, коренится в природе научного образования. Учёные (это должно быть уже ясно) никогда не заучивают понятия, законы и теории абстрактно и не считают это самоцелью. Вместо этого все эти интеллектуальные средства познания с самого начала сливаются в некотором ранее сложившемся исторически и в процессе обучения единстве, которое позволяет обнаружить их в процессе их применения. Новую теорию всегда объявляют вместе с её применениями к некоторому конкретному разряду природных явлений. В противном случае она не могла бы даже претендовать на признание. После того как это признание завоёвано, данные или другие приложения теории сопровождают её в учебниках, по которым новое поколение исследователей будет осваивать свою профессию. Приложения не являются просто украшением теории и не выполняют только документальную роль. Напротив, процесс ознакомления с теорией зависит от изучения приложений, включая практику решения проблем как с карандашом и бумагой, так и с приборами в лаборатории. Например, если студент, изучающий динамику Ньютона, когда-либо откроет для себя значение терминов «сила», «масса», «пространство» и «время», то ему помогут в этом не столько неполные, хотя в общем-то полезные, определения в учебниках, сколько наблюдение и применение этих понятий при решении проблем.

Данный процесс обучения путём теоретических или практических работ сопровождает весь ход приобщения к профессии учёного. По мере того как студент проходит путь от первого курса до докторской диссертации и дальше, проблемы, предлагаемые ему, становятся всё более сложными и неповторимыми. Но они по-прежнему в значительной степени моделируются предыдущими достижениями, так же как и проблемы, обычно занимающие его в течение последующей самостоятельной научной деятельности. Никому не возбраняется думать, что на этом пути учёный иногда пользуется интуитивно выработанными им самим правилами игры, но оснований для того, чтобы верить в это, слишком мало. Хотя многие учёные говорят уверенно и легко о собственных индивидуальных гипотезах, которые лежат в основе того или иного конкретного участка научного исследования, они характеризуют утвердившийся базис их области исследования, её правомерные проблемы и методы лишь немногим лучше любого дилетанта. О том, что они вообще усвоили этот базис, свидетельствует главным образом их умение добиваться успеха в исследовании. Однако эту способность можно понять и не обращаясь к предполагаемым правилам игры.


    Ваша оценка произведения:

Популярные книги за неделю