355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Т. Шешко » Сборник основных формул по химии для ВУЗов » Текст книги (страница 4)
Сборник основных формул по химии для ВУЗов
  • Текст добавлен: 6 октября 2016, 00:46

Текст книги "Сборник основных формул по химии для ВУЗов"


Автор книги: Т. Шешко


Соавторы: Е. Невская,М. Рябов,Е. Сорокина

Жанр:

   

Химия


сообщить о нарушении

Текущая страница: 4 (всего у книги 9 страниц) [доступный отрывок для чтения: 4 страниц]

8.1. Водород и его соединения

Водород – наиболее распространенный элемент во Вселенной. Водород – легкий газ без цвета, без запаха. Возможные степени окисления водорода, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

CH4 + 2Н2O →t, катализатор→ 4Н2 + CO2

Zn + 2HCl = ZnCl2 + Н2

(NaOH) + 2Н2O →электролиз раствора→ 2Н2 + O2

Н2 + 2Na →t→ 2NaH

Н2 + Са →t→ СаН2

2 + O2 = 2Н2O

Н2 + Cl2hv→ 2HCl

ЗН2 + N2t, p, катализатор→ 2NH3

NaH + Н2O = NaOH + Н2

СаН2 + 2HCl = CaCl2 + 2Н2

8.2. Вода

Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличии от ее газообразных аналогов H2S, H2Se и Н2Те.

Кислород в молекуле воды находится в состоянии sp3-гибридизации, две связи О—Н и две неподеленные пары кислорода располагаются тетраэдрически, угол между связями О—Н равен 104,5°, поэтому молекула воды полярная. Вода является хорошим растворителем для веществ с ионными или полярными связями.

2Na + 2Н2O = 2NaOH + Н2

Fe + 4Н2O →t→ Fe3O4 + 4Н2

Ag + Н2O ≠

Н2O + СаО = Са(OH)2

Н2O + Al2O3

N2O3 + Н2O = 2HNO2

2CuSO4 + 2Н2O ↔ (CuOH)2SO4 + H2SO4

H2SO4(конц.) + H2O = H2SO • H2O

CuSO4 + 5H2O = CuSO4 • 5H2O

8.3. Фтор и его соединения

Фтор является наиболее активным неметаллом, сильным окислителем.

F2 + Н2 = 2HF

2F2 + 2Н2O = 4HF + O2

F2 + 2NaCl = 2NaF + Cl2

4HF + SiO2 = SiF4↑ + 2Н2O

8.4. Хлор и его соединения

Хлор – тяжелый газ желто-зеленого цвета, с резким запахом.

2NaCl + 2Н2O →электролиз раствора→ Н2 + Cl2 + 2NaOH

2KMnO4 + 16HCl = 2KCl + 2MnCl2 + 5Cl2 + 8Н2O

MnO2 + 4HCl = Cl2 + MnCl2 + 2Н2O

Cl2 + Н2hv→ 2HCl

CH4 + Cl2hv→ CH3Cl + HCl

С2Н4 + Cl2 = С2Н4Cl2

Cl2 + 2KBr = 2KCl + Br2

Cl2 + Н2O = HCl + HClO (реакция диспропорционирования)

HClO = HCl + О (атомарный кислород – окислитель)

Cl2 + 2KOH = KCl + KClO +Н2O

2Cl2 + 2Са(OH)2 = CaCl2 + Са(ClO)2 + 2Н2O

Смесь CaCl2 и Са(ClO)2 – хлорная, или белильная, известь.

ЗCl2 + 6KOH →100 °C→ 5KCl + KClO3 + ЗН2O

KClO3 – хлорат калия, или бертолетова соль.

4KClO3400 °C→ KCl + ЗKClO4

2KClO3v→2KCl + 3O2

Сила кислот растет в ряду:

HClO → HClO2 → HClO3 → HClO4.

2HCl + Fe = FeCl2 + H2

2HCl + CuO = CuCl2 + H2O

3HCl + Al(OH)3 = AlCl3 + 3H2O

HCl + AgNO3 = AgCl↓ + HNO3

HCl + NH3 = NH4Cl

8.5. Бром, иод и их соединения

Бром – темно-бурая жидкость с резким запахом, а иод – кристаллическое вещество темного цвета. Изменение фазового состояния галогенов обусловлено увеличением межмолекулярного – дисперсионного взаимодействия, связанного с увеличением размеров и поляризуемости молекул галогенов в ряду хлор → бром → иод.

2NaBr + Cl2 = 2NaCl + Br2

2NaI + Cl2 = 2NaCl + I2

2Al + ЗBr2 = 2AlBr3

2Al + 3I2 = 2AlI3

Br2 + Н2 ↔ 2HBr

I2 + Н2 ^

AgNO3 + NaBr = AgBr↓ + NaNO3

AgNO3 + NaI = AgI↓+ NaNO3

I2 + 2Na2S2O3 = 2NaI + Na2S4O6

10KI + 8H2SO4 + 2KMnO4 = 5I2 + 2MnSO4 + 6K2SO4 + 8H2O

9. d-Элементы

В атомах d-элементов (переходных элементов) заполняется электронами d-под-уровень предвнешнего уровня. На внешнем уровне атомы d-элеметов имеют, как правило, два s-электрона. Близость строения валентных уровней атомов переходных элементов определяет их общие свойства. Все они являются металлами, имеют высокую прочность, твердость, высокую электро– и теплопроводность. Многие из них электроположительны и растворяются в минеральных кислотах, однако среди них есть металлы, не взаимодействующие обычным способом с кислотами. Большинство переходных металлов имеют переменную валентность. Максимальная валентность, как и максимальная степень окисления, как правило, равно номеру группы, в которой находится данный элемент.

9.1. Хром и его соединения

Хром представляет собой ковкий тягучий металл серо-стального цвета. Электронная формула атома хрома 1s22s22p63s23p63d54s1.

Характерные степени окисления хрома, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства хрома

FeO • Cr2O3 + 4CO →t→ Fe + 2Cr + 4CO2 (Fe + 2Cr) – феррохром

Сr2O3 + 2Al →t→ 2Сr + Al2O3 – метод алюминотермии

Хром пассивируется на холоду концентрированными азотной и серной кислотами.

Сr + 2HCl = СrCl2 + Н2

СrCl2 + 2NaOH = Cr(OH)2↓ + 2NaCl

Свойства соединений хрома (+2) и хрома (+3)

Гидроксид хрома(II) сразу окисляется кислородом воздуха.

4Сr(OH)2 + O2 + 2Н2O = 4Сr(OH)3

СrCl3 + 3NaOH = Cr(OH)3↓ + 3NaCl

Cr(OH)3↓ + 3Na(OH) = Na3[Cr(OH)6]

Cr2O3 + 2NaOH →t→ 2NaCrO2 + H2O

Cr(OH)3↓ + 3HCl = CrCl3 + 3H2O

2Cr(OH)3t→ Cr2O3 + 3H2O

2CrCl3 + 3Cl2 + 16KOH = 2K2CrO4 + 12KCl + 8H2O

2Na3Cr(OH)6 + 3Br2 + 4NaOH = 2Na2CrO4 + 6NaBr + 8H2O

Свойства соединений хрома (+6)

CrO3 + Н2O = H2CrO4

2CrO3 + H2O = H2Cr2O7

Желтый раствор хромата калия устойчив в щелочной среде, оранжевый раствор дихромата калия – в кислой среде.

К2Сr2O7 + 2KOH = 2К2СrO4 + Н2O

2K2CrO4 + H2SO4 = K2SO4 + K2Cr2O7 + Н2O

(NH4)2Cr2O7 →t→ Cr2O3 + N2 + 4Н2O

Дихромат калия – окислитель в кислой среде.

К2Сr2O7 + 4H2SO4 + 3Na2SO3 = Cr2(SO4)3 + 3Na2SO4 + K2SO4 + 4H2O

K2Cr2O7 + 4H2SO4 + 3NaNO2 = Cr2(SO4)3 + 3NaNO3 + K2SO4 + 4H2O

K2Cr2O7 + 7H2SO4 + 6KI = Cr2(SO4)3 + 3I2 + 4K2SO4 + 7H2O

K2Cr2O7 + 7H2SO4 + 6FeSO4 = Cr2(SO4)3 + 3Fe2(SO4)3 + K2SO4 + 7H2O

9.2. Марганец и его соединения

Марганец – серебристо-белый твердый и хрупкий металл. Характерные степени окисления марганца, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Получение и свойства марганца

FeO • Mn2O3 + 4CO →t→ Fe + 2Mn + 4CO2 (Fe + 2Mn) – ферромарганец

Mn2O3 + 2Al →t→ 2Mn + Al2O3 – метод алюминотермии

Mn + 2HCl = MnCl2 + Н2

Mn + 2H2SO4 (конц.) = MnSO4 + SO2 + 2Н2O

ЗMn + 8HNO3 (разб.) = 3Mn(NO3)2 + 2NO + 4Н2O

Свойства соединений марганца (+2)

MnSO4 + 2NaOH = Mn(OH)2↓ + Na2SO4

Mn(OH)2↓ + 2NaOH ≠

Mn(OH)2↓ + H2SO4 = MnSO4 + 2H2O

2Mn(OH)2↓ + O2 = MnO2↓ + 2H2O

Mn(OH)2↓ + 2NaOH + Br2 = MnO2↓ + 2NaBr + 2H2O

Mn(OH)2↓ →t→ MnO + H2O↑

2Mn(NO3)2 + 16HNO3 + 5NaBiO3 = 2HMnO4 + 5Bi(NO3)3 + 5NaNO3 + 7H2O

3MnCl2 + 2KClO3 + 12NaOH →сплавление→ 3Na2MnO4 + 2KCl + 6NaCl + 6H2O

Свойства соединений марганца (+4)

MnO2 – устойчивый амфотерный оксид, сильный окислитель.

MnO2 + 4HCl = MnCl2 + Cl2 + 2Н2O

3MnO2 + KClO3 + 6KOH →сплавление→ 3K2MnO4 + KCl + 3H2O↑

Свойства соединений марганца (+6)

Соединения устойчивы лишь в сильнощелочной среде.

К2MnO4 + 8HCl = MnCl2 + 2Cl2 + 2KCl + 4Н2O

Свойства соединений марганца (+7)

Сильные окислители в кислой среде.

2KMnO4 + 3H2SO4 + 5Na2SO3 = 2MnSO4 + 5Na2SO4 + K2SO4 + 3H2O

2KMnO4 + H2O + 3Na2SO3 = 2MnO2 + 3Na2SO4 + 2KOH

2KMnO4 + 2KOH + Na2SO3 = 2K2MnO4 + Na2SO4 + H2O

2KMnO4 + 8H2SO4 + 10FeSO4 = 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O

2KMnO4 + 8H2SO4 + 10KI = 2MnSO4 + 5I2 + 6K2SO4 + 8H2O

2KMnO4 + 3H2SO4 + 5NaNO2 = 2MnSO4 + 5NaNO3 + K2SO4 + 3H2O

2KMnO4 t→ K2MnO4 + MnO2 + O2

9.3. Железо и его соединения

Железо является вторым после алюминия металлом по распространенности в природе. Характерные степени окисления железа, электронные формулы соответствующих ионов, химические свойства и примеры соединений приведены в таблице.

Соединения железа (+8) малохарактерны.

Получение и свойства железа

3Fe2O3 + CO →t→ 2Fe3O4 + CO2

Fe3O4 + CO →t→ 3FeO + CO2

FeO + CO →t→ Fe + CO2

3Fe3O4 + 8Al →t→ 9Fe + 4Al2O3

Fe + I2t→ FeI2

2Fe + ЗCl2 t→ 2FeCl3

4Fe + 3O2 + 2Н2O = 4FeO(OH)↓ (коррозия на воздухе)

Fe + 2HCl = FeCl2 + Н2

Fe + H2SO4 (разб.) = FeSO4 + H2

Fe + 4HNO3 (разб.) = Fe(NO3)3 + NO + 2H2O

Концентрированные серная и азотная кислоты пассивируют железо на холоду. При нагревании реакция идет.

2Fe + 6H2SO4(конц.) →t→ Fe2(SO4)3 + 3SO2 + 6Н2O

Fe + 6НNO3(конц.) →t→ Fe(NO3)3 + 3NO2 + 3H2O

Свойства соединений железа (+2)

FeO + Н2O ≠

FeO + H2SO4 = FeSO4 + H2O

FeSO4 + 2NaOH = Fe(OH)2↓ + Na2SO4

Гидроксид железа(II) сразу окисляется кислородом воздуха.

4Fe(OH)2↓ + 2Н2O + O2 = 4Fe(OH)3

Fe(OH)2↓ + H2SO4 = FeSO4 + 2Н2O

Fe(OH)2↓ + 2NaOH *

FeSO4 + 6KCN = K4[Fe(CN)6] + K2SO4

FeSO4 + K3[Fe(CN)6] = KFe[Fe(CN)6]↓ + K2SO4

Свойства соединений железа (+3)

FeCl3 + 3NaOH = Fe(OH)3↓ + 3NaCl

Fe(OH)3↓ + 3HCl = FeCl3 + 3H2O

Fe(OH)3↓ + NaOH ≠ не идет в разбавленном растворе

Fe(OH)3↓ + NaOH →сплавление→ NaFeO2 + 2H2O

FeCl3 + 2HI = 2FeCl2 + I2 + 2HCl

FeCl3 + 6KCN = K3[Fe(CN)6] + 3KCl

FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6]↓ + 3KCl

FeCl3 + 3KCNS = Fe(SCN)3 + 3KCl

Свойства соединений железа (+6)

Феррат калия – окислитель.

Fe2O3 + 3KNO3 + 4KOH →сплавление→ 2K2FeO4 + 3KNO2 + 2H2O

4K2FeO4 + 10H2SO4(разб.) = 2Fe2(SO4)3 + 3O2↑ + 4K2SO4 + 10H2O

9.4. Медь и ее соединения

Медь – мягкий красный металл, хорошо проводит теплоту и электрический ток.

Получение и свойства меди

2CuS + 3O2t→ 2CuO + 2SO2

CuO + CO →t→ Cu + CO2

Cu + 2HCl + Н2O2 = CuCl2 + 2Н2O

Cu + 2H2SO4(конц.) = CuSO4 + SO2 + 2Н2O

Cu + 4НЖ)3(конц.) = Cu(NO3)2 + 2NO2 + 2H2O

3Cu + 8HNO3(разб.) = 3Cu(NO3)2 + 2NO + 4H2O

4Cu + O2(недостаток) →200 °C→ 2Cu2O

2Cu + O2(избыток) →500 °C→ 2CuO

2Cu + H2O + CO2 + O2 = (CuOH)2CO3↓ (малахит)

Свойства соединений меди(I)

2Cu2O + O500 °C→ 4CuO

Cu2O + CO →t→ 2Cu + CO2

Cu2O + 4(NH • Н2O) (конц.) = 2[Cu(NH3)2]OH + 3H2O

Свойства соединений меди(II)

CuO + 2HCl = CuCl2 + Н2O

CuSO4 + 2NaOH = Cu(OH)2↓ + Na2SO4

Cu(OH)2↓ →t→ CuO↓ + Н2O

Cu(OH)2↓ + H2SO4 = CuSO4 + 2H2O

Cu(OH)2↓ + NaOH ≠ не идет в растворе

Cu(OH)2↓ + 2NaOH (конц.) →t→ Na2[Cu(OH)4]

CuSO4 + 4(NH3 • H2O) = [Cu(NH3)4]SO4 + 4Н2O

[Cu(NH3)4]SO4 + Na2S = CuS↓ + Na2SO4 + 4NH3

2CuSO4 + 2H2O ↔ (CuOH)2SO4 + H2SO4

2CuSO4 + 4KI = 2CuI↓ + I2 + 2K2SO4

2Cu(NO3)2t→ 2CuO + 4NO2 + O2

9.5. Серебро и его соединения

3Ag + 4HNO3 (разб.) = 3AgNO3 + NO↑ + 2H2O

2AgNO3 + 2NaOH = Ag2O↓ + H2O + 2NaNO3

AgNO3 + HCl = AgCl↓ + HNO3

AgCl↓ + 2(NH3 • H2O) = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Ag2O + 4(NH • Н2O) (конц.) = 2[Ag(NH3)2]OH + 3H2O

2[Ag(NH3)2]OH + CH3CHO + 2H2O = 2Ag↓ + CH3COONH4 + 3(NH • H2O)

9.6. Цинк и его соединения

Получение и свойства цинка

2ZnS + 3O2t→ 2SO2 + 2ZnO

ZnO + CO →t→ Zn + CO2

Zn + 2HCl = ZnCl2 + H2

Zn + H2SO4 (разб.) = ZnSO4 + H2

4Zn + 5H2SO4 (конц.) = 4ZnSO4 + H2S↑ + 4H2O

Zn + 4НHNO3(конц.) = Zn(NO3)2 + 2NO2↑ + 2H2O

4Zn + 10HNO3(оч. разб.) = 4Zn(NO3)2 + NH4NO3 + 3H2O

Zn + 2NaOH + 2H2O = Na2[Zn(OH)4] + H2

Свойства соединений цинка

ZnSO4 + 2NaOH = Zn(OH)2↓ + Na2SO4

Zn(OH)2↓ + H2SO4 = ZnSO4 + 2H2O

Zn(OH)2↓ + 2NaOH = Na2[Zn(OH)4]

Na2[Zn(OH)4] + 2HCl = Zn(OH)2↓ + 2NaCl + 2H2O

Na2[Zn(OH)4] + 4HCl = ZnCl2 + 2NaCl + 4H2O

Zn(OH)2↓ + 6NH4OH = [Zn(NH3)6](OH)2 + 6H2O

2ZnSO4 + 2H2O ↔ (ZnOH)2SO4 + H2SO4

III. Аналитическая химия

1. Теоретические основы аналитической химии

Чувствительность аналитической реакции. Предел обнаружения, или открываемый минимум, (m) – наименьшая масса вещества, открываемая данной реакцией по данной методике. Измеряется в микрограммах (1 мкг = 10– 6 г).

Предельная концентрация (clim) – наименьшая концентрация определяемого вещества, при которой оно может быть обнаружено в растворе данной реакцией по данной методике. Выражается в г/мл.

Предельное разбавление (Vlim) – объем раствора с предельной концентрацией, в котором содержится 1 г определяемого вещества. Предельное разбавление выражается в мл/г.

Минимальный объем предельно разбавленного раствора (Vmin) – наименьший объем (мл) раствора определяемого вещества, необходимый для его обнаружения данной реакцией.

m = Clim • Vmin • 106,

Вычисление рН водных растворов

сильных кислот: рН = – lga(H+) = – lg (c(H+) / f+))

сильных оснований: рН = 14 + lga(OH¯) = 14 + lg (c(OH¯) f(OH¯))

слабых кислот: рН = – ½(рKкислоты – lgc) = – ½Kкислоты – ½lgc

слабых оснований: рН = 14 – ½рKоснования + ½lgc

солей, образованных сильным основанием и слабой кислотой: рН = 7 + ½pKкислоты + ½lgcсоли

солей, образованных слабым основанием и сильной кислотой: рН = 7 – ½Kоснования – lgcсоли

солей, образованных слабым основанием и слабой кислотой: рН = 7 + ½pKкислоты + ½pKоснования

кислого буферного раствора:

щелочного буферного раствора:

Вычисление буферной емкости. Емкость буферного раствора определяется количеством сильной кислоты или сильного основания, которое необходимо добавить к 1 л буферного раствора, чтобы изменить его значение рН на единицу.

Гетерогенное равновесие: осадок – насыщенный раствор малорастворимого соединения. Гетерогенное равновесие между осадком малорастворимого соединения и его ионами в насыщенном водном растворе может быть представлено следующим уравнением:

KtmAnn↓ ↔ mKtn+ + nAnm-

[Ktn+] = m s; [Anm-] = n • s

Константа равновесия обратимой реакции осаждения-растворения называется произведением растворимости Ks (или ПР) и выражается следующим образом:

Ks = a(Ktn+) a(Anm-)n = (f(Ktn+) x [Ktn+])m  (f(Anm-)[Anm-])n = (ms)m(ns)n • f(Ktn+)m• f(Ann-)n = nnmmsm+n • f(Ktn+)m • f(Anm-)n, или Ks = nn • mm • sm + n

Растворимость – это свойство вещества образовывать гомогенные системы с растворителем. Молярная растворимость малорастворимого вещества (s), моль/л, выражается следующим образом:

Зная молярную растворимость соединения KtmAnn, легко вычислить его растворимость в г/л ρ по формуле:

ρ = s • M(KtmAnn)

Массу малорастворимого вещества в любом объеме можно рассчитать по формуле:

m(KtmAnn) = s(KtmAnn) • M(KtmAnn) x Vр-ра

Условие образования и растворения осадка. Осадок не образуется или растворяется, если произведение концентраций ионов осадка в растворе меньше величины произведения растворимости.

[Ktn+]m[Anm-]n < Ks(KtmAnn)

Осадок образуется или выпадает, если произведение концентраций ионов осадка в растворе больше величины произведения растворимости.

[Ktn+]m[Anm-]n > Ks(KtmAnn).

Равновесия в окислительно-восстановительных системах. Для обратимой окислительно-восстановительной реакции

Oх + nē ↔ Red

Равновесный потенциал Eox/red со стандартным потенциалом редокс-пары Eox/red и активностью окисленной и восстановленной формы связан уравнением Нернста:

где R – универсальная газовая постоянная, равная 8,314 Дж/моль К, Т – температура по шкале Кельвина, К, T – число Фарадея, равное 96485 Кл/моль, а(Ох) – активность окисленной формы, a(Red) – активность восстановленной формы.

При подстановке в уравнение значений универсальной газовой постоянной, числа Фарадея, температуры Т = 298 К и замены натурального логарифма на десятичный получается уравнение для расчета значения равновесного электродного потенциала редокс-пары при 25°C:

Если в окислительно-восстановительных реакциях принимают участие ионы водорода, то уравнение Нернста выглядит следующим образом:

Если окисленная или восстановленная форма окислительно-восстановительной полуреакции является малорастворимым соединением, то в формулу для вычисления равновесного потенциала такой системы входит величина произведения растворимости этого соединения.

Если в окислительно-восстановительной полуреакции окисленной формой является комплексное соединение OxLm, характеризующееся константой устойчивости β(OxLm), то равновесный окислительно-восстановительный потенциал вычисляется по уравнению:

Направление и глубина протекания окислительно-восстановительных реакций. Обратимая окислительно-восстановительная реакция

аОх1 + bRed1 ↔ аОх2 + bRed2 протекает в прямом направлении, если ΔЕ0 = Е0Ox1/Red2 – Е0Ox2/Red1 > 0, И В обратном направлении, если ΔЕ0 < 0.

Глубина протекания реакции, т. е. степень превращения исходных веществ в продукты реакции, определяется константой равновесия.

Для окислительно-восстановительной реакции константа равновесия с потенциала-

ми участвующих в реакции редокс-пар связана уравнением:

2. Качественные реакции катионов
Кислотно-основная классификация катионов

I группа: Li+, NH4+, Na+, K+

групповой реагент – отсутствует.

Свойства соединений: хлориды, сульфаты и гидроксиды растворимы в воде.

II группа: Ag+, Hg22+, Pb2+

групповой реагент – HCl (с(HCl) = 2 моль/л).

Свойства соединений: хлориды не растворимы в воде.

III группа: Са2+, Ва2+, Sr2+, Pb2+

групповой реагент – H2SO4 (c(H2SO4) = 2 моль/л).

Свойства соединений: сульфаты не растворимы в воде.

IV группа: Al3+, Cr3+, Zn2+, As(III), As(IV), Sn2+

групповой реагент – NaOH (c(NaOH) = 2 моль/л), избыток.

Свойства соединений: гидроксиды растворимы в избытке NaOH.

V группа: Bi3+, Fe2+, Fe3+, Mn2+

групповой реагент – NH3 (конц.).

Свойства соединений: гидроксиды нерастворимы в избытке NaOH и NH3.

VI группа: Cd2+, Co2+, Cu2+, Ni2+

групповой реагент – NH4OH (конц.).

Свойства соединений: гидроксиды нерастворимы в избытке NaOH, но растворимы в избытке NH3.

2.1. I аналитическая группа
Ион: Li+

1. Реактив, условия: Na2HPO4, конц. NH3.

Уравнение реакции:

3LiCl + Na2HPO4 = Li3PO4↓ + 2NaCl +HCl

Наблюдения: белый осадок.

2. Реактив, условия: Na2CO3, рН ≈ 7

Уравнение реакции: 2LiCl + Na2CO3 = Li2CO3↓ + 2NaCl

Наблюдения: белый осадок.

Ион: NH4+

1. Реактив, условия: NaOH, газовая камера.

Уравнение реакции:

NH4Cl + NaOH = NaCl + Н2O + NH3

Наблюдения: запах аммиака, фенолфталеиновая бумага краснеет.

2. Реактив, условия: реактив Несслера (смесь K2[HgI4] и KOH)

Уравнение реакции:

NH3 + 2K2[HgI4] + ЗKOH = [OHg2NH2]I↓ + 7KI + 2Н2O

Наблюдения: красно-бурый осадок.

Ион: Na+

1. Реактив, условия: K[Sb(OH)6], насыщенный раствор, холод, рН ≈ 7, мешают NH4+, Li+

Уравнение реакции:

NaCl + K[Sb(OH)6] = Na[Sb(OH)6]↓ + KCl

Наблюдения: белый осадок.

2. Реактив, условия: Zn(UO2)3(CH3COO)8, предметное стекло, CH3COOH, мешает Li+

Уравнение реакции:

NaCl + Zn(UO2)3(CH3COO)8 + CH3COOK + 9Н2O = NaZn(UO2)3(CH3COO)9 9Н2O↓ + KCl

Наблюдения: желтые кристаллы октаэд-рической и тетраэдрической форм.

Ион: К+

1. Реактив, условия: Na3[Co(NO2)6], слабо-кислая среда, мешают NH4+, Li+.

Уравнение реакции:

2KCl + Na3[Co(NO2)6] = K2Na[Co(NO2)6]↓ + 2NaCl

Наблюдения: желтый осадок.

2. Реактив, условия: NaHC4H4O6, рН ≈ 7, мешает NH4+.

Уравнение реакции: 2KCl + NaHC4H4O6 = K2C4H4O6↓ + NaCl + HCl

Наблюдения: белый осадок.

2.2. II аналитическая группа
Ион: Ag+

1. Реактив, условия: HCl, NH• Н2O

Уравнения реакций:

AgNO3 + HCl = AgCl↓ + HNO3

AgCl↓ + 2NH3 • H2O = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Наблюдения: белый осадок, растворимый в избытке аммиака и выпадающий вновь при добавлении азотной кислоты (использовать спец. слив!).

2. Реактив, условия: К2СrO4, рН = 6,5–7,5.

Уравнение реакции:

2AgNO3 + K2CrO4 = Ag2CrO4↓ + 2KNO3 Наблюдения: кирпично-красный осадок.

Ион: Hg2+

1. Реактив, условия: HCl, NH3 • Н2O

Уравнения реакций:

Hg2(NO3)2 + 2HCl = Hg2Cl2↓ + 2HNO3

Hg2Cl2↓ + 2NH3 • H2O = [HgNH2]Cl↓ + Hgi↓ + NH4Cl + 2H2O

Наблюдения: белый осадок, при добавлении аммиака – чернеет (использовать спец. слив!).

2. Реактив, условия: Cu (металл.)

Уравнение реакции:

Hg2(NO3)2 + Cu = Hg↓ + Cu(NO3)2

Наблюдения: образование амальгамы.

Ион: РЬ2+

1. Реактив, условия: HCl

Уравнение реакции:

Pb(NO3)2 + 2HCl = РЬCl2↓ + 2HNO3

Наблюдения: белый осадок, растворимый в горячей воде.

2. Реактив, условия: KI

Уравнение реакции:

РЬCl2 + 2KI = РCl2↓ + 2KCl

Наблюдения: ярко-желтый осадок.

2.3. III аналитическая группа
Ион: Ва2+

1. Реактив, условия: H2SO4

Уравнение реакции:

ВaCl2 + H2SO4 = BaSO4↓ + 2HCl

Наблюдения: белый осадок, нерастворимый в HNO3.

2. Реактив, условия: К2СrO4 или К2Сr2O7

Уравнение реакции:

ВaCl2 + К2СrO4 = ВаСrO4↓ + 2KCl

Наблюдения: желтый осадок, нерастворимый в CH3COOH, растворимый в HNO3.

Ион: Са2+

1. Реактив, условия: H2SO4 и С2Н5OH

Уравнение реакции:

CaCl2 + H2SO4 + 2Н2O = CaSO4 • 2H2O↓ + 2HCl

Наблюдения: белые кристаллы гипса.

2. Реактив, условия: (NH4)2C2O4

Уравнение реакции:

CaCl2 + (NH4)2C2O4 = СаС2O4↓ + 2NH4Cl

Наблюдения: белый осадок, нерастворимый в CH3COOH, растворимый в HNO3.

Ион: Sr2+

1. Реактив, условия: «гипсовая вода»

Уравнение реакции:

SrCl2 + CaSO4t→ SrSO4↓ + CaCl2

Наблюдения: белый осадок.

2.4. IV аналитическая группа
Ион: Al3+

1. Реактив, условия: ализарин С14Н6O2(OH)2, NH3 • Н2O (NH4Cl)

Уравнения реакций:

AlCl3 + 3NH3 • H2O = Al(OH)3↓ + 3NH4Cl

Наблюдения: Розовый лак на фильтровальной бумаге.

2. Реактив, условия: алюминон, CH3COOH

Уравнение реакции: алюминон с Al(OH)3 образует красный лак, которому приписывается следующая формула:

Наблюдения: розовый лак.

Ион: Сr3+

Реактив, условия: NaOH, H2O2, нагревание, амиловый спирт, H2SO4

Уравнение реакции:

2СrCl3 + 10NaOH + ЗН2O2 = 2К2СrO4 + 6NaCl + 8Н2O

Наблюдения: желтый раствор, при добавлении амилового спирта, H2SO4 наблюдается синее кольцо.

Ион: Zn2+

Реактив, условия: дитизон С6Н5—NH—N=C(SH)—N=N—C6H5 (дифенилкарбазон), CHCl3, рН = 2,5-10, мешают Pb2+, Cd2+, Sn2+

Уравнения реакций:

Наблюдения: соль красного цвета, растворимая в хлороформе (CHCl3).

Ион: AsO33-

Реактив, условия: AgNO3

Уравнение реакции:

Na3AsO3 + 3AgNO3 = Ag3AsO3↓ + 3NaNO3

Наблюдения: желтый аморфный осадок, растворим в концентрированном растворе аммиака и в азотной кислоте (использовать спец. слив!).

Ион: AsO43-

1. Реактив, условия: магнезиальная смесь (MgCl2 + NH4Cl + NH3), мешает PO43-

Уравнение реакции:

NH4Cl + MgCl2 + Na3AsO4 = NH4MgAsO4↓ + 3NaCl

Наблюдения: белый кристаллический осадок (использовать спец. слив!).

2. Реактив, условия: AgNO3

Уравнение реакции:

Na3AsO4 + 3AgNO3 = Ag3AsO4↓ + 3NaNO3

Наблюдения: осадок шоколадного цвета (использовать спец. слив!).

3. Реактив, условия: (NH4)2S или H2S, конц. HCl

Уравнение реакции:

5H2S + 2Na3AsO4 + 6HCl = As2S5↓ + 8Н2O + 6NaCl

Наблюдения: осадок желтого цвета (использовать спец. слив!).

Ион: Sn2+

1. Реактив, условия: Bi(NO3)3, pH > 7

Уравнения реакций:

SnCl2 + NaOH = Sn(OH)2↓ + 2NaCl

Sn(OH)2 + 2NaOH(изб.) = Na2[Sn(OH)4] + 2NaCl

3Na2[Sn(OH)4] + 2Bi(NO3)3 + 6NaOH = 2Bi + 3Na2[Sn(OH)6] + 6NaNO3

Наблюдения: осадок черного цвета.

2. Реактив, условия: HgCl2, конц. HCl

Уравнения реакций:

SnCl2 + 2HCl = H2[SnCl4]

H2[SnCl4] + 2HgCl2 = H2[SnCl6] + Hg2Cl2

Наблюдения: осадок белого цвета, который постепенно чернеет вследствие образования металлической ртути.


    Ваша оценка произведения:

Популярные книги за неделю