355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Светлана Фомичева » Размышления практикующего врача о здоровье работников газовой промышленности » Текст книги (страница 2)
Размышления практикующего врача о здоровье работников газовой промышленности
  • Текст добавлен: 7 октября 2016, 14:19

Текст книги "Размышления практикующего врача о здоровье работников газовой промышленности"


Автор книги: Светлана Фомичева


Соавторы: Илья Фомичев

Жанр:

   

Медицина


сообщить о нарушении

Текущая страница: 2 (всего у книги 4 страниц) [доступный отрывок для чтения: 2 страниц]

4. При небольшом количестве желчных кислот кишечная трубка сокращается вяло, что способствует гнилостным процессам в кишечнике и развитию дисбиоза.Кишечно-печеночная циркуляция холестерина, желчных кислот у здорового человека

Постоянство внутренней среды в кишечнике и его особенности у работников газовой промышленности

Важнейшим показателем нормального состояния желудочно-кишечного тракта человека является постоянство среды в каждом отделе. При этом общеизвестно резкое различие содержимого разных отделов и, в первую очередь, рядом расположенных. Так, в пищеводе среда нейтральная (pH=7), в желудке резко кислая (pH=2), а в 12-перстной кишке – щелочная (рН=8,5–9).

Значение высокой кислотности желудка не исчерпывается созданием необходимых условий для оптимального действия пепсина (главный фермент желудка), который вовсе не действует при нейтральной или щелочной среде. Кислая среда обеспечивает надежную дезинфекцию пищевого комка. Возникает вопрос: каким же образом поддерживается постоянство среды в каждом из отделов? Почему, несмотря на выхождение кислого желудочного содержимого в 12-перстную кишку, в ней сохраняется щелочная среда? Ответ очевиден – адекватная работа сфинктерного аппарата.

Во время выхождения порции желудочного содержимого в 12-перстную кишку происходит снижение pH. Сфинктер между желудком и 12-перстной кишкой (привратник) сразу закрывается, и перистальтические движения желудка ни к чему не приводят. Сфинктер закрыт до тех пор, пока pH не поднимается до 7,0 (нейтральная кислотность) и выше. Это происходит за счет желчи, которая является прямым антагонистом желудочного содержимого. Тогда привратник открывается и пропускает следующую порцию пищи. Вот почему полный срок эвакуации желудочного содержимого составляет 2,5–3 часа.

Далее жиры в 12-перстной кишке под действием перистальтики и желчных кислот намыливаются, как мыло, и на границе поверхности жир-вода вступают в действие поджелудочные ферменты, которые переводят липиды в триглицериды. Однако поджелудочные ферменты при оптимальном для них pH 8,0–9,0 (щелочная кислотность) могут переводить обратно глицериды в жиры. Чтобы этого не случилось, по ходу продвижения пищевого комка желчные кислоты опять вступают в действие и снижают pH до 6,0–7,0 (нейтральная кислотность). Это оптимальное значение для действия кишечных ферментов. В толстом же кишечнике основную роль играет микрофлора [9, 13, 19].

Сероводород оказывает наиболее токсическое свое воздействие в щелочной среле. В более кислой среде токсичность сероводорода уменьшается. Поэтому организм, чтобы защитить себя, повышает pH в желулке. При этом повышенная кислотность желудочного сока влияет на стенки желулка и может их повредить. При повреждении стенок желудка включается другой механизм защиты стенок желудка от кислого содержимого путем открытия клапана между желудком и 12-перстной кишкой. При этом не только щелочное содержимое 12-перстной кишки попадает в желудок, снижая кислотность желудочного сока, но и кислое содержимое желудка забрасывается в 12-перстную кишку. Пищевой комок в таких случаях не подвергается адекватной дезинфекции в желудке и не обрабатывается в достаточной степени щелочной средой 12-перстной кишки. Как следствие этого, пищевой комок не стимулирует поджелудочную железу и печень на открытие клапанов или стимулирует их неадекватно составу и объему пищи. Следовательно, небольшое количество желчи и малое содержание в ней желчных кислот приводит к недостаточному расщеплению жиров. Это опасно не только нарушением пищеварения.

Жиры являются основным источником энергии для организма, источником необходимых ненасыщенных жирных кислот, жирорастворимых витаминов, они экономят потребление многих витаминов и ускоряют их синтез бактериальной флорой кишечника, удерживают белковое и углеводное равновесие, увеличивают способность организма к напряжению, влияют на функцию эндокринных желез, на процесс свертывания крови, являются основным каркасным элементом клеточных мембран, а также влияют на многие другие процессы жизнедеятельности.

При недостаточном расщеплении жиров не происходит их адекватного усвоения. Жиров может всасываться недостаточно вследствие нехватки желчных кислот либо может всасываться избыток жиров вследствие команды из центральной нервной системы о недостатке липидов в клетке. При этом в последнем случае липиды все равно не попадают в клетку, так как недостаточно для этого расщеплены. А в крови липидов много. В этом случае неутилизированные жиры откладываются в жировую ткань. И, как правило, и в том и в другом случае в клетке наблюдается дефицит липидов.

Микрофлора кишечника человека и влияние сероводорода на ее состав

В одном грамме тонкокишечного содержимого здорового человека содержится от 5 до 10 тысяч основных видов кишечных микробов (колибактерии, бифидумбактерии, лактобациллы, энтерококки). Причем количество от 12-перстной кишки до подвздошной кишки возрастает. Точно в таком же объеме толстокишечного содержимого находится от 30 до 40 миллиардов микробов. Помимо указанных выше основных представителей микрофлоры, в толстой кишке имеется до 240 видов микроорганизмов.

Ферменты микроорганизмов толстой кишки вызывают окончательное расщепление углеводов, белков и жиров, в результате чего образуются либо полезные вещества, либо токсические. Это зависит от состава микрофлоры. Нормальная кишечная микрофлора образует полезные вещества, патогенная микрофлора образует большое количество газов (углекислый газ, метан, сероводород), токсические вещества (фенол, скатол, индол, крезол и другие). Это приводит к повышению внутрибрюшного давления, плохому перевариванию пищи, возникает чувство распирания живота, изжога. Токсическое действие этих веществ может вызывать головные и суставные боли, плохое самочувствие. Подавляющее большинство представителей нормальной микрофлоры составляют бифидумбактерии и колибактерии. При этом они могут продуцировать антибактериальные вещества против патогенных микробов.

Хирург-гастроэнтеролог Витебский Я.Д. пишет, что один и тот же вид бифидумбактерий у ребенка обладает выраженным противораковым действием, в то время как у пожилых людей способствует развитию рака.

Также в последние годы увеличивается число научных публикаций о способности определенных разновидностей (штаммов) микроорганизмов (в частности, лактобацилл) снижать холестерин крови. Хотя есть штаммы микроорганизмов, которые повышают уровень холестерина в крови. Микроорганизмы также являются обязательными участниками перевода холестерина в желчные кислоты, и наоборот [19, 21, 34].

Академик Шендеров Б.А. в своих трудах отмечает, что кишечные бактерии участвуют в метаболизме желчных кислот и активно влияют на обмен холестерина. Если сохранена способность бактерий выводить излишки желчных кислот и холестерина, соответственно нет излишнего накопления.

Полезные и вредные для человека эффекты кишечной микрофлоры

Нормальная кишечная микрофлора обеспечивает устойчивость организма ко многим кишечным инфекциям, расщепляет целлюлозу, дезактивирует кишечные ферменты, переводит первичные желчные кислоты во вторичные, синтезирует ряд витаминов – В1, В2, В12, К, тиамин, никотиновую кислоту, биотин, пиридоксин, фолиевую, аскорбиновую кислоты. Обладает иммунизирующими свойствами, оказывает влияние на процесс смены эпителия слизистой оболочки, ускоряя его.

Существует много причин, по которым бактерии теряют свойство выводить излишки холестерина и желчных кислот. Это антибиотики, другие лекарственные препараты, влияющие на перистальтику и нормальную микрофлору, гиповитаминозы, гипоксия, несбалансированное питание, гиподинамия и др. В таких случаях начинается застой в кишечнике. Организм в таких случаях повышает количество желчных кислот в желчи с целью снятия интоксикации и очищения, для поддержания оптимальной внутренней среды.

В таких случаях синтез желчных кислот в печени увеличивается и потребность в холестерине и кислороде возрастает. Если весь процесс идет оптимально, то концентрация желчных кислот в желчи возрастает и происходит стимуляция мышц кишечника.

В случаях, когда застой в кишечнике возникает слишком часто, то, естественно, скорость кишечно-печеночной циркуляции возрастает. При этом рано или поздно истощаются и холестерин, и вещества, которые переводят холестерин в желчные кислоты. Потребность в кислороде возрастает, но количество органических носителей кислорода уменьшается. Значит, в этой ситуации увеличение холестерина является компенсаторной реакцией. Организм начинает больше всасывать его из пищи и синтезировать печенью, для того чтобы перевести в желчные кислоты и тем самым увеличить стимуляцию кишечника, что необходимо для нормализации условий внутренней среды (гомеостаза).

В рабочих зонах и прилегающих окрестностях газоперерабатывающих и газодобывающих предприятий были проведены исследования влияния сероводорода на состав микрофлоры. Выяснилось, что его токсическое воздействие сказывается и на составе, и на качестве микрофлоры. Было установлено, что сероводород снижает полезную микрофлору (бифидо-, лактобактерии и другие) и способствует патологическому размножению стафилококков [6, 7].

Стафилококки в небольших количествах являются компонентом нормальной микрофлоры кишечника. В большинстве случаев (60 % людей) после занесения стафилококка организм освобождается от него, 20 % не поддерживают носительство и остальные 20 % являются упорными носителями. При этом вышесказанное никак не отражается на заболеваемости человека. Но есть определенный порог, при котором стафилококк становится причиной заболеваний. Стафилококк вырабатывает токсины, которые способны разрушать клеточную мембрану всех органов, но в первую очередь клеточную мембрану эритроцитов, соединительной ткани и клеток иммунной зашиты, способен вокруг себя свертывать плазму, инактивировать противобактериальные системы. Стафилококк печально знаменит своей быстрой адаптацией к антибиотикам[21].Схема жизнедеятельности патогенных (вредных) бактерий

1 – прилипание бактерий к поверхности слизистой;

2 – формирование колоний;

3 – продукция колониями бактерий токсинов;

4 – развитие бактерий внутри биопленки;

5 – выход бактерий из пленки, внедрение их в более глубокие окружающие ткани, выработка патогенными бактериями токсинов

При этом патогенная стафилококковая микрофлора, которая контактировала с сернистыми соединениями газа, приобретает особые свойства, которые основаны на усиленной способности удерживаться в своей нише.

Во время исследования были получены данные, из которых следует, что чем ближе к месту добычи и переработки природного газа, тем выше процент людей с упорным носительством, и наоборот [6, 7].Возникновение дисбактериоза у работников газовой промышленности в пользу стафилококков приводит к общей интоксикации продуктами жизнедеятельности этих микроорганизмов, повышению уровня холестерина в крови и снижению уровня желчных кислот.

Опасность кислородного голодания

Еще одним условием для снижения уровня холестерина является достаточное поступление кислорода в клетки печени.

При исследовании печени у больных с повышенным холестерином Серов В.В и Шехтер А.В. отмечали недостаток кислорода, из-за чего тормозится процесс превращения холестерина в желчные кислоты. Запускается еще один патологический механизм накопления неусвоенного холестерина.

Первое, что доступно наблюдению как показатель усвоения 2, – это дыхание. Глубина, частота дыхательных движений – все это требует оптимизации у больного с повышенным холестерином. Однако кислород не сразу достигает работающей клетки. Представьте себе цепочку людей, которые передают какой-нибудь предмет. В старину так тушили пожар, передавая по цепочке ведра с водой от реки до места пожара. Кислород можно себе представить в виде этого ведра с водой. Когда кислород достигает клетки, то она должна быть готова принять его. Если ворота для кислорода открыты, то кислород проникает в клетку и используется ею.

Усвоение работающими клетками кислорода – процесс непростой. Все вещества проникают в клетки через определенные «ворота» – рецепторы, расположенные на оболочке мембраны. Эволюционно рецепторы сформировались таким образом, чтобы пропускать внутрь клетки необходимые для жизни клетки вещества. Рецепторы пропускают внутрь не только кислород, но и химические элементы, аминокислоты, витамины, необходимые на данный момент для выполнения своей функции. Само проникновение внутрь клетки уникально. Это явление происходит по принципу саморегуляции, или «по требованию». Эволюция создала такой механизм, что клетка внутрь ничего лишнего старается не пропустить. В таких случаях она «закрывает ворота».

Схема утилизации кислорода

Некоторые внешние для клеток вещества имеют свойство «закрывать ворота» – это яды, продукты распада, сложные соединения белков и липидов (например, простагландины).

Эти вредные вещества начинают взаимодействовать с рецепторами: «блокируют» их и необходимые вещества (в том числе и кислород) внутрь клетки не поступают.

Получается, что внутрь клетки кислород не поступает, а вне клетки кислорода достаточно. То же самое происходит и с другими веществами. Голод во время изобилия.

Выше было сказано, что триглицериды, которые накапливаются в жировых клетках, могут сжигаться только в присутствии кислорода. Поэтому при недостатке кислорода в клетках, жир которых должен сжигаться при потребности организма в энергии, не сжигается и организм просит еды, тогда мы толстеем. Обратите внимание: полные люди, как правило, всегда хотят есть. В клетки ничего не попадает, они всегда голодные.Схема работы каналов (рецепторов) на мембране клеток

Внеклеточная среда содержит питательные вещества

Внутриклеточная среда

У работников газовой промышленности вопрос недостатка кислорода в клетках выходит на первый план. Серосоединения, входящие в состав природного газа, блокируют транспортировку кислорода на нескольких этапах. Первый этап – это недостаток кислорода уже в легких. Сернистые соединения газа, проникая в конечные отделы легких, где и происходит обмен между воздухом внешней среды и кровью, вызывают отек в бронхах и инфильтрацию клетками лимфатической системы (организм пытается защититься от токсинов). Второй этап – серосоединения напрямую блокируют вещества, которые отвечают за расправление бронхов после выдоха (после обмена между внешним воздухом и кровью бронхи спадаются). Третьим этапом блокировки кислорода является связывание металлов в эритроцитах, отвечающих за перенос кислорода от легких к тканям. Серосодинения блокируют железо в эритроцитах, которое является центральным звеном для получения кислорода и его переноса к тканям. Эритроциты не выполняют своей полной функции, то есть насыщенность эритроцитов кислородом падает. Четвертым этапом блокировки является сосудистая стенка, у которой под действием серосоединений газа повышается проницаемость и близлежащие ткани пропитываются эритроцитами, что, конечно, приводит к затруднениям при передаче кислорода от эритроцитов к тканям. Пятым этапом является блокирование ряда ферментов и целых ферментных систем, в частности ферментов, ответственных за перенос кислорода из эритроцита в клетку. То есть та самая цепочка, по которой кислород переходил в клетку, рвется.

Что же происходит, когда клетка не получает необходимого количества кислорода? Начинается лавинообразный процесс, при котором образуются активные формы кислорода – свободные радикалы. Свободный радикал – это высокоактивный химический агент, готовый соединиться с чем угодно и с кем угодно. В том числе может начаться неконтролируемый процесс соединения активного кислорода с липидами, который называется перекисным окислением липидов. Но необходимо отметить, что те же самые процессы запускаются и при постоянном избытке кислорода [33].

При достаточно низкой интенсивности перекисное окисление липидов относится к нормальным процессам, происходящим в клетке. Продукты перекисного окисления липидов крайне токсичны, но в небольших количествах необходимы для обновления липидов, входящих в состав клеточной мембраны, активации ряда мембранных белков, улучшения проницаемости клеточных мембран; продукты перекисного окисления связаны со скоростью клеточного деления, ответственны за различные формы защитных реакций клетки, также они регулируют переключение метаболических путей и синтез внутренних структур клетки. Кроме этого, продукты перекисного окисления липидов участвуют в синтезе ряда стероидных гормонов, гормонов щитовидной железы, участвуют в образовании тромбов, являются регуляторами синтеза и распада соединительной ткани, участвуют в метаболизме железа, являются регуляторами сосудистого тонуса. В месте воспаления именно продукты перекисного окисления липидов вызывают активацию и миграцию лимфоцитов, стимулируют фагоцитоз. В противовес перекисному окислению липидов стоит система антиоксидантной защиты. Самая важная составляющая этой системы это группа ферментов (их насчитывается более сотни), которые получили название цитохром Р-450. Функция этой системы, кроме регулирования количества продуктов перекисного окисления липидов, заключается в биотрансформации токсических продуктов, выработанных при стрессе, нейтрализации поступивших в клетку веществ, не являющихся участниками нормальных процессов в клетке и подлежащих удалению.Сероводород является прямым антагонистом антиоксидантной защиты цитохрома Р-450. Поэтому при воздействии сернистых соединений газа организм подвергается мощному нападению и при этом он обладает ослабленной защитой.

Обмен холестерина и эндокринология

Существует также тесная связь между обменом холестерина и заболеваниями эндокринной системы.

Эндокринология – это наука о гормонах, железах, их вырабатывающих, и тканях, на которые гормоны влияют. Гормонами называются химические посредники, передающие информацию клеткам и регулирующие разнообразные физиологические функции.

Эндокринная система во многом аналогична нервной системе, и обе эти системы функционируют как единое целое. Они являются системами приспособления к условиям внешней среды, определяют рост организма, старение, размножение и особенности поведения каждого из нас. Отмечено множество заболеваний, при которых происходит повышение холестерина, например: сахарный диабет, ожирение, гипотиреоз, алкоголизм, заболевания почек с почечной недостаточностью, панкреатит, закупорка желчных протоков и др. Пониженное содержание холестерина также приводит к печальным последствиям. Например, при некоторых аутоиммунных заболеваниях (системная красная волчанка, бронхиальная астма, ревматоидный артрит, васкулиты и др.) отмечается понижение уровня холестерина, в этих состояниях уменьшается синтез всех гормонов, образующихся с его участием [8, 22]. Это сопровождается недостатком многих важных гормонов. При этих состояниях в официальной медицине применяется заместительная гормональная терапия, которая имеет много жизнеопасных осложнений.

Важную роль играют гормоны и в течении ишемической болезни сердца. Гормоны влияют на сократительную способность сердца, уровень и скорость обменных процессов, становление адаптационных механизмов. Причем важен не один конкретный гормон, а баланс всех гормонов. Поэтому при недостатке одного гормона уже не получится той реакции, которая необходима. Организм максимально будет стараться компенсировать недостаток гормонов, но рано или поздно произойдет истощение тканевых ресурсов. Получается цепочка: если понижено содержание одного гормона – повышается содержание другого гормона, который может компенсировать недостаток, после истощения и этого гормона повышается следующий и так далее. Холестерин является основой для синтеза многих гормонов, и при блокаде синтеза гормонов из холестерина происходит повышение холестерина и понижение гормонов.

Возникает вопрос: зачем снижать уровень холестерина, не создавая условий для перевода в необходимые гормоны?

Кровь как жидкая и твердая субстанция. Особенности изменений в крови у работников газовой промышленности

Одной из причин возникновения опасных для жизни заболеваний является образование тромбов. Поэтому постараемся объяснить причину их возникновения и влияние на этот процесс холестерина.

Кровь – это удивительная жидкость, созданная природой, но при определенных условиях она может стать твердым телом (тромбом). Образование тромбов – явление эволюционно оправданное. Целью образования тромба является остановка кровотечения, причем независимо от причин его возникновения. Наиболее часто встречаются кровотечения травматические, послеродовые, менструальные. Жидкая кровь, становясь тромбом, закупоривает кровоточащий сосуд и сохраняет организм от излишней кровопотери, недостатка кислорода, обезвоживания и смерти.

В жидкой части крови (плазма), в клетках крови, в сосудах, вокруг сосудов находятся белки и липиды, регулирующие текучесть крови. Белки и липиды, которые переводят кровь в твердое состояние, называются гиперкоагулянтами. Кровь в жидком состоянии имеет гиперкоагулянты в неактивном состоянии (прокоагулянты) или они находятся внутри клеток (в тромбоцитах, в эритроцитах, в межклеточной жидкости, т. е. в основном веществе соединительной ткани или в сосудистой стенке). Один из основных белков-гиперкоагулянтов – фибриноген, который путем каскадных реакций превращается в твердый фибрин.

Белки и липиды, обеспечивающие жидкое состояние крови, называются гипокоагулянтами. В текучей крови они находятся в активном состоянии. Между веществами гипокоагулянтами и гиперкоагулянтами существует динамическое равновесие.

Схема образования атеросклеротических бляшек и тромбов в сосудах

1 – дисфункция эндотелия сосуда;

2, 3 – накопление холестерина и формирование бляшек;

4 – тромб в сосуде и его закупоркаНормальная вязкость крови

Образование тромбов

Кровотечения

Динамическое равновесие осуществляется в присутствии ионов кальция и магния. Поэтому сдвиг между соотношением этих веществ может привести к сдвигу между веществами разнонаправленного действия. Нарушение равновесия в сторону превалирования гипокоагуляции или гиперкоагуляции ведет или к кровотечениям, или к ненужным тромбозам соответственно.

Клинически тромбозы сосудов вызывают аневризмы, инфаркты, инсульты, гангрены и много других неприятностей. Эти осложнения являются одними из проявлений атеросклероза в сочетании с повышенной вязкостью крови.

Итак, гиперкоагуляционные факторы (способствующие образованию тромбов) находятся в стенках сосудов и тромбоцитов. Поэтому при атеросклерозе любые неблагоприятные воздействия, такие как стресс, интоксикации (в том числе и алкогольная), инфекция, травма, опухоль, переедание, повышение артериального давления, могут привести к повышенному распаду стенок сосудов и тромбоцитов и выбросу из них факторов гиперкоагуляции.

При наличии атеросклероза в сочетании с повышенной вязкостью крови и нарастании гиперкоагуляционных свойств крови (функция: образование тромбов) происходит повышение белков-прокоагулянтов (неактивные белки, которые в активном состоянии образуют тромбы) и они зависят от витамина К.

Синтез витамина К, как и других регуляторов вязкости крови, находится в зависимости от количества и качества желчи в толстом кишечнике.

Витамин К всасывается в кишечнике при обязательном участии микрофлоры кишечника и имеет, естественно, ряд витаминов-антагонистов (никотиновая кислота, витамин А) [12, 19, 34]. При динамическом равновесии между синтезом витамина К и его антагонистами нарушения вязкости крови не происходит и в этих условиях атеросклероз протекает без гиперкоагуляционных осложнений, т. е. без развития местного тромбоза, осложнениями которого являются инфаркт, инсульт, гангрена и т. д.

В тех случаях, когда мутация микрофлоры кишечника приводит к высокому синтезу витамина К или при неэффективном синтезе витаминов и ферментов – антагонистов витамина К, происходит повышение вязкости крови [34].

Как известно, по механизму действия лекарства, снижающие вязкость крови (непрямые антикоагулянты), являются конкурентными антагонистами витамина К. Витамин К является предшественником протромбина и многих других факторов свертывания [7, 9, 10]. Длительное время состояние повышенной свертываемости может никак не проявляться. Но приходит время и при стрессе, переедании, сахарном диабете и воздействиях некоторых других неблагоприятных факторов происходит выброс гормонов стресса, которые повышают уровень сахара в крови, также происходит увеличение уровня липидов и множество других каскадных реакций, вязкость крови еще больше повышается и возникает тромбоз в тех сосудах, где имеются липидные отложения.

При разработке патогенетических концепций, на наш взгляд, происходит недостаточный учет динамичности и изменчивости микрофлоры кишечника, особенно ее ферментативного аппарата. Если в патогенезе развития синдромов на первое место поставить индивидуальные сочетания нарушений витаминсинтетических, ферментообразовательных, антитоксических и других функций кишечной флоры, то становится понятной связь гиперлипидемии, гиперхолестеринемии, гиперкоагуляции у больных ишемической болезнью сердца.

Все стандарты лечения, применяемые в настоящее время, не учитывают этих особенностей, как, впрочем, и не учитывают особенностей тех процессов, которые протекают в организме при хроническом отравлении серосоединениями.

Продукты перекисного окисления липидов, образующиеся при хронической гипоксии, обладают свойством активировать прокоагулянты (неактивные белки, которые в активном состоянии образуют тромб). Кроме того, при увеличении проницаемости мембраны и распаде клеток (эритроцитов, тромбоцитов, элементов соединительной ткани и др.) в результате перекисного окисления липидов, гипоксии и прямого действия серосоединений происходит выброс веществ, которые способствуют тромбообразованию.

Развивается синдром диссеминированного внутрисосудистого свертывания, или ДВС-синдром. Суть этого процесса заключается в следующем: сначала образуется большое количество тромбов вследствие выброса гиперкоагуляционных веществ, а потом происходит истощение этих веществ. На смену гиперкоагуляции приходит гипокоагуляция (кровь не может свертываться или свертывается, но лишь при большой потере крови).

У работников газовой промышленности ДВС-синдром усугубляется недостаточной выработкой витамина К, который является фактором регуляции свертывания крови и синтезируется только здоровой микрофлорой кишечника, а у подавляющего большинства работников газовой промышленности наблюдается дисбиоз. Как правило, при этом у них отмечается вялотекущий ДВС-синдром, находящийся на разных стадиях процесса.

Так почему в стандартах лечения не учитывается связь между витаминами, макро– и микроэлементами и бактериальной флорой у больных и работников газовой промышленности?Мы предлагаем для нормализации повышенной или пониженной свертываемости у больных применять комплекс трав, микроэлементов и витаминов, которые обладают уникальным свойством регулировать процессы свертывания и текучести крови. Это естественные вещества-регуляторы.

Атеросклероз

Большинство наших читателей волнует проблема повышения холестерина в связи с развитием атеросклероза.

Термин «атеросклероз» происходит от греческих слов athere – пшеничная кашица и sclerosis – твердый, сочетание которых подчеркивает две стороны этого патологического процесса – отложение жировых масс (имеющих на поздних стадиях вид кашицы) и развитие соединительной ткани с утолщением и деформацией стенки артерий.

Так как же происходят отложение холестерина в стенки сосуда и, как следствие, уменьшение его диаметра? Как пишет академик Вихерт А.М. об атеросклерозе: «…начало заболевания характеризуется не повышенным содержанием липидов, а первичным нарушением самой сосудистой стенки». Поэтому обратим свое внимание на сосудистую стенку. Рассмотрим для начала нормальную сосудистую стенку.

Стенка сосуда состоит из трех оболочек. Внутренняя оболочка сосудистой стенки состоит из эпителия, клетки которого имеют вид неправильных звезд с различным количеством лучей. Концы этих лучей соединяются между собой, образуя пленку, похожую на очень мелкое сито. Эпителий лежит на внутренней эластической мембране. Поэтому кровь в сосуде соприкасается и с мембраной, и с эпителием. Далее находятся соединительная ткань, межклеточное вещество и клетки иммунитета (лимфоциты, моноциты), а также клетки, которые содержат факторы свертывания (гиперкоагуляционные белки). Средняя оболочка отграничена от внутренней оболочки еще одной мембраной. Эта оболочка состоит из мышечного слоя с небольшим количеством соединительной ткани. На границе между средней и наружной оболочками также есть мембрана. Наружная оболочка состоит из рыхлой соединительной ткани с мелкими сосудами, питающими мышечный слой, и нервных окончаний, регулирующих тонус сосуда. Необходимо отметить, что мембрана – это один из видов соединительной ткани, но только очень плотной[27].

Что же такое соединительная ткань? Соединительная ткань – несущая конструкция органов. Если представить себе любой орган в виде здания, то соединительная ткань выполняет роль цемента. Зависит ли качество здания от качества цемента? Конечно, зависит! Поэтому качественная соединительная ткань – это одно из условий здорового органа. Функций у соединительной ткани очень много. Кроме защитной, строительной, соединительная ткань определяет скорость восстановления органа после воспаления, травмы, инфекции и т. д., несет питающую функцию рядом расположенных тканей, адсорбирует все отработанные клетками вещества и с помощью лимфы доставляет их в главный фильтрационный центр – печень. Она может удерживать жидкость, но кроме полезной жидкости может накапливать и токсические вещества. Последняя функция крайне важна для развития атеросклероза, о чем пойдет речь ниже.

Соединительная ткань – очень динамичная структура. Синтез и распад идут постоянно. В начале жизни синтез соединительной ткани, как и всех структур, превалирует над распадом. У здорового человека среднего возраста синтез соединительной ткани равен распаду. При старении начинает превалировать распад. Но существует ряд состояний, при которых образование соединительной ткани уменьшается или превалирует распад. К таким состояниям относятся ревматоидный артрит, системная красная волчанка, ревматизм, синдром Морфана и др.


    Ваша оценка произведения:

Популярные книги за неделю