Текст книги "На зов таинственного Марса"
Автор книги: Шевченко Владислав
сообщить о нарушении
Текущая страница: 3 (всего у книги 6 страниц)
Но не исключено, что в другие времена условия на Марсе были иными.
Осколок Марса на Земле
Примерно 200 лет назад ученые стали обращать пристальное внимание на камни, падающие с неба, – метеориты. Их стали специально разыскивать, исследовать химический состав вещества, пытаться понять их происхождение. Всего на пяти континентах Земли найдено 2500 метеоритов. Особенно богатыми сборы метеоритного вещества оказались на ледяном континенте – Антарктиде, где эти поиски начаты сравнительно недавно. На белоснежных просторах камни с неба хорошо выделяются и видны издалека. За несколько лет шестой континент дал науке столько же находок, сколько все остальные за двести лет.
Принято считать, что метеориты являются осколками малых планет – астероидов. Все научные данные в настоящее время говорят в пользу такого вывода.
В 1865 году в Шерготти, в Индии, был найден образец, который был не похож на обычные метеориты. Но тогда это обстоятельство не привлекло к себе особого внимания.
Настоящая сенсация разразилась несколько лет назад, когда к восьми известным образцам «шерготтитов» добавились еще два, найденные в Антарктиде.
Наиболее крупный из этих осколков был подвергнут подробному анализу. Шерготтиты отличаются от большинства метеоритов, возникших в результате дробления вещества астероидов, прежде всего тем, что состоят из вулканической породы.
Образцы, найденные в Антарктиде, отличаются высоким содержанием частиц воды и некоторых других летучих элементов, а также содержанием элементов калия и урана. Вещество необычных метеоритов застыло и кристаллизовалось по астрономическим меркам сравнительно недавно, не более 1,3 миллиарда лет назад. Породы лунной коры имеют возраст около 4 миллиардов лет. Возраст астероидов и того больше. Следовательно, шерготтиты образовались на тех планетах, где вулканическая деятельность происходила по космическому календарю сравнительно недавно. Можно допустить, что найденный в Антарктиде осколок принадлежал большой и активной планете. Было установлено, что примерно 180 миллионов лет назад изучаемый осколок подвергся сильному удару. В результате частичного плавления каменного вещества в нем образовались мелкие стеклянные пузырьки, внутри которых были найдены газы: аргон, криптон, ксенон и азот. Содержание газов хорошо согласуется с данными о составе атмосферы Марса.
Эти сведения позволяют высказать предположение, что в природе «марсианских» метеоритов отразилось влияние атмосферы и подповерхностных вод Марса.
Наиболее убедительным объяснением всех особенностей служит гипотеза о захвате газовых частиц расплавленной поверхностью осколка 180 миллионов лет назад, когда он подвергся удару.
Возможно, исследованный осколок был выброшен с поверхности планеты в результате взрыва от падения крупного метеорита или астероида. Долгое путешествие его в межпланетном пространстве закончилось на поверхности земного шара, в Антарктиде.
Обсуждая подробности химического состава и структурные особенности шерготтитов, специалисты приходят к выводу, что недра Марса, вероятно, более похожи на недра Земли, чем думали раньше. Если, конечно, шерготтиты действительно прилетели к нам с Марса.
После того как Марс, подобно Земле и другим телам земного типа, образовался из роя отдельных твердых частиц и мелких фрагментов, в общей расплавленной массе вещества началось выделение более тяжелого ядра. Полагают, что железное ядро формировалось в условиях относительно невысоких температур – около 1000 градусов. На Марсе железо содержится в больших количествах, чем на Земле, и в мантии и в коре. Цвет поверхности планеты вызывают красные окислы железа, распространенные в рыхлом покровном веществе. Общее содержание железа в планетном веществе Марса меньше, чем у Земли, и не превышает примерно 25 процентов. Этим объясняется и меньшая средняя плотность Марса. Если сравнить объем и массу Земли, средняя плотность земного вещества составит величину 5,5 граммов в одном кубическом сантиметре. Примерно такая же плотность Венеры и Меркурия. А вот средняя плотность Марса ниже. Сравнив объем и массу планеты, можно убедиться, что эта величина составляет лишь около 4 граммов в кубическом сантиметре.
Итак, в течение первого миллиарда лет существования планеты у Марса образовалось сравнительно небольшое и не очень плотное ядро. Ученые считают, что радиус марсианского ядра составляет от 800 до 1500 километров, а общая масса достигает менее десятой доли массы всей планеты.
В течение первого миллиарда лет существования Марса сформировалось плотное ядро с массой около 1/10 массы планеты. Затем произошло выделение среднего и внешнего слоев недр: возникла мантия из расплавленных горных пород и твердая оболочка – кора.
Еще через один миллиард лет начинается бурная внутренняя деятельность недр планеты. В мантии – слое, лежащем между ядром и внешней корой, – образуются зоны расплавленных пород, которые под давлением вырываются на поверхность.
В это время на лике планеты возникли обширные равнины, заполненные лавами, и наиболее сильно проявлялась вулканическая активность.
Эпоха глобальных изменений форм рельефа, когда выросли знаменитые гиганты – вулканы, относится именно к этому этапу истории Марса.
В течение следующего миллиарда лет активность недр продолжалась, но уже с постепенным угасанием.
Сейчас Марс переживает период полного остывания.
Толщина твердой оболочки непрерывно нарастает и в настоящее время, по-видимому, достигла уже нескольких сотен километров, из которых около 100 километров приходится на верхний слой – кору. Такой мощный твердый панцирь уже непробиваем для расплавленных лав марсианских недр. Поэтому вулканы потухли и безмолвствуют, в низины не затекает лава и не раскалывается зияющими провалами марсианская кора.
Остывает и поверхность Марса. Поскольку средние температуры поверхности на всех широтах значительно ниже нуля градусов по Цельсию, планета как бы погружена в область вечного холода.
Мы знаем, что в наиболее суровых по климату районах Земли образуется так называемая вечная мерзлота – слой пород с постоянно минусовой температурой, в котором вещество горных пород смешано с замерзшей водой.
Подобный же слой образовался и на Марсе.
Но в отличие от своего земного аналога слой вечной мерзлоты на Марсе охватывает всю планету и имеет большую мощность. Расчеты показывают, что мощность промерзания пород на полюсах может доходить до глубины в 4 километра, а в экваториальной зоне – до 1 километра. Внутри этого слоя возможны обширные скопления льда, прикрытого сверху многометровым слоем раздробленных пород.
О существовании слоя вечной мерзлоты на Марсе говорят особые формы рельефа, которые известны и на Земле в зоне многолетней мерзлоты.
Но если планета имеет такие большие запасы льда, может быть, в ее истории действительно существовали периоды, когда внешние условия могли приводить к внезапному интенсивному оттаиванию вечной мерзлоты и к появлению рек, высохшие русла которых мы видим сегодня на марсианской поверхности. Можно предположить, что подобные изменения климата Марса происходили в течение последнего миллиарда лет. Но почему и каким образом, до сих пор неизвестно. Остается лишь строить различные догадки, выдвигать гипотезы, искать новые научные факты.
Мы знаем, что в далеком прошлом на Земле происходили периодические изменения климата в масштабах всего земного шара. Примером могут служить периоды оледенения, существенно менявшие условия обитания живых существ на огромных пространствах материков.
Возможно, нынешнее «оледенение» Марса лишь эпизод в его бурной жизни? Может, у планеты были и другие времена?
Необходимо разобраться в том, что могло бы вызвать общее изменение климата. Вот что утверждают сторонники одной из гипотез.
Обратите внимание на обыкновенную игрушку – сильно раскрученную детскую юлу. Быстро вращаясь вокруг своей оси, она еще медленно покачивается то в одну, то в другую сторону.
Оси вращения планет, в частности Земли и Марса, описывают в пространстве точно такие же плавные колебания. Конечно, масштабы времени и расстояний соответствуют масштабам самих тел. Ось Земли за период в 26 000 лет совершит полный оборот, который меняет наклон ее от среднего значения 23,5 градуса на 1 градус. Сдерживающее влияние оказывает находящаяся рядом масса Луны. Иначе наклон земной оси менялся бы еще более значительно.
У Марса нет такого массивного соседа, и наклон его оси меняется в более широких пределах, хотя и медленнее – с периодом 125 000 лет.
Если в настоящее время наклон оси вращения Марса близок к среднему значению – 25,2 градуса, – то в другие времена он мог бы составлять от 15 до 35 градусов. Полный цикл изменения угла наклона оси вращения завершается примерно через миллион лет.
Изменения наклона оси сказываются на нагревании полярных шапок. Когда планета максимально наклонена, полярные шапки получают на одну треть больше солнечного тепла, чем в настоящее время. Подобный наклон ось вращения Марса имела около полумиллиона лет назад.
При максимальном наклонении весь лед на полюсах может растаять. Ученые пришли к выводу, что в этом случае давление атмосферы Марса могло бы возрасти более чем в десять раз. В то же время тепло не окончательно остывших тогда недр планеты могло поддерживать существование вблизи поверхности большого водоносного слоя. С увеличением внутреннего давления на такие водоносные горизонты даже слабого внешнего удара достаточно для освобождения гигантского потока воды. Расчеты ученых подтверждают, что в подобном случае на поверхность могли вырываться потоки в несколько сотен миллионов кубометров воды в секунду. Такие потоки вполне способны были промыть существующие сегодня сухие русла за сравнительно короткое время, пока вода не испарится полностью.
Особенность речных русел Марса – значительная их глубина. Крутые берега, не имеющие террас, обрываются с высоты двух километров. По сравнению с земными долинами марсианские русла при той же протяженности имеют большую ширину.
Родилась и еще одна гипотеза. Вода могла течь и под слоем льда, который нарастал сверху из-за того, что замерзание воды происходило на поверхности быстрее, чем испарение. Испытывая давление массы льда, марсианская река уходила в глубь каменных пород, промывая себе глубокое русло с обрывистыми берегами.
Ледовый панцирь рек тоже, вероятно, не оставался неподвижным. Заторы и наползание друг на друга больших масс льда разрушали каменные берега, расширяли их. И конечно, бурные потоки резко меняли направление, метались из стороны в сторону, образовывая извилистые русла.
Проблема «подземных океанов» на Марсе продолжает волновать исследователей. Внимательно изучая рельеф, они обнаруживают новые и новые детали, которые можно объяснить только существованием подповерхностных залежей льда.
Например, на Земле в областях с вечной мерзлотой часто наблюдаются появляющиеся коротким арктическим летом уступы высотой в десятки метров. Это нагревшийся под солнцем верхний слой мерзлой почвы оттаивает и сползает с уклонов. По протяженности подобные оползни тянутся на десятки или даже сотни метров.
А на Марсе? Космические фотографии демонстрируют нам очень много похожих объектов.
Но на красной планете в приэкваториальной области можно видеть котловины гораздо крупнее, поперечником в десятки и сотни километров, дно которых как бы обрушилось в глубинные пустоты.
Ученые склонны объяснять появление таких образований существованием под поверхностью огромных резервуаров воды. Согласно расчетам, в мерзлоте Марса скрыто примерно в 100 раз больше льда, чем в полярных шапках. Вероятно, под мерзлыми породами планеты и сейчас содержится вода.
Исследователи, изучая природу марсианских русел, обратили внимание, что некоторые из марсианских рек как бы «вытекают» из кратеров. Представьте такую картину: с огромной скоростью крупный метеорит врезается в марсианскую поверхность. Взрыв дробит и разбрасывает вокруг мерзлые породы. Но какая-то часть выделившегося тепла неизбежно уходит на разогрев и плавление огромных масс мерзлого грунта. Значит, несколько кубических километров мерзлоты моментально нагревались и оттаивали. Не они ли текли бурными потоками по окрестностям?
Вспомним, кстати, что в «осколке» с Марса, найденном в Антарктиде, с рассказа о котором начиналась эта глава, содержатся минералы, гораздо более насыщенные частицами воды, чем обычные метеориты. А ведь он покинул красную планету примерно 180 миллионов лет назад. Все сходится? Не будем торопиться. Еще много «но» встретится нам на пути к истине, много неясного и, наоборот, мало бесспорных фактов. А в чем заключается истина, покажут будущие исследования. Пока же многочисленные свидетельства существования воды в марсианской среде возвращают нас к извечному вопросу, связанному с Марсом, вопросу, который не устают задавать и специалисты, и люди, не связанные непосредственно с наукой. Есть ли там жизнь? Ведь вода и жизнь – понятия, очень близко соседствующие друг с другом.
Почти половина территории нашей страны занята районами вечной мерзлоты. В некоторых областях Якутии глубина мерзлых пород достигает 7,5 километра. На Марсе вечная мерзлота всюду.
Когда в слой мерзлых пород падает метеорит, происходит расплавление подповерхностных льдов, и потоки, подобные грязевым потокам на Земле, разливаются за пределы образовавшегося кратера. Кратеров с грязевыми потоками на поверхности очень много.
Жизнь на Марсе?
Напомним еще раз, что во время противостояния 1877 года итальянский астроном Дж. Скиапарелли обнаружил на диске планеты тонкие полосы, пересекающие в различных направлениях светлые области материков. Вот как он описал увиденное: «Все огромное пространство континентов покрыто сетью тонких линий или тонких полосок более или менее отчетливого темного цвета… Они тянутся на большие расстояния по поверхности планеты в виде геометрически правильных линий, которые совершенно не похожи на извивающиеся русла наших рек. Некоторые, самые короткие из них, не достигают и 500 километров, другие же тянутся на тысячи… Одни из них увидеть легко, другие – чрезвычайно трудно: они напоминают тончайшую паутинную сеть, натянутую на диск». Дж. Скиапарелли назвал их «каналами», не утверждая, однако, что они наполнены водой. Скорее в виду имелась аналогия с «протоками», соединяющими одни темные области с другими.
В 1878 году была высказана новая идея о природе темных областей – морей Марса. Французский астроном Э. Лиэ, изучая сезонные изменения в цвете и насыщенности морей, пришел к выводу, что эти районы покрыты растительностью. Марсианские моря представлялись наблюдателям зеленовато-голубоватого оттенка. Но их окраска изменялась в зависимости от времени года. Серые в зимний период, морские области приобретали свой типичный зеленоватый оттенок весной и летом, становясь коричневатыми или рыжеватыми с наступлением осени. Когда наблюдаемое таяние полярной шапки связали с волной потемнения в морях и с наличием тонких темных каналов, казалось, что существование по крайней мере растительной жизни на поверхности Марса уже не вызывает сомнений.
В конце прошлого и в начале нынешнего столетия идеи о жизни на Марсе были поддержаны американским ученым П. Ловеллом. Он использовал крупный телескоп, который был установлен в его обсерватории, в Аризоне, где удивительно прозрачный воздух.
П. Ловелл составил многочисленные подробные карты поверхности Марса, на которых были нанесены сотни каналов.
Согласно наблюдениям П. Ловелла, каналы темнели вместе с темными областями Марса во время весеннего сезона. Он пришел к выводу, что вода в каналах течет от полюсов, орошая прилегающие участки местности и возрождая к жизни увядшую за зиму растительность. По мнению П. Ловелла, узкие каналы можно было обнаружить только благодаря широким полосам растительности, развивавшейся вдоль них. Прямолинейность каналов, а также раздвоение некоторых из них и соединение линий в целую сеть, в узлах которой находились как бы оазисы, послужило основанием для следующего шага в объяснении наблюдений астрономов: каналы имеют искусственную природу, то есть созданы разумными существами, являются продуктом развитой цивилизации.
Вышедшая в 1900 году книга П. Ловелла «Марс и его каналы» описывала разумную жизнь на Марсе.
Выводы П. Ловелла не были безоговорочно приняты сообществом астрономов. Многие наблюдатели в Америке и Европе, пользуясь великолепными телескопами, не подтверждали существование каналов. Другие ученые, не споря о существовании этих деталей, утверждали, что сам вывод о разумной жизни на Марсе неверен, потому что там господствуют низкие температуры.
Но в начале века еще не было технических возможностей получить какие-либо достоверные данные о тепловом режиме поверхности и решить вопрос о наличии воды. Поэтому аргументы противников «марсианской цивилизации» оставались неубедительными. С большим энтузиазмом читателями воспринимались картины обитаемого Марса.
Всемирно известный популяризатор астрономии, автор многочисленных книг Камилл Фламмарион также не избежал искушения и поддался очарованию идеи «инопланетян». В 1892 году он опубликовал монографию «Планета Марс и условия жизни на ней». Он писал: «Значительные изменения, наблюдающиеся в сети водных путей, свидетельствуют о том, что эта планета является местом энергетически жизнеспособным. Эти движения кажутся нам медленными потому, что нас разделяет громадное расстояние. Когда мы спокойно смотрим на эти континенты и моря, медленно проплывающие перед нашим взором из-за вращения планеты вокруг своей оси, и спрашиваем себя, на каком из этих берегов было бы приятней жить, там, возможно, в этот момент свирепствуют штормы и грозы, вулканы, чума, социальные перевороты и всевозможные виды борьбы за жизнь… Все же мы можем надеяться на то, что человечество там более развитое и мудрое, так как мир Марса старше нашего. Несомненно, что уже в течение многих столетий эта соседняя с нами планета наполнена шумом мирного труда».
Слева – рисунок Марса, сделанный П. Ловеллом по его наблюдениям с большим аризонским телескопом. В центральной части видимого диска расположена область, носящая название Озеро Солнца. На рисунке П. Ловелл изобразил множество тонких линий, составляющих сеть каналов Марса. Однако не все астрономы того времени подтверждали результаты наблюдений П. Ловелла. Справа – рисунок той же области Марса, выполненный по наблюдениям с еще более крупным телескопом французским астрономом Э. Антониади в 1909 году. На нём, как вы видите, каналов нет.
Конечно, подобные высказывания профессиональных астрономов и популяризаторов науки не могли не отозваться более широкой волной среди авторов фантастических произведений литературы. Начался бум «пришельцев с Марса», путешествий на Марс и так далее. Несмотря на неоправдавшиеся надежды относительно «марсианской цивилизации», мы тем не менее можем быть благодарны той поре восторженных заблуждений хотя бы за появление талантливых книг А. Толстого и Г. Уэллса, связанных с Марсом, в которых основным содержанием является в конечном счете серьезный разговор о вечных нравственных проблемах Человечества.
В первой половине нашего столетия широкое практическое распространение получила астрономическая фотография. Вместо зарисовок для составления карт поверхности Марса стали использовать фотографии. Этот новый вид информации несколько поколебал уверенность в существовании марсианских каналов, поскольку на фотографиях они оказались неразличимыми.
Фотоснимки послужили и для исследования другой проблемы – природы марсианских морей. Значительный прогресс был связан с фотографированием диска Марса через цветные фильтры. Многолетние исследования, казалось, обнадеживали. Гипотеза, что на Марсе есть растительность, получала вполне серьезную научную основу.
Первые снимки Марса со светофильтрами были сделаны в 1909 году в Пулковской обсерватории молодым тогда ученым Г. А. Тиховым. В последующие полвека Г. А. Тихов продолжал исследования марсианской растительной жизни и основал отрасль науки, получившую название астроботаники.
Г. А. Тихов изучал спектры растительности, распространенной в самых разных природных зонах Земли – в горах и пустынях, в суровых условиях за Полярным кругом и в краю вечной мерзлоты. По спектрам – разложению отражаемого растением света на составляющие цвета, можно судить об условиях внешней среды обитания растений.
Оказалось, что у подножий гор, где климат умеренный, растения отражают много солнечного света в инфракрасной области спектра, то есть излучают тепло. Однако выше, где растениям нужно много больше тепла, они начинают поглощать инфракрасные лучи, что, конечно, изменяет вид спектра. Чем больше высота, тем больше поглощение растениями инфракрасных лучей.
Сравнивая спектр темных, морских областей Марса со спектрами земной растительности, обитающей на разных высотах в горах Памира, Г. А. Тихов убедился, что марсианские спектры темных пятен очень похожи на спектры самых высокогорных растений. Поведение земных растений в суровых условиях высокогорья, их приспосабливаемость к разреженной атмосфере и низким температурам подавали надежду на возможность развития таких видов растительной жизни, которые смогли бы существовать и в более суровых условиях Марса.
Оставался нерешенным вопрос о составе атмосферы и условиях жизни растений. Чтобы нормально расти и развиваться, растениям нужно гораздо больше кислорода, чем на Марсе.
Но, говорили сторонники гипотезы существования марсианской растительности, растения могут преодолеть эту трудность. Например, они могут образовывать кислород на свету при помощи фотосинтеза, как и все земные растения, но не выделять его в атмосферу, а удерживать «для внутреннего употребления», создавая свою «внутреннюю атмосферу» с большим содержанием этого газа, чем в окружающей среде. Такие процессы происходят в листьях некоторых земных растений и в легких нашего организма. Состав атмосферы внутри наших легких отличается от состава того воздуха, который мы вдыхаем.
Были сделаны попытки обнаружить в областях марсианских морей характерные признаки поглощения хлорофилла, что послужило бы решающим доказательством существования растительности. Этот эксперимент не дал нужного результата. Но астроботаников неудача не обескуражила. Было высказано мнение, что в спектре Марса и не должно быть хлорофилла. У земных растений зеленый хлорофилл появился потому, что он поглощает красные лучи спектра, которые в основном больше всего и пропускает атмосфера Земли. Воздушная оболочка Марса иная, рассуждали астроботаники, и до поверхности планеты доходит больше всего синих лучей. Хлорофилл неудобен марсианским растениям. Чтобы выжить, они должны больше поглощать синие лучи, а красные, наоборот, отражать. По-видимому, так все и происходит на красной планете. Темные области для глаза только кажутся сине-зелеными по контрасту с более яркими красными пустынями. На самом деле и моря Марса тоже имеют красный оттенок, только более темный, потому что растительность в них отражает красные лучи.
Как видим, и гипотеза о существовании марсианской растительности была вполне логичной и не менее стройной, чем в свое время была гипотеза о существовании марсианской цивилизации, высказанная П. Ловеллом. Но гипотеза о растительном покрове марсианских морей была основана на новых методах исследований.
В середине нашего века, в канун интенсивных исследований планет с помощью космической техники, ряд ведущих исследователей, крупных специалистов в области астрономии стали высказывать сомнения относительно существования растительности на Марсе. В. Г. Фесенков в СССР, О. Дольфюс во Франции, Дж. Койпер в США и другие ученые убедительно показали с помощью анализа старых данных и новых сведений, что все эффекты, которыми оперируют астроботаники, могут относиться к свойствам неорганического вещества, то есть мертвых горных пород. Гипотеза о существовании растительности стала терять своих сторонников.
Но жизнь – это не только человек и животный мир, это не только мир растительности, это еще и не менее сложный и богатый своими представителями мир бактерий. Сторонники идей существования внеземной жизни в пределах Солнечной системы отходили на новые позиции.
Если условия на Марсе слишком суровы для развития сложных форм жизни, то это не исключает существования и развития примитивных форм, таких, как бактерии.
На Земле ученые нашли много примеров существования бактерий в самых невероятных условиях с чрезмерно высокими и чрезмерно низкими температурами при недостатке, казалось бы, самых необходимых для жизни веществ. Бактерии имеют уникальные способности к выживанию и приспосабливаются к любой среде. Может быть, и условия Марса не окажутся слишком неприветливыми для этих микроскопических, но стойких носителей жизни?
С наличием микроорганизмов стали связывать некоторые, пока еще не объясненные эффекты. Например, сезонные изменения поляризации света, отраженного от темных, морских областей. Обычные, видимые в телескоп сезонные изменения цвета и яркости трудно связать с неосязаемым миром бактерий. Но поляризация – очень тонкое природное явление.
Вот в чем состоит суть явления. При отражении света некоторые поверхности поляризуют его, то есть заставляют часть лучей светового потока приобретать колебательные движения в одной определенной плоскости. В обычном световом пучке колебания происходят хаотически, во всех плоскостях. Такое тонкое изменение свойств отраженного света порождается структурой вещества, то есть самыми малыми частицами отражающей свет поверхности. Глаз не воспринимает поляризованность света. Выявить ее могут только специальные светофильтры, специальные приборы – поляриметры.
Французский астроном, известный исследователь планет О. Дольфюс в свое время заметил, что поляризация света, отраженного от темных марсианских морей, меняется в зависимости от времени года на планете. Марсианские пустыни, материки, такого свойства не обнаруживали. Наблюдаемые изменения поляризации соответствовали предположению, что с наступлением весеннего, то есть более влажного, периода возникает рассеяние солнечного света на частицах диаметром около 0,1 миллиметра – более крупных, чем частицы, составляющие обычный поверхностный пылевой слой Марса. Эти частицы как бы периодически меняют свои размеры.
Появилось объяснение, что с наступлением весны оживают и быстро размножаются огромные колонии организмов, подобных известным на Земле бактериям. Но это объяснение было не единственным. Другое предположение: мелкие твердые песчинки грунта меняют свою структуру при повышении сезонных температур, увеличиваются в своих размерах при увеличении влажности атмосферы.
Когда на Земле получили первые изображения поверхности Марса, переданные с борта космических аппаратов, стало ясно, что пустыни-материки красной планеты и ее моря являются царством неживой природы. Камни и пески, оживляемые зимой лишь тонким налетом инея или снега, песчаные барханы и пологие холмы – вот типичные виды Марса. Никакой растительности, не говоря уже о животном мире или разумных существах, там нет.
Последняя надежда возлагалась на бактерии.
На посадочных блоках американских станций «Викинг», которые летом и осенью 1976 года должны были опуститься на поверхность красной планеты в двух удаленных друг от друга местах, поместили лабораторию для обнаружения даже самых незначительных признаков жизни. В лаборатории были размещены три группы приборов, чтобы провести три независимых биологических эксперимента. Основа же всех трех экспериментов была одна – предположение, что любые живые организмы изменяют среду своего обитания. Все организмы, в том числе и бактерии, питаются, дышат, выделяют отработанные продукты. Вот эти изменения и должны были зафиксировать приборы.
Космические съемки с орбитальных высот не выявили никаких признаков жизни на поверхности Марса. Но это еще не могло служить доказательством. Иное дело – съемки на самой поверхности.
Но и круговые панорамы, полученные в местах посадки космических станций «Викинг», показали лишь мертвый пейзаж каменистой пустыни. В течение года каждый из двух аппаратов тридцать раз «осматривал» с помощью телевизионных камер окружающую местность. Изображения передавались на Землю, и исследователи могли убедиться в полной безжизненности наблюдаемого ландшафта.
С поверхности Марса специальным устройством захватывался образец марсианского грунта и помещался в один из трех контейнеров, содержавших запас воды или питательных веществ. Затем велось пристальное наблюдение за изменениями, происходящими в плотно закрытом контейнере.
Первый эксперимент должен был показать, существует ли обмен веществ. Помещенную в контейнер щепотку марсианского грунта автоматическое устройство увлажнило питательным раствором, содержавшим в качестве «меток» радиоактивный углерод. Если в грунте есть живые организмы, они должны «питаться» этим раствором и выделять в качестве отходов газы, содержащие «метки», то есть радиоактивный углерод. Ученые были поражены, когда по линии радиосвязи с марсианской автоматической лабораторией поступили сигналы, что из грунта выделилось очень большое количество радиоактивного газа. Но этот бурный процесс завершился за двое суток, хотя на Земле контрольный эксперимент с настоящими бактериями шел около двух недель. Что это, особая прожорливость марсианских бактерий или просто химическая активность марсианского грунта, вступившего в реакцию с питательным раствором, в процессе которой быстро выделился содержавшийся там радиоактивный углерод? Вопрос остался без определенного ответа.
Второй опыт должен был обнаружить процесс усвоения углекислого газа на свету. Этот процесс, называемый фотосинтезом, хорошо известен в природе Земли. Например, комнатные растения, обитающие на вашем подоконнике, поглощают углекислый газ, очищая и освежая воздух в помещении.
Космический автомат зачерпнул еще одну порцию марсианского грунта и поместил ее в другой контейнер, который был заполнен газовой смесью, в точности повторяющей состав атмосферы Марса. Только углекислый газ в этой смеси содержал «меченый» радиоактивный углерод. Далее грунт осветили лампой – искусственным «солнцем». Если бы живые организмы находились в этой щепотке грунта, то при освещении «солнцем» они должны были бы поглотить из смеси углекислый газ вместе с радиоактивным углеродом.
Через некоторое время автоматическое устройство выпускало из контейнера газ, а оставшийся грунт изучался на содержание радиоактивного углерода. Результат опять был неясным: в одних случаях углерод в грунте обнаруживался, в других нет. Так и осталось непонятным, то ли живущие на Марсе микроорганизмы захватили «меченые» атомы углерода, то ли произошли простые химические реакции грунта с атмосферой.