355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Шевченко Владислав » На зов таинственного Марса » Текст книги (страница 1)
На зов таинственного Марса
  • Текст добавлен: 15 октября 2016, 03:37

Текст книги "На зов таинственного Марса"


Автор книги: Шевченко Владислав



сообщить о нарушении

Текущая страница: 1 (всего у книги 6 страниц)


В. В. Шевченко
НА ЗОВ ТАИНСТВЕННОГО МАРСА

…Словно тихая молния, пронзил его сердце далекий голос, повторявший печально на неземном языке:

– Где ты, где ты, где ты, Сын Неба?..

…Голос Аэлиты, любви, вечности, голос тоски, летит по всей вселенной, зовя, призывая, клича – где ты, где ты, любовь…

А. Н. ТОЛСТОЙ. « АЭЛИТА»


Музыка сфер

Небо доступно всем. Подними голову в ясную ночь, и взгляд уйдет в бесконечность небесных светил. Среди них, возможно, сразу внимание привлечет немерцающий красный блеск одной из самых ярких точек. Это – Марс.

В разные времена разные народы называли его по-разному. Мы пользуемся именем, которое дали светилу древние греки в честь одного из олимпийских богов – бога войны и которое затем переиначили на свой лад древние римляне.

Наблюдая за перемещением небесных светил, античные астрономы выделили два вида объектов – неподвижные звезды и блуждающие планеты, которые все время меняют свое положение среди звезд.

Из этих наблюдений родилась модель Вселенной, состоящая из вложенных друг в друга сфер. В центре системы помещалась Земля. С ней соседствовала Луна, а далее шли Меркурий, Венера, Солнце, Марс, Юпитер и Сатурн – планеты, видимые невооруженным глазом, – и наше дневное светило. Каждая планета и Солнце имели свое собственное небо – небесную сферу. Вся планетная система была заключена в самую большую сферу, содержавшую звезды.

Каковы были радиусы сфер? Тогдашний уровень техники не позволял провести нужные измерения. Решение было найдено другим путем – с помощью общих философских рассуждений.

Процветавшая в древнем мире философская школа пифагорейцев, основанная знаменитым математиком Пифагором, учила, что численные пропорции в природе подчинены всеобщей гармонии.

Да и как иначе можно выразить все совершенство природы?

Не было исключением и устройство Вселенной. Пифагорейцы утверждали, что расстояние между небесными светилами, точнее, между сферами светил можно представить шкалой музыкальных звуков.

Рассказывают, что открыл простые числовые соотношения между музыкальными тонами сам Пифагор. Проходя однажды мимо кузницы, он услышал, как молоты разных размеров при ударе о наковальню издают звуки различной высоты, точно воспроизводя музыкальную шкалу. После того как молоты были взвешены, оказалось, что звуки, отличающиеся друг от друга на октаву, воспроизводились молотами, один из которых весил вдвое меньше другого. Понижение звука на два с половиной тона соответствовало увеличению веса на одну треть. И так далее.

Так представляли себе строение Солнечной системы и всей Вселенной античные ученые. Наша планета – Земля – помещалась в центре всего мироздания, а все другие небесные тела – Солнце, планеты, звезды – вращались вокруг нее.

Пифагорейцы считали, что расстояния между светилами соответствуют музыкальным интервалам: от Земли до Луны – один тон, от Луны до Меркурия – полутон, от Меркурия до Венеры – полутон, от Венеры до Солнца – полтора тона, и далее: тон – полутон – тон до сферы неподвижных звезд, отстоящей от Земли на целую октаву.

Была предложена и мера длины, соответствующая одному тону. В современных единицах она равна около 20 000 километров.

Предполагалось даже, что при вращении каждая сфера издает музыкальный тон, а вся система сфер образует гармонию – музыку сфер. Люди на Земле не слышат этой небесной симфонии лишь потому, что привыкли к ней с рожденья и не замечают…

Итак, античные астрономы считали, что Марс находится далеко от Земли; между ним и нашей планетой располагались еще Луна, Меркурий, Венера и Солнце. Правда, общие масштабы Вселенной, по тем представлениям, были незначительными и, согласно расчетам пифагорейцев, наши планеты разделяло всего лишь 90 000 километров.

Модель Вселенной в виде вложенных друг в друга прозрачных сфер с «прикрепленными» к ним небесными телами была известна многим ученым древнего мир. В частности, Аристотель рассматривал более сложный вариант сферической Вселенной.

Для объяснения видимого движения планет Аристотель предположил, что у каждой планеты есть несколько сфер! Общее число «хрустальных оболочек» в модели Вселенной Аристотеля достигало пятидесяти пяти! Аристотелева модель Вселенной в виде геоцентрической системы мира Птолемея просуществовала до XVII века. На смену ей пришло учение Николая Коперника, расставившее в Солнечной системе все планеты по своим местам так, как знаем мы их сегодня.

Н. Коперник первым постиг действительные законы строения Солнечной системы. Наше Солнце – одна из многих звезд Вселенной, вокруг которой вращаются большие и малые планеты. Среди планет Земля и Марс совершают свое бесконечное кружение по соседним орбитам.

Николай Коперник был и одним из первых, кто начал наблюдения Марса. Целью его наблюдений было определение точных, по тем временам конечно, положений планеты среди звезд. Этими наблюдениями Коперник старался подтвердить правильность построенной им гелиоцентрической системы мира, согласно которой Марс оказывался непосредственным соседом Земли по удалению от Солнца.

Наблюдения положений Марса относительно звезд были продолжены другим очень знаменитым астрономом Тихо Браге. В течение более чем двадцати лет непрерывно наблюдал Тихо Браге перемещения Марса по звездному небу.

Обработка этих данных позволила другому великому астроному, Иоганну Кеплеру, вывести три основных закона движения планет вокруг Солнца. Он установил, что орбиты, по которым движутся планеты, являются не окружностями, а эллипсами. Солнце находится в одном из фокусов такого эллипса.

Элементы орбиты, вычисленные Кеплером, почти не отличаются от современных.

Обращаясь вокруг Солнца, Земля и Марс периодически оказываются на одной прямой, проходящей через центр Солнца и центр обеих планет. В это время планетами самое короткое расстояние.

Марс расположен от Солнца в полтора раза дальше нашей Земли и движется по орбите, значительно более вытянутой, чем у нашей планеты. Среднее расстояние Марса от Солнца составляет 228 миллионов километров. В ближайшей точке к Солнцу Марс находится от него на расстоянии на 21 миллион километров меньше среднего, а в самой дальней точке орбиты расстояние увеличивается на 21 миллион километров относительно средней величины.

На преодоление столь длинного пути вокруг Солнца Марс тратит почти вдвое больше времени, чем Земля. Марсианский год длится 687 суток. Каждые 780 дней Земля «нагоняет» Марс, и обе планеты оказываются на близком расстоянии друг от друга. Такие сближения планет называют противостояниями. В это время Марс располагается на небе против Солнца. Орбита Марса более вытянута, чем земная, наименьшие расстояния во время противостояний имеют различные величины. В лучшем случае – это 56 миллионов километров, но бывает и больше – до 101 миллиона километров.

Противостояния, при которых планеты сближаются менее чем на 60 миллионов километров, называют великими. В период великих противостояний Марс подходит к наиболее близкой к Солнцу точке своей орбиты – перигелию. Земля появляется вблизи этой области околосолнечного пространства обычно на исходе лета в северном полушарии. Поэтому даты великих противостояний, происходящих каждые 15 или 17 лет, приходятся обычно на август или сентябрь.

Вращаясь вокруг Солнца, обе планеты – Земля и Марс – оказываются в самых различных положениях относительно Солнца и друг друга и на самых разных расстояниях.

Если в моменты великих противостояний луч света пробегает путь от Земли до Марса всего лишь за 3 минуты, то при наибольшем удалении планет друг от друга для этого требуется 21 минута.

Среди девяти больших планет Солнечной системы Марс занимает сравнительно скромное место. Его масса составляет лишь десятую часть массы Земли, а диаметр марсианского шара равен примерно половине земного. При таких размерах и больших расстояниях, разделяющих Землю и Марс, планета предстает земному наблюдателю в виде всего лишь светящейся точки.

Так выглядит петлеобразный путь Марса на фоне звездного неба при наблюдении с поверхности Земли.

В наиболее благоприятные для наблюдений периоды противостояний видимый диаметр Марса достигает в среднем около 1/200 градуса.

Много это или мало? Совсем немного. Под таким же углом выглядит горошина с расстояния 70 метров. Попробуйте ее разглядеть! Человек даже с очень острым зрением не сможет различить столь малый предмет на столь большом расстоянии.

Почему же мы все-таки видим Марс невооруженным глазом? Потому что мы видим на небе не кружок красной планеты, а светящуюся точку. Заменим в нашем воображаемом опыте горошину на лампочку от карманного фонаря, примерно такую же по размерам, но имеющую возможность светиться. Тогда в полной темноте, если рядом не будет мешающих более сильных источников света, мы увидим и на таком большом расстоянии этот маленький огонек.

Марс сам не светится. Через миллионы километров до нас доходит солнечный свет, отраженный поверхностью марсианского шара. Находясь дальше от Солнца, Марс получает в два с лишним раза меньше света и тепла, чем наша планета. И все же света, отраженного всей поверхностью дневного, то есть освещенного Солнцем, полушария, оказывается достаточно, чтобы и без телескопа или бинокля, невооруженным глазом, увидеть на темном ночном небе планету и даже заметить красноватый оттенок блеска.

Этот цветовой оттенок объясняется тем, что красноватая поверхность Марса, отражая «белый» солнечный свет, придает ему собственную окраску.

Как видим, Марс не так уж мал. Просто громадные расстояния, отделяющие от нас одну из ближайших планет, скрадывают ее размеры.

А вот представьте, что Марс удалось поместить на орбиту Луны. Тогда на ночном небе мы увидели бы громадный красный диск, который был бы в два раза больше, чем привычное нам ночное светило, и в несколько раз более яркий, чем Луна.

В течение одной ночи, от восхода до заката, Марс находится примерно в одной и той же точке небосвода среди звезд. Однако от ночи к ночи его положение постепенно меняется. Это перемещение происходит на фоне так называемых зодиакальных созвездий, или созвездий Зодиака. По ним проходит годичный путь Солнца и планет.

Переходя из созвездия в созвездие, Марс двигается в основном в восточном направлении.

Но время от времени, прежде чем двинуться дальше, планета как бы замирает на небе, а потом пятится назад. Опять остановка, похожая на короткое раздумье. Описав таким образом петлю, Марс продолжает свой путь в обычном направлении.

Эта особенность видимого движения Марса на небе носит название петлеобразного движения. Подобным же образом среди звезд перемещаются, например, Юпитер и Сатурн.

Конечно, Марс никогда не останавливается на орбите и не движется в обратном направлении. Мы наблюдаем иллюзию, которая создается из-за относительных движений Земли и Марса.

Когда на дороге один автомобиль, едущий с большей скоростью, обгоняет другой, что видит в окно пассажир, сидящий внутри?

Вот скорости двух машин сравнялись, и нагоняемый автомобиль как бы остановился рядом. Но движение продолжается, и обгоняемый автомобиль начинает медленно двигаться назад, как бы в обратном направлении. Но на самом деле и тот и другой, не меняя своего направления, несутся вперед – иллюзию создала разность скоростей этих машин.

Чтобы космический аппарат совершил перелет с Земли на Марс, необходимо запустить его на траекторию, плавно соединяющую орбиты двух планет. Момент запуска и скорость полета необходимо рассчитать так, чтобы в конце пути космический аппарат точно вышел на встречу с летящей по своей орбите планетой.

Так и с видимым движением Марса на фоне звезд. Средняя скорость движения по орбите у Земли больше, чем у Марса. В определенные моменты наша Земля, двигаясь с большей скоростью, «догоняет» Марс и проходит мимо него. Пассажиры Земли видят, как, отдаленный миллионами километров, другой космический экипаж будто чуть-чуть приостановился, а потом начинает отставать. Но в отличие от приведенного выше примера с автомобилями, Земля и Марс движутся по замкнутым кривым, близким к кругам эллипсам. Поэтому, совершив в результате «обгона» петлю среди звезд на нашем небе, Марс продолжает свое движение в восточном направлении.

Современным астрономам хорошо известны законы небесной механики, которые управляют движением Марса и других небесных тел Солнечной системы. Уже давно ученые научились с большой точностью заранее вычислять положение Марса на небе в тот или иной момент. Каждый наблюдатель может найти эти данные в астрономических календарях и ежегодниках и направить телескоп в нужную точку небосвода.

При наиболее благоприятных условиях в хороший телескоп на поверхности Марса можно различить темные и светлые области – детали его поверхности. Конечно, удаленность планеты такова, что даже самые мелкие различимые детали на самом деле имеют протяженность в сотни и тысячи километров. Все же астрономам удалось многое узнать о природе Марса по наблюдениям в телескопы с Земли. Но основные сведения поступили с борта космических аппаратов, получивших возможность приблизиться к планете, провести различные исследования и сфотографировать ее поверхность с относительно небольших расстояний.

Как полагают, один из первых рисунков Марса, сделанный на основании наблюдения в телескоп, появился в 1659 году. Его автором был известный голландский физик и астроном Христиан Гюйгенс. Несколько позже наблюдения Марса начал другой знаменитый ученый того времени – французский астроном Жан Доминик Кассини. Ему удалось, фиксируя перемещение заметных пятен на диске Марса, определить период вращения планеты. Оказалось, что период вращения Марса вокруг оси, то есть марсианские сутки, по продолжительности почти равен земным суткам. Это означало, что наблюдатели, расположенные по всей Земле, смогут за 24 часа наблюдать всю поверхность Марса. Один же наблюдатель, находясь постоянно на одной и той же обсерватории, сможет обозреть весь марсианский шар в процессе его вращения за время немногим больше земного месяца. Конечно, если позволит погода и ночи будут ясными!

Самыми заметными деталями на диске Марса оказались светлые полярные шапки. Кроме них, вскоре были выделены обширные желтовато-оранжевые территории, названные материками, и темные, серовато-голубого оттенка пятна, получившие названия морей.

Белый цвет полярных шапок по аналогии с земными полярными областями наводил на мысль о царстве льда и снега. Оранжевый цвет материков напоминал песчаные просторы земных пустынь. А темно-голубые пятна морей в первое время и впрямь казались гигантскими водоемами.

В конце XVIII века были обнаружены периодические изменения размеров полярных шапок планеты. Это связывали с сезонным таянием снега и льда. А примерно сто лет спустя астрономы объявили о существовании каналов на поверхности Марса, по которым, как могло показаться, влага распространяется от полярных шапок в средние и экваториальные широты.

Наконец, в первой половине нашего столетия астрономы убедились в том, что Марс обладает атмосферой, в которой иногда над полярными шапками возникают неустойчивые голубовато-белые облака. Такие же облачные образования на короткий срок появлялись вблизи экватора и в средних широтах. Было отмечено, что есть определенные области поверхности, над которыми облака возникают постоянно. Астрономы предположили, что в этих местах расположены возвышенности, высокие горы. По наблюдениям с Земли было обнаружено и такое важное для природы Марса явление, как пылевая буря, периодически охватывающая всю планету.

В 60-х годах начались космические исследования красной планеты. В конце 1962 года, за три месяца до очередного противостояния, в Советском Союзе в сторону Марса была запущена межпланетная автоматическая станция «Марс-1».

Первый марсианский разведчик весил почти 900 кг и был оснащен многочисленными приборами для исследования межпланетного пространства и красной планеты.

Во время перелета по плавной дуге, изогнувшейся между орбитами Земли и Марса, автоматическая станция передала данные об интенсивности космического излучения в межпланетной среде, о магнитных полях, распределении метеоритов, встреченных по пути во время пересечения двух метеоритных потоков, и другие сведения. Но сохранить работоспособность до конца далекого путешествия в суровых условиях неизведанного космоса первому разведчику не удалось. Последний сеанс связи с аппаратом состоялся в конце марта 1963 года, когда «Марс-1» удалился от Земли на 106 миллионов километров. До встречи с Марсом оставалось еще три месяца полета…

Прошло еще несколько лет, и осенью 1971 года на орбиты искусственных спутников Марса вышло сразу три космических аппарата – американский «Маринер-9» и советские «Марс-2» и «Марс-3». Марс стал первой после Земли планетой Солнечной системы, у которой появились искусственные спутники.

Незадолго до этого, в 1965 году и в 1969 году, были получены первые фотографии марсианской поверхности с пролетных космических аппаратов серии «Маринер», запущенных в США. Во многом эти снимки были сенсационны – на поверхности Марса обнаружили кратеры, подобные лунным, не было никаких следов знаменитых марсианских каналов и так далее. Но по-настоящему систематические и глубокие исследования этой планеты начались с появлением долговременно действующих орбитальных космических аппаратов – искусственных спутников Марса. В 1974 году исследования Марса продолжили советские автоматические станции «Марс-4», «Марс-5», «Марс-6» и «Марс-7», а в 1976 году – американские аппараты «Викинг-1» и «Викинг-2».

С помощью космических аппаратов была получена богатейшая информация о природе Марса в процессе изучения с пролетных траекторий, с орбит искусственных спутников и непосредственно на поверхности планеты.

Во время великого противостояния в августе 1877 года были открыты два маленьких естественных спутника Марса, которым дали названия Фобос и Деймос. Размеры их оказались столь малы, что даже самые крупные телескопы не способны с Земли увидеть очертания этих тел. Примерные размеры спутников астрономы пытались установить по величине их блеска.

В 1971 году с борта космического аппарата «Маринер-9» были получены первые фотографии спутников, сделанные с близких расстояний.

А в 1988 году в полет отправились сложные космические аппараты «Фобос-1» и «Фобос-2», целью которых стало детальное исследование Марса и более крупного спутника планеты – Фобоса.

Зима и лето красной планеты

Если когда-нибудь возникнет необходимость составить специально марсианский календарь, то, по-видимому, за основу можно будет взять наш, земной календарь – так много общего между особенностями вращения обеих планет.

Марс совершает оборот вокруг своей оси за 24 часа 41 минуту. Марсианские сутки лишь немного длиннее земных. Ось вращения Марса составляет угол в 24 градуса с перпендикуляром к плоскости его орбиты. Для Земли данная величина равна 23,5 градуса. Это обстоятельство означает, что смена времен года, или сезонов, на Марсе происходит так же, как и на Земле, только их продолжительность вдвое больше, поскольку полный оборот по орбите вокруг Солнца Марс делает за два земных года.

Как и на Земле, на Марсе можно выделить климатические пояса. Тропический пояс охватывает области, близкие к экватору. В средних широтах, к северу и к югу от тропического пояса, располагаются умеренные пояса. Вблизи полюсов, ограниченных полярными кругами, находятся холодные полярные пояса, вернее, южная и северная полярные шапки.

Но в отличие от Земли в тропиках Марса не растут пальмы, а в умеренных поясах не встретить живописных ландшафтов с лесами и равнинами. Только природа полярных зон примерно одинакова – вечный холод и снега.

Климат Марса из-за большей удаленности от Солнца значительно суровее земного. На единицу марсианской поверхности в среднем приходится меньше половины той солнечной энергии, которую получает земная поверхность. Поэтому среднесезонные температуры составляют всего лишь –60 градусов по Цельсию и значительно меняются в течение суток.

В северном полушарии начинается долгое, но прохладное лето, а в южном – столь же долгая и суровая зима. Продолжительность этого периода составляет 180 марсианских суток. Но вот, миновав точку афелия, Марс опять устремился к Солнцу. Быстро, за 150 суток, проходят осень в северном полушарии и весна в южном, и можно опять праздновать марсианский новый год.

Неправда ли, очень похоже на сезонные циклы нашей Земли? В январе у нас снег и морозы, а где-нибудь в Южном полушарии Земли – в Южной Америке, Южной Африке или Австралии в самом разгаре жаркое лето.

Для жителей Земли жаркое лето, например в субтропиках, – это +30 или +35 градусов по Цельсию. А на Марсе?

Когда в марсианских субтропиках северного полушария прохладное лето сменяется короткой осенью, в середине дня температура не поднимается выше –20 градусов по Цельсию. К концу дня столбик термометра может опуститься до –40 градусов, а вечером, примерно в 21 час по нашим земным представлениям о времени, станет совсем холодно: -70 градусов. Вот такие на Марсе субтропики! Невольно вспомнишь, какое благодатное время с богатыми урожаями мандаринов и лимонов, других фруктов наступает осенью в субтропиках Земли!

Марс имеет сильно вытянутую орбиту, из-за чего в разные сезоны ощутимо меняется его близость к Солнцу и, соответственно, количество получаемого от Солнца тепла. В течение марсианского года величина солнечной энергии, поступающей на поверхность планеты, изменяется в полтора раза. По этой же причине продолжительность четырех времен года на Марсе тоже неодинаковая для северного и южного полушарий.

Совершим вместе с красной планетой полный оборот вокруг Солнца. Начнем, например, с перигелия – точки орбиты, в которой Марс наиболее близко подходит к нашему светилу. В это время в северном полушарии в самом разгаре, если так можно сказать, марсианская зима. Поскольку планета приблизилась к Солнцу, зимняя погода мягкая и не отличается суровостью. Но вблизи перигелия Марс движется с наибольшей орбитальной скоростью, поэтому сезон быстро кончается. Его продолжительность, как и лета в южном полушарии, составляет всего лишь 160 марсианских суток.

Очевидно, что лето южного полушария хотя и короткое, но «теплое».

В северном полушарии начинается весна, а теплое южное лето сменяется прохладой осени. Оба эти сезона, каждый в своем полушарии, длятся долго – около 200 марсианских суток. Планета приближается к точке наибольшего удаления от Солнца – афелию. Скорость орбитального движения уменьшается, и темп сезонных изменений тоже падает.

Но вот осень в северном полушарии Марса сменилась, как мы уже говорили, короткой и мягкой зимой. И что же? Самая высокая температура в это время не превышает –50 градусов, а ночью мороз достигает –120 градусов. Да что говорить о зиме, когда даже летом на исходе ночи, перед рассветом, в субтропической и тропической зонах Марса температура может опускаться до –90 градусов.

На Земле отличить один сезон от другого проще всего в умеренном климатическом поясе: буйная зеленая растительность лета сменяется белыми снегами зимы. Так увидели бы сторонние наблюдатели сезонные изменения на нашей планете.

Наблюдая Марс, астрономы прежде всего заметили сезонные изменения в высоких широтах, то есть в полярных климатических зонах.

В самый разгар лета в южном полушарии Марса полярная шапка настолько уменьшается в размерах, что становится неразличимой с Земли. Подробности снежного покрова можно рассмотреть с близкого расстояния от планеты, например с орбиты искусственного спутника Марса. На этом рисунке размеры области, покрытой инеем и снегом, не превышают 400 километров на местности. Положение центра полярной шапки смещается от географического полюса к полюсу холода. Точка южного полюса на рисунке находится на краю заснеженной области ниже и левее ее центра. В это время долгого полярного дня Солнце еще невысоко поднялось над горизонтом южного полюса. В правой части рисунка поверхность освещена лучше. Но все же и косые лучи Солнца позволяют хорошо разглядеть подробности снежного покрова яркой полярной шапки.

Еще в конце XVIII века Вильям Гершель в Англии при наблюдениях Марса подметил, что размеры белых полярных шапок планеты периодически изменяются, а цикл этих изменений полностью совпадает со сменой сезонов.

Возникло предположение, что с началом лета ледяные или снеговые полярные шапки начинают интенсивно таять.

Далее было обнаружено, что уменьшение «снеговых» шапок влечет за собой «волну потемнения», которая медленно распространяется из полярных областей в умеренные широты. На первый взгляд это явление вполне убедительно говорило о потоках влаги, оживляющих в теплый сезон марсианскую поверхность.

Примерно через 100 лет после наблюдений В. Гершеля итальянские астрономы А. Секки и Д. Скиапарелли сообщили в разное время, что они видят тонкие, длинные линии, как бы связывающие сетью каналов полярные и умеренные зоны планеты. Название «каналы» утвердилось за этими образованиями.

Но что понимать под этим словом.

Американский астроном П. Ловелл, построивший в пустыне Аризоны специальную обсерваторию для наблюдений Марса, был, например, горячим защитником гипотезы искусственного происхождения каналов. Вокруг этого предположения другие ученые выстраивали еще более удивительные гипотезы о существовании марсиан и марсианской цивилизации, более развитой, чем земная.

Около семидесяти лет длилось это «нашествие марсиан на Землю» и не прекращались споры о существовании самих каналов.

Объекты подобных размеров находятся на пределе видимости с Земли. Поэтому часть наблюдателей «видела» каналы, другая часть утверждала, что происходит «обман зрения» и отдельные, не связанные на самом деле между собой мелкие детали воспринимаются как тонкие линии или сеть подобных линий.

Что же происходит в действительности и какова природа сезонных изменений Марса на самом деле?

Не будем подробно прослеживать весь путь открытий и заблуждений, который пройден наукой, прежде чем ею были добыты достоверные факты. Многие десятилетия потратили астрономы на наблюдения и обдумывание результатов, годы провели конструкторы над проектами космических аппаратов, прежде чем были получены известные сегодня знания о природе Марса. Конечно, известно еще далеко не все. Многие подробности ждут своего уяснения.

Итак, что же мы узнали? Да, полярные шапки Марса действительно изменяют свои размеры и структуру из-за того, что сезонные изменения температуры влияют на состояние замерзшего вещества этих образований. Да, волна потемнений действительно существует и периодически проходит от полярных областей в умеренные пояса и обратно. Но природа этого явления совсем иная, чем думали астрономы.

Оказалось, что каналов в том понимании, какое существовало во времена споров, на поверхности Марса нет. С борта космических станций были сфотографированы удивительные детали рельефа – огромные долины и протяженные трещины. Совместить какой-нибудь из каналов, нанесенных на старые карты, с вновь обнаруженной долиной или трещиной в марсианской коре не удалось. И уж тем более, эти достоверные образования не имеют никакого отношения к сезонным изменениям полярных шапок или к природе волн потемнения.

Следует ли разочаровываться и огорчаться, что реальная действительность оказалась гораздо скучнее придуманных гипотез? Наверное, нет. Природные механизмы наблюдаемых явлений не менее интересны. Когда становятся понятными причины и следствия и видишь, как одно событие естественно вытекает из другого, остается лишь в очередной раз воскликнуть: ну как же все удивительно устроено природой!

Наиболее заметный рост белых верхушек Марса происходит с начала осени до начала весны в каждом полушарии. Осенью над полярной областью начинает сгущаться плотная белая мгла. Постепенно она окутывает значительную территорию, распространяясь, особенно в южном полушарии, на часть умеренного пояса. Этот плотный туман сохраняется до весны, когда под ним постепенно начинает проглядывать сама полярная шапка. С приходом весны размеры белого пятна начинают быстро уменьшаться и значительная часть полярной шапки стаивает. Оказывается, полярные белые области Марса состоят из двух слоев. Нижний и основной слой образован обычным водным льдом. Подобно ледовому материку на Земле – Антарктиде, толщина северной полярной шапки Марса, состоящей из льда, может достигать 4 километров.

Этот гигантский резервуар замерзшей воды в полярных областях Марса во время смены сезонов практически меняется по размерам очень мало. Наблюдаемые сезонные изменения полярных шапок происходят за счет второго, верхнего слоя, состоящего из замерзшей углекислоты или «сухого» льда.

С приближением марсианской осени над полярными областями начинают появляться неустойчивые голубовато-белые облака. Сначала облака, едва сгустившись, исчезают и не живут больше одних суток. Потом одни и те же образования можно наблюдать в течение нескольких суток. Наконец, как уже упоминалось выше, полярную зону окутывает плотная мгла. В это время на поверхность осаждается снег или иней из углекислоты.

Слой «сухого» льда невелик и достигает лишь нескольких сантиметров, но площадь, покрываемая им, быстро растет.

Замерзшая углекислота укутывает и льды постоянной полярной шапки, и еще большую территорию окружающей поверхности.

В это время температура полярных областей Марса опускается до –125 градусов по Цельсию, до самой низкой отметки во все времена года на всей планете. Эта температура как раз и соответствует известной из физики температуре замерзания углекислоты в условиях Марса, то есть при существующем там низком давлении.

С наступлением весны повышающаяся температура поверхности разрушает слой инея, полярные шапки постепенно уменьшаются до незначительных размеров. Летом в полярной зоне температура повышается до – 70 градусов. Остается лишь нижний, основной слой полярного льда, который не тает, потому что состоит из замерзшей воды. А для таяния водного льда, как мы знаем, нужны гораздо более высокие температуры, гораздо большее количество тепла. Но подобного тепла нет не только в полярных зонах Марса, его нет и в умеренных поясах, нет и в тропиках планеты.

То, что было рассказано о полярных шапках Марса, относится и к северной и к южной верхушкам планеты. Но есть и некоторые своеобразные отличия.

Припомните, лето в северном полушарии приходится на время прохождения планетой афелия, то есть точки наибольшего удаления от Солнца. А лето в южном полушарии совпадает с прохождением перигелия, то есть с наибольшим приближением к Солнцу. Для климатических особенностей Марса это означает, что вода систематически собирается у северного полюса, а углекислоты больше накапливается у южного.


    Ваша оценка произведения:

Популярные книги за неделю