355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Вавилов » Глаз и солнце. (О свете, Солнце и зрении) » Текст книги (страница 1)
Глаз и солнце. (О свете, Солнце и зрении)
  • Текст добавлен: 24 сентября 2016, 05:07

Текст книги "Глаз и солнце. (О свете, Солнце и зрении)"


Автор книги: Сергей Вавилов



сообщить о нарушении

Текущая страница: 1 (всего у книги 25 страниц) [доступный отрывок для чтения: 10 страниц]

Сергей Вавилов
Глаз и Солнце. О свете, Солнце и зрении

© Состав. ООО «Торгово-издательский дом «Амфора», 2015

Развитие геометрической оптики и оптических приборов[1]1
  Печатается по изданию: Слюсарев Г. Г. Геометрическая оптика. М.; Л., 1946.


[Закрыть]

Из всех чувств человека зрение глубже других связывает нас с природой, благодаря широте тех возможностей, которые она предоставляет в наше распоряжение. Ни слух, ни обоняние, ни вкус не позволяют нам получать такие подробные и разносторонние сведения о том, что происходит вокруг нас. При этом дальность зрения превышает всякое воображение, позволяя нам протянуть мост к звездам, удаленным от нас на расстояния, для представления о которых приходится создавать особые единицы и понятия (как, например, «световые годы»).

Орган зрения человека и животных возник в результате многих миллионов лет постепенного развития, это – плод тесного взаимодействия между светом и живой материей. Он достиг высокой степени совершенства, которой мы не осознаем в силу привычки. Наоборот, в силу ряда недостатков различного происхождения, о которых будет сказано дальше, мы склонны, недооценивать наш глаз и подвергать его несправедливой критике. Знаменитый физик Гельмгольц высказал мнение, что глаз – плохой инструмент и на месте Бога он создал бы его более совершенным. Более правильным представляется взгляд, что в органе зрения все его качества и недостатки так удачно уравновешиваются, что одно какое-нибудь улучшение повлекло бы за собой полную его перестройку. Мы увидим дальше, что все самые остроумные изобретения человека в области оптики, понимая последнюю в очень широком смысле, в том или ином виде осуществлены в глазу.

Человечество с полным правом гордится современным состоянием фотографии. Но самый совершенный фотоаппарат, снабженный последними достижениями техники, вместе с новейшим фотоматериалом не обладает теми возможностями, которыми располагает человеческий глаз, и все принципы, на основании которых построен и работает фотоаппарат, отражены в зрительной системе глаза.

Многое в этом замечательном механизме еще непостижимо для нас, и можно с уверенностью сказать, что, когда нам удастся вникнуть в еще непонятые свойства глаза, техника оптических приборов будет обогащена новыми усовершенствованиями.

Тем не менее нельзя отрицать, что работа нашего глазного аппарата ограничена со многих сторон. Мы не видим отчетливо ни того, что слишком далеко, ни того, что слишком близко, ни того, что мало освещено, ни того, что освещено излишне ярко; наш глаз чувствителен к очень узкой области спектра, и от него скрыты и инфракрасные и ультрафиолетовые радиации.

Изучение природы света и световых явлений является предметом оптики. Вопросом распространения света в прозрачных средах и в искусственно созданных человеком комбинациях оптических сред – оптических приборах – занимается геометрическая оптика. В ее задачи входит обоснование теории оптических систем, объяснение причин, ограничивающих работу зрительного аппарата, и в результате – выяснение мер, ведущих к увеличению возможностей этого аппарата, к улучшению нашего зрения в широком понимании этого слова. Очки, лупы, микроскопы устраняют дефекты глаза, его недостаток аккомодации и позволяют видеть тела мельчайших размеров; астрономические трубы приближают к нам в сотни и тысячи раз небесные тела; бинокли, стереотрубы увеличивают в несколько раз разрешающую силу наших глаз и ощущение глубины; дальномеры, используя до предела остроту нашего зрительного аппарата, определяют с большой точностью расстояния до далеких предметов. Спектроскопы и спектрографы, разлагая световые радиации на монохроматические составляющие, дают представление об их составе, строении и вместе с тем много сведений об источнике этих радиаций; фотографические аппараты фиксируют, а киноаппараты расчленяют во времени текущие явления и события. Прожекторы, осветители увеличивают освещение незамечаемых вследствие темноты объектов; медицинские оптические инструменты, построенные по такому же принципу, как и перископы, позволяют проникать в человеческое тело, обнаружить и излечить многие болезни.

Оптика развивалась скачкообразно. Будучи одной из самых древних наук, учение о свете начало давать первые конкретные плоды только в XVI в., когда появились первые микроскопы и зрительные трубы. С самых древних времен, о которых мы ничего определенного не знаем, известны такие бросающиеся в глаза факты, как прямолинейное распространение света, преломление и отражение света. Стекло научились плавить с незапамятных времен; изделия из стекла, горного хрусталя и других прозрачных материалов были найдены при раскопках древнейших памятников старины; такие атмосферные явления, как радуга, издавна обращали внимание людей на вопрос о природе света.

У Аристотеля можно найти первые сведения о взглядах древних на световые явления. Они отличаются крайней неопределенностью и сводятся к общим соображениям о том, чем может быть свет: качеством или субстанцией. Аристотель, например, считает, что радуга, галосы[2]2
  Гало (галосы) – яркие круги вокруг источника света.


[Закрыть]
и ложные солнца вызываются отражением света от капелек дождя или тумана, создающих несовершенные изображения Солнца, воспроизводящие лишь цвет, но не фигуру его, как результат сложения бесчисленного числа маленьких изображений, образуемых каждой каплей.

Такого же рода расплывчатые соображения можно найти у современников Аристотеля. Очень смутно подозревалось, что зрение каким-то образом связано со светом (Лукреций, Эпикур, Архимед). У Сенеки можно найти указания на увеличивающее действие стеклянных шаров, заполненных водой, но его объяснение этого явления показывает, что философы того времени не имели ни малейшего понятия о связи явления преломления, хорошо им известного, с кажущимся увеличением объектов.

Возможность зажигания различных тел с помощью этих же шаров или линз из горного хрусталя была известна друидам, но это свойство прозрачной материи ни в какой степени не ставилось в связь с преломлением.

Однако ко времени Евклида накопился ряд данных, относящихся к оптическим явлениям, и последний оказался в состоянии написать настоящий трактат по оптике, в котором, между прочим, изучаются изображения, даваемые зеркалами. К этому времени стала яснее связь между светом и зрением, но у физиков преобладало мнение, навеянное аналогией с чувством осязания, что свет распространяется от глаза к наблюдаемому предмету и обратно. Астроном Птолемей (150 г. н. э.) изучал подробно явление преломления и применил результаты своей работы к исследованию атмосферной рефракции.

После падения Римской империи наступил более чем тысячелетний закат научной деятельности в Европе. Арабский геометр Альгазен в XII в. собрал все известные ему материалы по оптике, добавил собственные изыскания и написал ценное произведение, где впервые подробно рассматривался вопрос о зрении и зрительном аппарате и где была создана первая теория процесса зрения; Альгазен также углубился дальше своих предшественников в вопросе рефракции, в частности об атмосферной рефракции. Связь между преломлением и увеличением прозрачных тел, ограниченных выпуклыми поверхностями, для него вполне ясна; можно предположить, что его высказывания на этот счет вызвали появление первых очковых линз. Во всяком случае несомненно, что труды Альгазена создали новую эпоху в развитии оптики, эпоху, прославленную работами Витело, Пеккама, Бэкона (XIII в.), углубивших теорию преломления, обнаруживших (Витело) потерю света при преломлении и отражении, улучшивших теорию радуги, объяснивших мерцание звезд, зажигательное действие зеркал, увеличивающие свойства зеркал и т. д. Бэкон высказал мысль о возможности с помощью зеркал и линз приблизить любые далекие предметы, вследствие чего ему иногда ошибочно приписывают изобретение телескопа.

Одновременно, под некоторым влиянием работ перечисленных оптиков, появляются первые очки (Алессандро Спина, Сальвино Армати и др.), действие которых ни для кого еще не ясно, хотя Мавролик посвятил много труда решению этого вопроса. Насколько ничтожны были успехи в развитии теории зрения, видно из того, что для Бэкона зрение еще не связывалось отчетливо со светом, и гипотеза древних об испускании глазом частиц, достигающих наблюдаемых предметов и возвращающихся обратно в глаз, казалась вполне приемлемой.

Однако если оптика медленно развивалась в области понимания природы света, то она удачно ответвилась в сторону изучения перспективы и применений прямолинейности распространения света. Мавролик дал первое правильное объяснение форм солнечных пятен (зайчиков), вызываемых алыми отверстиями произвольной формы. Джованни Баттиста делла Порта, современник Мавролика, изобретает камеру-обскуру, и последняя оказала ему большую помощь при объяснении роли глазного зрачка в работе глаза. От камеры-обскуры до проекционного фонаря – один шаг; он был пройден Кирхером. И делла Порта, и Кирхер увлекаются вопросом об оптических системах, сжигающих на расстоянии, посвящают ему трактаты, производят опыты. Соображения делла Порта на эту тему очень напоминают рассуждения многочисленных изобретателей сенсационных сжигающих приборов.

Конец XV и начало XVI в. являются переломной эпохой в истории оптики; она связана с распространением очковых линз, луп, призм, выпуклых и вогнутых зеркал, с появлением камеры-обскуры и проекционного фонаря. В руках физиков оказался ряд ценнейших оптических приборов или, точнее, деталей, элементов, из которых могут быть созданы самые сложные оптические системы. Не удивительно, что оптические теории стали развиваться со все возрастающей скоростью.

Около 1590 г. была построена первая зрительная труба (Янсен, Липперсгей); несколько позже, в начале XVII в., были построены первые сложные микроскопы (Фонтана). Открытие подзорной трубы и микроскопа приписывается случайности. Действительно, теория хода лучей через линзы не была еще построена, и понятие «изображения» только рождалось; сознательное построение сложных оптических систем оказалось под силу только такому выдающемуся физику, как Галилей, который построил понаслышке и тот и другой прибор, направил трубу на небо и открыл ряд небесных явлений, а именно: существование и вращение спутников вокруг Юпитера, фазы Венеры и пр. Это дало в его руки мощнейшие аргументы в пользу гипотезы Коперника о вращении Земли вокруг Солнца.

Однако даже Галилей не дал удовлетворительного объяснения действия микроскопа и астрономической трубы, не понял ни роли окуляра, ни основ работы глаза.

Теории оптических приборов и глазного аппарата были созданы гением Кеплера; он совершил в оптике тот переворот, который был совершен Ньютоном в астрономии законом всемирного тяготения и в математике введением дифференциального исчисления. Он собрал разрозненные элементы оптики у своих предшественников, очистил их от ненужного балласта, сам дал твердое обоснование всей теории – закон преломления – и последовательно развил теорию зрительной трубы, микроскопа и глаза. Его «Диоптрика» (1611) по форме и содержанию мало отличается от современных учебников по геометрической оптике и являет поразительный контраст с аналогичными трактатами его предшественников, а иногда даже и последователей.

Хотя Кеплер не нашел точной формулировки закона преломления и после некоторых неудачных попыток остановился на законе пропорциональности между углом преломления и углом падения, он вывел из него правильные следствия и впервые указал, как найти изображения, даваемые линзами. Он правильно объяснил работу окуляра в зрительной трубе и в микроскопе, понял роль хрусталика и сетчатки в глазу, не смутившись, как большинство его предшественников, обратным изображением предметов на сетчатке; он обратил внимание на аккомодацию и адаптацию глаза, на иррадиацию и т. д. Вопросы, связанные с энергетикой оптических лучей, т. е. с поведением световых пучков при преломлении через оптические системы, впервые, хотя и в очень завуалированной форме, затрагиваются им. Он показывает ошибку в рассуждениях Порта относительно сжигания на расстоянии.

Неточная формулировка закона преломления не помешала Кеплеру получить правильное объяснение действия линз. Однако вся теория аберраций оптических систем может быть обоснована только на строгой формулировке этого закона, она была дана Снеллом и Декартом независимо друг от друга в начале XVII в. Первый из них получил ее на основании опыта, второй – на основании общих соображений о природе света, в настоящее время забытых. Декарт на основании открытого им закона дал впервые правильное объяснение радуги (внутренней и внешней) и не смог только объяснить цвета ее; он указал ту форму, которую следовало давать линзам для устранения сферической аберрации, которую считали причиной нерезкости изображений, даваемых линзами, и даже спроектировал станок для шлифовки несферических поверхностей. Только после Декарта стала возможной строгая теория оптических приборов, по крайней мере в области геометрической оптики, т. е. без учета явления дифракции. Великий математик Ферма показал, что закон Декарта может быть получен как следствие его принципа кратчайшего пути.

Можно отметить в течение XVII в. развитие техники изготовления зрительных и астрономических труб, которые в руках астрономов дали ряд важнейших результатов, в частности позволили Рёмеру определить скорость света по наблюдениям спутников Юпитера. Но указанные успехи не носят принципиального характера и касаются лишь постепенного увеличения диаметра объективов. Микроскопы оставались на довольно низком уровне.

Геометрическая оптика после Декарта превратилась в отдел геометрии. Ею завладели математики: Барроу, учитель Ньютона, и сам Ньютон в молодости. Они использовали ее как новое поле для решения задач по геометрии; некоторые задачи оптики, например нахождение каустических поверхностей, определение фокусов тонких пучков, были тесно связаны с рождающимся дифференциальным исчислением. Барроу и Ньютон в своих «Диоптриках» дали немало формул, большинство которых забыто, но некоторые имеют большое значение. Ньютону принадлежат основные формулы параксиальной оптики; он нашел формулы для вычисления сферической аберрации[3]3
  Аберрация – погрешность изображения, даваемая оптическими системами.


[Закрыть]
одной сферической поверхности, указал, каким образом построить фокусы бесконечно тонких астигматических пучков.

Главной заслугой Ньютона, однако, является открытие дисперсии.[4]4
  Дисперсия (разложение) света – зависимость фазовой скорости света в веществе от длины волны.


[Закрыть]
Он показал, что именно дисперсия вызывает нерезкость в изображениях, даваемых объективами астрономических труб, которую ранее приписывали сферической аберрации (Декарт). Он вычислил хроматическую аберрацию линз. Вместе с тем он допустил крупную ошибку, приняв, что частная относительная дисперсия есть универсальная постоянная, одинаковая для всех прозрачных сред. Из этого вытекает невозможность исправить хроматическую аберрацию объективов. Ньютон, считая, что дальнейшее улучшение линзовых объективов невозможно, перешел к отражателям, разработал сплавы для них, а также способ шлифовки параболических поверхностей. Ему принадлежат первые отражательные телескопы хорошего качества, хотя проекты таких телескопов были уже предложены, но не осуществлены его современником Грегори. После Ньютона развитие линзовых объективов на полвека приостановилось, но зато рефлекторы начали быстро распространяться и улучшаться.

В своих общих представлениях о природе света Ньютон склонялся к эмиссионной теории. Так как с помощью этой теории явления дифракции и интерференции плохо объясняются, то мы на ней останавливаться не будем. Современник Ньютона Гюйгенс предложил в 1678 г. свою знаменитую волновую теорию. В том виде, в котором он ее изложил, она была очень несовершенна; однако основная идея теории оказалась настолько плодотворной, что она до сих пор с некоторыми, введенными позже дополнениями управляет явлениями распространения электрической и световой энергии, в частности всей теорией оптических инструментов, по крайней мере в той части, которая связана с распространением света и с образованием изображений, объясняя до малейших подробностей ту сложнейшую картину, которая при этом получается.

Как ни велико значение волновой теории света, она не могла оказать влияния на дальнейшее развитие геометрической оптики, так как последняя с ней не связана; она с большей наглядностью доказывает второстепенное значение явления дифракции в оптических приборах. Теория геометрической оптики, которая после Кеплера и Ньютона стала быстро развиваться и углубляться, наоборот, создала переворот в конструкции оптических приборов, и связь между теорией и практикой стала все теснее и теснее.

Линзы большого диаметра для астрономических труб изготовлялись Дивини, Кампани (1660) в Италии, Борелем и Озу во Франции, Нейлем в Англии, Чирнгаузеном в Германии. Одновременно с этим уточнялось понятие каустик (Гюйгенс, Чирнгаузен, И. и Я. Бернулли, Лопиталь), изучались свойства аберрированных изображений.

Физиологическая оптика после работ Роберта Смита и Джурина (1730) сделала заметные успехи; впервые ставится вопрос о разрешающей силе глаза, хотя в очень несовершенном виде.

В середине XVIII в. Эйлер, взявший под сомнение положение Ньютона о невозможности получить ахроматический объектив, предложил строить сложные объективы, пользуясь водой как промежуточной средой. После работ Клингенстьерна (1750–1755) и Доллонда последнему удалось построить ахроматический объектив; этот вопрос имел настолько большое значение, что, помимо перечисленных авторов, им занимались еще Клеро и д’Аламбер. Любопытно, что, как и Ньютон, Эйлер в решении рассматриваемого вопроса исходил из неверной идеи, а именно: что глаз человека является ахроматическим. Позже было показано, что глаз человека обладает значительной хроматической аберрацией, но зрительный аппарат каким-то образом ее исключает, как, например, он исключает слепое пятно сетчатки.

Принцип ахроматизма стал применяться и в микроскопе (Фусс, Дельбарр по указаниям Эйлера, 1769). Это вызвало заметное улучшение качества этих приборов, которые почти два столетия оставались на низком уровне и рассматривались больше в качестве игрушек, а не научных инструментов.

К этому времени относится возникновение фотометрии (Буге, Ламберт); устанавливаются основные понятия фотометрии, понятия яркости, силы света и освещенности изучаются теоретически и опытным путем основные зависимости, связывающие эти величины между собой.

Начало XIX в. связано с новым направлением в геометрической оптике, а именно с более глубоким изучением структуры пучков лучей. Это вопрос – чисто геометрический, и, естественно, он разрабатывался математиками: Малюсом (1807), Дюпеном (1822), Жергонном (1825), Штурмом (1838), Куммером (1859).

Другое направление – изучение оптических систем вблизи их оптической оси – ведет к законам параксиальной оптики. Благодаря своей простоте и наглядности эти законы позволяют представить оптические системы в виде простейших схем, с помощью которых основная задача геометрической оптики – нахождение изображения – решается элементарно. Кроме того, эти законы являются предельными для широких пучков; они определяют свойства того класса оптических систем, которые можно называть идеальными.

Хотя основные законы параксиальной оптики были уже известны Ньютону, но в законченном виде эта важнейшая область геометрической оптики была представлена Гауссом в 1844 г. С иных точек зрения она была много позже изучена Мёбиусом (1855), Максвеллом и Аббе (1862).

Теория аберраций оптических систем разрабатывалась для отдельных случаев уже Ньютоном, Эйлером, Эри, Коддингтоном (1830); для общего случая – Зейделем (1858) и Петцвалем (около 1855 г.); разложение аберраций в ряд на основании теории эйконала было выполнено Шварцшильдом (1905) для аберраций третьего порядка и Кольшюттером для аберраций пятого порядка.

Приемами дифференциальной геометрии Гульстранду удалось решить этот вопрос не только для систем, симметричных около оси, но также для систем, обладающих более общим видом симметрии.

Вместо свойств пучков лучей можно изучать свойства ортогональных им поверхностей и рассматривать семейства последних как эквипотенциальные поверхности. Таким подходом к геометрической оптике мы обязаны Гамильтону (1830). Этим же вопросом, не зная о работах последнего, занимался Брунс (1895); теория эйконала стала развиваться после Шварцшильда, Герцбергера (1925 и позже), Т. Смита (1920 и позже).

Параллельно с теорией чисто геометрической оптики успешно развивалась и дифракционная теория изображений, основа которой уже лежит в идеях Гюйгенса с дополнением Френеля (1820). Однако вопрос о виде изображения был решен только Эри (1840) и Рэлеем (1885).

Геометрическая оптика под давлением промышленности развивалась также в направлении улучшения методики расчета оптических систем. Работы по методике расчета обычно не публикуются, и литература по этому вопросу очень скудна, но можно судить о ее состоянии по результатам, т. е. по изготавливающимся оптическим системам.

Изобретение ахроматических объективов оказало громадное влияние на дальнейшее развитие оптических приборов. С одной стороны, оно указало на необходимость варить разные сорта оптического стекла и послужило основной причиной организации мастерских и заводов оптического текла (Гинан, Шотт, Ченс и др.), где стали разрабатываться сотни сортов с различными показателями преломления и дисперсиями; с другой – оно позволило, улучшив качество объективов в отношении хроматической аберрации, одновременно исправить и остальные аберрации, что раньше было невозможно из-за отсутствия достаточного количества сортов стекла. Особенно подробно изучаются двухлинзовые объективы астрономических труб (Клеро, Моссоти, Гаусс); однако границы возможностей этих объективов определяются не расчетными трудностями, а высокими требованиями, предъявляемыми к качеству, особенно к однородности стекла и к точности формы поверхностей; изготовление их требует большого искусства и точнейших методов контроля. Наибольший из объективов, изготовленный Кларком для Йеркской обсерватории, имеет диаметр, равный 1 м. Зеркальные объективы, изготовление которых облегчается тем, что к качеству стекол не предъявляется таких жестких требований, и тем, что обработке подлежит одна поверхность вместо четырех, достигли диаметра в 2,51 м (для обсерватории Маунт-Вилсон), сделан 5-метровый диск для обсерватории Маунт-Паломар. Но рядом с этими гигантами построены на основании чисто математических расчетов гораздо меньшие зеркальные системы (Ричи – Кретьена), которые оставляют первые далеко позади во многих отношениях.

Громадными своими успехами микроскоп целиком обязан теории расчета…

Неизвестные в первой фазе развития оптических приборов фотографические объективы, после изобретения Дагером и Ньепсом фотографии (1840), потребовали к себе особого внимания вычислителей, так как к ним предъявлялись новые тяжелые и противоречивые требования (большая апертура, значительное поле зрения, идеальная резкость), и немало послужили стимулом к развитию методики расчета оптических систем вообще…

Кроме перечисленных основных категорий оптических систем большое распространение получили оптические приборы для научных и технических целей: спектроскопы и спектрографы для спектрального анализа, измерительные приборы для испытания оптических систем, станков, металлических деталей и т. д.; для медицинских целей разработаны оптические системы, проникающие во все полости тела, приборы для изучения состава крови и т. д. Особое развитие получили военные приборы, в которых использованы все достижения последнего времени…

Многие из строящихся в настоящее время оптических систем, как уже было указано, достигли предела своих возможностей; коррекция доведена до такой степени совершенства, что дальнейшее уменьшение остаточных аберраций не привело бы к заметному улучшению, а волновая природа света ставит предел дальнейшему увеличения разрешающей силы.

Георгий Слюсарев

    Ваша оценка произведения:

Популярные книги за неделю