355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Венецкий » В мире металлов » Текст книги (страница 13)
В мире металлов
  • Текст добавлен: 4 октября 2016, 01:30

Текст книги "В мире металлов"


Автор книги: Сергей Венецкий


Жанры:

   

Химия

,

сообщить о нарушении

Текущая страница: 13 (всего у книги 16 страниц)

Клады в футеровке

Исследуя с помощью тонких аналитических методов старую футеровку медеплавильных печей, болгарские ученые – сотрудники Института цветных металлов в Пловдиве – обнаружили, что отслужившие свой век огнеупорные кирпичи хранят ценные клады: в тысяче тонн обломков футеровки содержится около 50 тонн меди, 91 килограмм серебра и 4 килограмма золота. Медь и благородные металлы, которые в небольших количествах присутствуют в медной руде, проникают в микропоры кирпичей в процессе плавки, а при смене футеровки оказываются на свалке.

Но как овладеть этими кладами? Ученые разработали технологию "добычи" металлов из старой футеровки путем флотации. Новый метод, внедренный на металлургическом заводе имени Георгия Димитрова в Елисейне, позволяет извлечь из огнеупорных отходов до 90 – 93 % содержащихся в них ценных металлов.


Металлические «стекла»

 Как известно, металлы и другие твердые вещества обычно имеют кристаллическую структуру, при которой их атомы (ионы, молекулы) располагаются в пространстве в строго определенном порядке. Однако некоторым твердым телам этот порядок «не по душе». Таково, например, стекло: оно аморфно и в жидком, и в твердом состояниях. А нельзя ли аморфные металлические расплавы заставить переходить в твердое, но тоже аморфное состояние, т.е. получать металлическое «стекло»?

Обычно процесс кристаллизации протекает во времени, и атомы поэтому имеют возможность "поразмыслить" над тем, как вести себя в ходе перестройки. А если осуществить мгновенное затвердевание и, таким образом, не дать атомам времени на "размышление"?

На помощь решено было призвать глубокий вакуум и криогенные температуры. При таких условиях атомы вынуждены, как при знакомой всем с детства игре, моментально подчиниться команде: "Замри!". В ходе многочисленных экспериментов удалось довести скорость охлаждения расплава до миллиона градусов в секунду. Пары металла наносили на переохлажденную металлическую пластинку, находящуюся в камере, где были обеспечены указанные условия, и пластинка тут же покрывалась "стеклянной" пленкой.

Одним из первых металлов, полученных в аморфном состоянии, был висмут. Оказалось, что пленка "стеклянного" висмута толщиной всего в несколько микрон обладает своеобразными магнитными и электрическими свойствами. Так, даже при обычной температуре ее сопротивление электрическому току во много раз ниже, чем у кристаллического висмута.

В дальнейшем круг аморфных металлов и сплавов значительно расширился: ученые сумели превратить в "стекло" сталь и ряд тугоплавких металлов. К тому же значительно упростилась технология получения таких необычных материалов: отпала необходимость в вакууме и криогенных температурах. Как выяснилось, аморфные пленки и ленты образуются при соприкосновении металлического расплава с быстро вращающимися водоохлаждаемыми валками.


По следам пули

В США разработан химический метод определения траектории полета пули, предназначенный для криминалистики.

Летящая пуля оставляет за собой вихревой поток, в который из самой пули и пороховых газов всасываются микроколичества некоторых элементов – свинца, бария, сурьмы, меди. Оседая на землю, пол или другую поверхность, они оставляют на ней невидимый след. Невидимый? Оказывается, современная наука позволяет увидеть его, а значит, и узнать направление полета пули.

На обследуемую поверхность накладывают полости влажной фильтровальной бумаги, затем их помещают в ядерный реактор и подвергают бомбардировке нейтронами. Вследствие "обстрела" некоторые атомы, прихваченные бумагой, превращаются в радиоактивные изотопы, а степень их активности дает возможность судить о содержании этих элементов в пробах и, таким образом, определять траекторию и длину полета пули, характеристику самой пули и даже примененного преступником оружия.

К сожалению, у нового метода есть существенный недостаток: следы полета пули, оставляемые на земле, быстро исчезают.


«Память» сплавов

 Один из героев романа «Колеса», написанного американским писателем Артуром Хейли, ответственный работник крупной автомобильной компании, делится с журналистами перспективными планами: «Новое, несомненно, будет пробивать себе дорогу... И самые важные новшества, которые уже можно предвидеть, будут связаны с материалами___Возьмите, к примеру, металлы. На смену стальной конструкции, которая используется сейчас, придет сотовая. Она будет более прочной, более упругой и в то же время несравненно более легкой ... Кроме того, ведутся работы над созданием такого металла, который обладал бы способностью „запоминать“ свою первоначальную форму. Если, например, вы погнете крыло или дверцу, достаточно будет подвергнуть эту деталь высокотемпературной обработке, и металл восстановится в своей прежней форме».

Еще каких-нибудь полтора-два десятка лет назад подобную идею можно было отнести разве что к разряду научно-фантастических. Сегодня же свойство металла проявлять "память" достаточно хорошо известно ученым и конструкторам. Что же произошло за это время?

В середине 60-х годов в США был запатентован сплав никеля (55 %) с титаном (45 %) – нитинол. Достаточно легкий, прочный, коррозионностой-кий – он считался неплохим конструкционным материалом и не более. Однако его создатели продолжали проводить с ним различные эксперименты, и вдруг сплав проявил совершенно уникальную способность – "помнить" свое прошлое. Обнаружено это было во время одного из многочисленных опытов. Нитиноловую спираль после определенной обработки нагрели до 150°С и охладили, а затем к ней подвесили груз, который растянул ее и превратил в совершенно ровную проволоку. Чудеса начались, когда эту проволоку опять нагрели до 95°С: на глазах изумленных исследователей она превратилась в ... спираль.

Опыт ставили снова и снова, придавая металлу все более сложные формы, но он продолжал демонстрировать блестящую "память", невозмутимо принимая свой первоначальный облик. Проволоку, например, согнули таким образом, что она образовала слово "нитинол", затем нагрели, охладили и деформировали до неузнаваемости, но стоило пропустить через эту проволочную абракадабру сильный электрический импульс, мгновенно разогревший ее, и взорам ученых вновь предстало название сплава.

В наши дни нитинол уже не одинок: ученым удалось разработать еще ряд двойных и тройных сплавов (медь – цинк, медь – олово, золото – кадмий, титан – кобальт, цирконий – рубидий, медь – алюминий – никель и другие), также обладающих способностью "помнить", как они выглядели в "былые времена".


«Светить – и никаких гвоздей!»

Обычная электрическая лампочка не столько светит, сколько греет: лишь несколько процентов электроэнергии превращается в свет, а львиная доля ее теряется в виде бесполезной теплоты, выделяемой лампой в окружающее пространство. Как же повысить коэффициент полезного действия электроламп?

Ученые Массачусетского технологического института (США) разработали покрытие из двуокиси титана и серебра, которое прекрасно пропускает световые лучи, но является непреодолимым препятствием для тепловых лучей. Такое покрытие, нанесенное изнутри на лампочку, нисколько не мешает ей светить, зато выделяемая спиралью теплота, отразившись от покрытия, вновь попадает на спираль, заставляя ее при этом светиться еще ярче.

Новая лампа потребляет на 60 % меньше энергии, чем обычная, а служит примерно в два – три раза дольше (2500 часов).


Золото в снегу

В последнее время геологи проявляют повышенный интерес к ботанике: многие растения как бы сигнализируют о повышенной концентрации в почве тех или иных химических элементов, а это, в свою очередь, означает, что где-то вблизи залегают соответствующие руды. По мнению ученых Геологического института Бурятского филиала Сибирского отделения АН СССР, число таких природных «сигнализаторов» можно значительно расширить: в поисках золота, например, может помочь . . . снег.

К этому выводу ученые пришли, проведя любопытный эксперимент: на одном из известных золотоносных участков исследователи взяли в конце зимы пробы снега из слоев, не соприкасавшихся с почвой. И что же? Чувствительные методы анализа позволили установить, что в "подопытном" снеге содержится значительно больше драгоценного металла, чем в обычном.

По всей вероятности, золото как бы «испаряется» из почвы на поверхность, причем подземные воды помогают ему преодолеть мерзлые горные породы. Вот почему бурятские геологи считают вполне перспективным метод поиска золотоносных месторождений путем анализа снега или талых вод.


Хоть видит око . ..

 Ученые установили недавно, что одна из звезд созвездия Рака, находящаяся от Земли на расстоянии «всего» 175 световых лет, характеризуется очень высоким содержанием золота, которое составляет одну стотысячную часть массы звезды. Для сравнения укажем, что концентрация этого драгоценного металла в солнечном веществе в миллион раз меньше. На Земле на долю золота приходится одна двухсотмиллионная часть массы планеты, но оно сосредоточено главным образом в нескольких районах, в то время как для звезды, на которую обратили внимание ученые, характерно равномерное распределение золота по всей ее массе.

По подсчетам специалистов, золотые "запасы" далекой звезды достигают почти ста миллиардов тонн.


Что там – на небесах?

Один из сотрудников Вашингтонского университета опубликовал данные своих исследований, посвященных химии межзвездного пространства. Как утверждает ученый, в космосе обнаружены молекулы около 50 различных веществ. Что касается содержания отдельных химических элементов, то здесь пальма первенства принадлежит водороду.

Если содержание его в межзвездном пространстве принять за единицу, то количественные характеристики других "лидеров" выражаются следующими величинами: гелия – 0,09, кислорода – 7 • 10-4, углерода – 3 • 10-4, азота – 9 • 10-5, неона – 8 • 10-5, железа – 4 • 10-5, кремния и магния – по 3 •10-5, серы – 1 • 10-5, аргона – 6 • 10-6, алюминия, кальция, натрия и никеля – по 2 • 10-6, хрома – 7 • 10-7, хлора – 4 • 10-7 и фосфора – 3 • 10-7. Другие элементы остались в этом "соревновании" далеко позади.


Цинк, медь и лимон

Энергетический кризис заставил заняться поисками источников энергии многие крупные научные и промышленные организации. Но от профессиональных изобретателей не отстают и любители. Так, один английский часовщик из города Киддерминстер, решил воспользоваться для этой цели ... обычным лимоном. Вставив в него цинковую и медную пластинки с выводами, изобретатель получил оригинальную электрическую батарейку. В результате реакции лимонной кислоты с медью и цинком возникал ток, которым в течение нескольких месяцев питался крохотный моторчик, приводящий в движение рекламную табличку в витрине часовой мастерской. Чем не изобретение? Но вот беда: по подсчетам специалистов, чтобы обеспечить током, например, всего один телевизор, нужна батарея из десяти миллионов лимонов.


«Резиновый» сплав

Несколько лет назад английская фирма «Сьюперформ металз» разработала новый сплав на основе алюминия. Сохраняя все достоинства металла – высокую электропроводность, теплопроводность, прочность, сьюпрал (так называется сплав) обладает удивительной пластичностью: брусок из него уже при слабом нагреве можно растянуть в десять раз. Такая «растяжимость» не всякой резине по плечу!

Из нового сплава можно изготовлять изделия самой причудливой конфигурации, используя известные методы технологии формовки пластичных материалов под давлением.


Из консервных банок

С тех пор как в 1810 году англичанин Питер Дюренд получил патент на консервную банку из жести, люди употребили в пищу несметное количество консервов. Наиболее крупные страны ежегодно производят по нескольку миллиардов банок с мясом, рыбой, овощами и другими продуктами. А много ли это? Судите сами: с начала нашего летоисчисления человечество прожило лишь немногим более миллиарда минут (28 апреля 1902 года в 10 часов 40 минут время начало отсчитывать второй миллиард минут новой эры).

Но если для "хранения" прожитых минут нужны лишь крохотные уголки памяти (да и то не всегда), то с миллиардами использованных консервных банок дело обстоит значительно сложнее. Каждую секунду в мусорные ящики летят тысячи и тысячи банок. Но ведь городские свалки мусора – не безбрежный океан, способный поглотить все отходы города. К тому же банки – это не только железо, но и слой дефицитного олова. Вот почему инженеры и ученые давно ищут простые и экономичные способы утилизации этих металлов.

Щербинский завод вторичных цветных металлов и Донецкий институт "ВНИПИвторцветмет" создали установку для снятия олова с консервной жести. Непрерывным потоком банки поступают в горловину установки, которой управляет один человек. Там под действием электролиза железо вынуждено снимать оловянную "рубашку". Из этой "бани" выходят очищенная жесть (кстати, отличная шихта для сталеплавильных печей) и светлые оловянные слитки. Они снова готовы превратиться в консервную банку.


Алюминий из мусора

 Существует немало проектов и уже действующих установок по извлечению ценных компонентов из отходов, поступающих на городские свалки. В некоторых установках, в частности, предусмотрено оригинальное электромагнитное устройство для «добычи» из мусора алюминия – так называемый электродинамический сепаратор. Но ведь магнитное поле не действует на алюминий? Как же с его помощью удается извлечь этот металл? Оказывается, если возбудить в алюминиевом предмете переменный ток, перемещая его в соответствующем электрическом поле, то металл на какое-то время намагничивается. В этом состоянии он и попадает в «руки» магнитов (стальные и железные предметы удаляются из общей массы тоже магнитным способом, но раньше, чем алюминий, и, разумеется, без электрической обработки).

В других установках для той же цели предусмотрен водный сепаратор: плотность воды в нем повышают добавкой минеральных веществ, и более легкие алюминиевые частицы вынуждены всплывать на поверхность. Остается их собрать и отправить на металлургический завод, где они превратятся в проволоку, ленту, фольгу и другие виды алюминиевой продукции.


«Кровоточащие» болты

Наибольшим нагрузкам в различных узлах машин и механизмов подвергаются, как правило, детали креплений и соединений. Многие из них при этом испытывают знакопеременные нагрузки, а именно на такой «работе» металл особенно сильно подвержен опасному «профессиональному заболеванию» – усталости. Порой уставший металл не выдерживает выпавших на его долю тяжких испытаний и в нем появляются микротрещины, которые затем могут стать причиной поломок и аварий.

А нельзя ли обнаружить усталость металла на ранней стадии, чтобы не допустить выхода механизма из строя? Эту задачу поставил перед собой английский изобретатель Эрик Дональд. Ему удалось найти простое и остроумное решение: он предложил высверливать болты и образовавшуюся полость заполнять яркой краской. Как только в таком болте образуется маленькая трещинка, жидкость начнет просачиваться наружу и тем самым своевременно сигнализировать о возникшей опасности.

За свои "кровоточащие" болты Дональд был удостоен золотой медали Британского института патентодержателей и изобретателей. Метод применим и к другим соединительным элементам: осям, на которых вращаются винты вертолетов, шарнирам, заклепкам и т.д. По мнению специалистов, новинка позволит предотвратить многие катастрофы, в частности авиационные, и спасти тысячи человеческих жизней.


Алмазный сплав

 Американские ученые фирмы «Дюпон» создали композиционный материал, обладающий очень высокой износостойкостью. Никелевая основа нового материала, названного «алмазным сплавом», содержит 30 % порошкообразных синтетических алмазов. Трущиеся детали станков, машин, приборов, покрытые тонким слоем этого композита, примерно в шесть раз долговечнее обычных.


Новая «профессия» ультразвука

Чехословацкие инженеры разработали оригинальное оборудование для непрерывного удаления окалины с поверхности стальных полос и проволоки. Пройдя термическую и химическую обработку, металл поступает в распоряжение ультразвука, который не только ускоряет удаление окалины, но и ухитряется извлечь ее из мельчайших поверхностных пор. Новый метод позволяет заметно повысить качество нержавеющей проволоки, полос трансформаторной стали, лент из различных легированных сталей и сплавов. В пять раз возрастает технологическая скорость движения ленты или проволоки на всех узлах оборудования.


Взрыв в цехе

Если массивная отливка, весящая несколько десятков тонн, оказалась бракованной, то хлопот с ней не оберешься: такого «мастодонта» надо вывезти из цеха («нелегкая это работа – из болота тащить бегеота!»), разрезать на части (что, пожалуй, еще сложней), а затем снова подать к печам. Польские специалисты запатентовали новый метод дробления крупных отливок прямо на месте изготовления с помощью взрыва, точнее серии направленных взрывов малых порций взрывчатых веществ. Важную роль при этом играет ЭВМ, которая рассчитывает, как распределить заряды на отливке. В результате нескольких последовательных взрывов с самогасящейся взрывной волной отливка расчленяется на части.

Разумеется, эти взрывы не причиняют ущерба и оконные стекла в цехе остаются целыми и невредимыми.


Рекордная отливка

Если бы в литейном производстве, как в спорте, регистрировались мировые рекорды, то к их числу несомненно следовало бы отнести недавний успех французских специалистов. Методом вертикального центрифугирования им удалось отлить огромную деталь из нержавеющей стали – массой 15 тонн и диаметром более 4 метров.

Этот способ, которым получают крупные литые детали для авиационной техники, атомных электростанций, нефтехимического оборудования, намного экономичнее, чем традиционные способы. Кроме того, при новом методе заметно упрощаются операции окончательной обработки деталей.


Лавсан с железом

 Полиэфирные волокна, больше известные в нашей стране под названием «лавсан», уже успели неплохо зарекомендовать себя' в технике. Недавно ученые Института физико-органической химии АН БССР сумели придать этому материалу ряд новых ценных свойств.

В макромолекулу полимера они ввели органические вещества, содержащие железо, благодаря чему повысились прочность и термостойкость лавсана. На него теперь можно наносить металлические покрытия. Если лавсановую пленку покрыть тонким слоем алюминия, то материал приобретает красивый бронзовый "загар" и может быть успешно использован для отделки интерьеров зданий.


Полезная ржавчина

Вот уже много тысячелетий ржавчина считается злейшим врагом железа. А нельзя ли зло обратить в добро? Таким вопросом задались ученые Индийского научно-исследовательского электрохимического института.

Им удалось создать любопытную технологию превращения слоя ржавчины в ... защитное покрытие. Для этого на стальное изделие, покрытое густым налетом ржавчины, наносят специальный состав, благодаря которому слой окислов становится прочным "панцирем" черного цвета. Затем на него наносят краску, которая, кстати, держится на этом защитном слое надежнее, чем непосредственно на металлической поверхности. Теперь изделию коррозия не страшна.


Второе рождение пушки

Многие металлические предметы, найденные археологами при раскопках или поднятые с морского дна, имеют, к сожалению, плохой «товарный вид»: за долгие столетия ржавчина оставляет на них неизгладимые следы своей коварной деятельности.

Группа физиков из Портсмута (Великобритания) разработала надежный способ реставрации древних железных предметов. Новинку опробовали на чугунной пушке, которая была поднята с английского фрегата "Мэри Роуз", затонувшего в 1545 году. Обросшую толстым слоем ржавчины пушку поместили в специальную камеру, наполненную водородом с небольшой примесью кислорода. Температуру в камере постепенно подняли до 1500°С. "Пропарясь" в течение пяти дней в этой своеобразной "бане", орудие практически полностью очистилось от ржавчины, которая восстановилась до железа. Дав металлу остыть, экспериментаторы покрыли его слоем прозрачного пластика – поливинилхлорида. Вновь обретя свой первоначальный вид, старинная пушка заняла почетное место в одном из исторических музеев.

Новым методом можно реставрировать любые железные предметы старины: кольчуги, мечи, сельскохозяйственные орудия и многое другое. При этом полимерная броня, как утверждают ученые, будет надежно охранять металл от коррозии по крайней мере 400 лет.


    Ваша оценка произведения:

Популярные книги за неделю