355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Сергей Мусский » 100 великих чудес техники » Текст книги (страница 21)
100 великих чудес техники
  • Текст добавлен: 10 сентября 2016, 12:13

Текст книги "100 великих чудес техники"


Автор книги: Сергей Мусский



сообщить о нарушении

Текущая страница: 21 (всего у книги 42 страниц)

Электромагнитный двигатель

На состоявшейся 16 января 2001 года пресс-конференции в Доме журналиста группа российских конструкторов заявила, что у них есть чертежи и готовые модели уникального электромагнитного двигателя, которому не нужно топливо, поскольку движущую силу он черпает из взаимодействия с магнитным полем Земли. Если станцию «Мир» переведут не на низкую, как задумано, а на более высокую орбиту, то за появляющийся в результате этого маневра полугодовой запас времени конструкторы смогут «за сотню миллионов рублей сделать столько двигателей, сколько нужно для вечного удержания станции на орбите».

Околоземные аппараты, которые летают на самом деле не в открытом космосе, а в верхних слоях атмосферы, из-за сопротивления разреженного воздуха теряют свою скорость и падают на Землю. Чтобы поддерживать их орбиту, нужно постоянно доставлять туда топливо. Для станции «Мир» это означает запуск раз в два месяца транспортного корабля. Проводить такое количество запусков страна давно уже не в состоянии. С другой стороны, Россия связана государственными обязательствами по совместному с США строительству Международной космической станции.

Благодаря электромагнитному двигателю появилась реальная техническая возможность не топить орбитальную космическую станцию «Мир». Реальная скорость деградации материалов «Мира» оказалась значительно меньше расчетной. Специалисты из РКК «Энергия» смело могли продлить ресурс станции еще на 3-4 года. Можно было заменить и электронику. Однако все эти доводы упирались в главное – в стране нет денег на регулярные «грузовики» с топливом.

Однако еще летом 2000 года в РКК «Энергия» был подан проект электромагнитного двигателя от конструктора Алексея Ланюка. Согласно его расчетам, движок способен создать силу тяги, которая компенсировала бы торможение станции из-за сопротивления атмосферы. Вскоре на рассмотрение пришел аналогичный проект от конструктора из НИИ электромеханики Рудольфа Бихмана и тоже затерялся где-то в столах чиновников от космонавтики.

Ланюк и Бихман предлагали двигатель, который создает тягу за счет преобразования электротока, получаемого с солнечных батарей космического корабля, в направленное магнитное поле. Такого двигателя еще не было ни в космосе, ни на земле, ни у нас, ни у американцев.

Для ведущего научного сотрудника НИИ электромеханики Рудольфа Бихмана управление космическими аппаратами является его основной специальностью. Ведь НИИ электромеханики – участник программы создания метеорологических спутников серии «Метеор».

Как пишет в газете «Коммерсант» Иван Шварц: «Схема работы двигателя станет понятна каждому, кто способен вспомнить школьный курс физики. Вокруг Земли существует постоянное магнитное поле. В полном соответствии с теорией на изолированный разомкнутый проводник с током в магнитном поле действует сила (сила Ампера, направление которой определяется правилом левой руки). Но изолированных разомкнутых проводников в природе не существует. Существуют только замкнутые проводники (контуры), на половинки которых действуют взаимно уравновешивающие силы. Поэтому считается, что замкнутый проводник в магнитном поле не может создать линейной силы (тяги). Однако ситуация может измениться, если внести в эту схему некоторые важные изменения. Во всяком случае, так считает изобретатель Бихман.

Основная идея изобретения состоит в следующем: чтобы создать нужную тягу, необходимо изолировать одну половинку замкнутого проводника (контура) от магнитного поля. В этом случае на одну часть проводника (неизолированную от магнитного поля Земли) будет действовать сила Ампера, а в изолированной от магнитного поля половине никакой силы не возникнет. Таким образом, одна из двух сил останется неуравновешенной – она-то и создаст тягу. Для создания тяги на спутнике достаточно разместить замкнутый проводник, одна половинка которого будет изолирована от магнитного поля Земли. Пропуская через проводник электрический ток, можно создать такую же силу (тягу), какую создают обычные ракетные двигатели. Только если время работы обычного ракетного двигателя ограничено запасом топлива, то новый электрический двигатель может работать сколь угодно долго, была бы только электроэнергия и внешнее магнитное поле. Запас электроэнергии можно всегда пополнить от солнечных батарей, ну а уж бесплатного магнитного поля Земли на наш век хватит.

Тяга у такого двигателя небольшая, но в космосе большего и не требуется. Для изменения орбиты спутника достаточно очень маленькой тяги, лишь бы двигатель мог ее создавать в течение длительного времени – порядка часов и суток».

Еще в 1999 году Рудольфу Бихману удалось официально зарегистрировать свое изобретение. Революционная идея нового космического двигателя не вызвала большого энтузиазма у коллег. Напротив, вызвала большие сомнения, поскольку в учебниках написано, что замкнутый контур в магнитном поле силу создать не может. А раз так, то о каком двигателе можно говорить. Кроме того, смущает простота: моток проволоки, половина которого упрятана в непрозрачную для магнитного поля трубку. Почему, если все так просто, его не изобрели гораздо раньше, говорят скептики.

Недоверие коллег, однако, совсем не смущает Бихмана. «Когда я первым сделал систему ориентации для спутников «Метеор» с использованием замкнутых контуров с током, – говорит он, – то все специалисты тоже говорили – ничего не выйдет. А сейчас это серийные двигатели, и они летают в космосе уже тридцать лет».

Для убеждения неверующих Рудольф Бихман соорудил демонстрационную установку. Эксперимент доказал его правоту. «Действующую модель двигателя экспериментаторы подвесили на проволоке как маятник и замеряли амплитуду колебаний, – пишет Шварц. – Если амплитуда увеличивается, значит, двигатель создал тягу вдоль вектора скорости. Если же амплитуда колебаний уменьшается, значит, двигатель создает тягу против скорости. Эксперимент показал наличие тяги, которая к тому же изменялась при изменении направления тока. О чем и был составлен протокол.

В этом опыте двигатель с потребляемой мощностью 90 ватт и массой 10 килограммов создавал силу около 5 граммов. Для сравнения: существующие отечественные электроракетные двигатели с тягой 15 граммов имеют массу 40 килограммов, потребляют мощность 450 ватт и, главное, расходуют невосполнимый запас рабочего тела в темпе 70 миллиграммов в секунду. Время непрерывной работы такого традиционного двигателя – всего несколько месяцев».

Коллеги Бихмана, присутствовавшие при опыте, старший научный сотрудник Алла Куриленко и ведущий научный сотрудник Павел Олейник подтвердили, что «принимали участие в испытаниях макетного образца двигателя, и с удивлением констатировали наличие развиваемой двигателем линейной силы за счет взаимодействия с магнитным полем Земли».

Тем не менее осторожное отношение начальства к изобретению Рудольфа Бихмана не изменилось. Его можно понять – не каждый день делаются «изобретения века», да еще совершенно индивидуально и в инициативном порядке. Скорее всего так и будет, пока работоспособность двигателя не подтвердится многократно и он не пройдет испытания уже в реальном полете.

«Мир» все же утопили. Но, в конце концов, предложенный двигатель может оказаться суперполезным для других космических аппаратов.

ВООРУЖЕНИЕ

Автомат Калашникова

В 1997 году весь мир отмечал необычный юбилей – пятидесятилетие автомата Калашникова. Автоматы этой системы состоят на вооружении в армиях 55 государств, выпускаются промышленностью 12 стран. В ряде государств производятся собственные образцы этого автомата.

Число же партизанских формирований, использующих автомат Калашникова в разных уголках земного шара, не поддается учету. Такой популярности не знала ни одна модель стрелкового оружия, за исключением, пожалуй, магазинной винтовки Маузера.

Михаил Тимофеевич Калашников родился в 1919 году в селе Курья (ныне Алтайский край). В 1938 году его призвали в Красную армию, где он стал механиком-водителем танка. На службе впервые проявились способности будущего конструктора: в 1940 году он создал прибор учета моторесурсов танка. Осенью следующего, 1941 года Калашников, направленный после тяжелого ранения на лечение в тыл, разработал проект пистолета-пулемета. Изобретателя откомандировали на научно-испытательный полигон стрелкового и минометного оружия. Так началась его профессиональная конструкторская деятельность.

После принятия в 1943 году на вооружение 7,62-миллиметрового промежуточного патрона конструкции Н.М. Елизарова и Б.В. Семина началась разработка новой системы стрелкового вооружения под этот патрон. Для замены пистолетов-пулеметов было создано новое индивидуальное автоматическое оружие – автомат со сменным магазином и переключателем режимов огня. Магазинный карабин должен был сменить самозарядный карабин с постоянным магазином, а ручной пулемет винтовочного калибра – облегченный ручной пулемет с магазинным или ленточным питанием. Работы над автоматом были начаты А.И. Судаевым, создавшим в 1944 году ряд оригинальных конструкций, затем подключились другие конструкторы. В 1946 году представил свой образец конструктор Михаил Калашников. Разработанный им автомат успешно выдержал испытания и превзошел по совокупности показателей конструкции В.А. Дегтярева, С.Г. Симонова, Н.В. Рукавишникова, К.А. Барышева и других. В конце 1940-х годов автомат был принят на вооружение под обозначением АК-47 (автомат Калашникова образца 1947 года), или просто АК.

В своей книге «От чужого порога до Спасских ворот» Михаил Тимофеевич Калашников так пишет о том времени:

«Первую партию АК-47 в Ижевске изготовил мотозавод. Теперь всю документацию передали на машиностроительный, начавший выпускать оружие еще в начале прошлого века, он тогда так и назывался: Ижевский оружейный…

…Потихоньку собиралась команда, о которой я так тогда мечтал. Сколько бы можно сказать о каждом! Вдохновенный, не побоюсь этого слова, Володя Крупин, Владимир Васильевич, блестящий инженер, часто зажигавший даже тех, кто давно и, казалось, безнадежно "отсырел"; самовитый – часто мы его тогда и в «кондовости» обвиняли – Алексей Дмитриевич Крякушин, у которого на все было собственное мнение, отстаивал он его с необычайной истовостью; пришедший чуть позже Валерий Александрович Харьков, наша "ходячая энциклопедия"; неторопливый, обстоятельный и надежный Виталий Николаевич Пушин. Иногда ловишь себя на том, что грех книгу так густо «заселять» героями тех теперь уже достаточно давних дней… Неужели опять, думаешь, надо тесниться, как в рабочем общежитии, как при заводской гостиничке, как в крошечных квартирках, иметь которые было – верх счастья и верх удачи…

…И бывало, все вместе оставались за полночь, но часто я отправлял всех пораньше, и тогда вновь компанию мне составлял бронзовый Андрей Федорович Дерябин… Садился на краю набережной, если дело бывало летом, подолгу глядел на водную гладь, под которой покоился двуглавый орел, снятый с башни над заводским корпусом и торжественно утопленный революционными рабочими в 19-м году.

…Мне представлялось, как из заводских ворот, четко отбивая шаг, появится дивизия, пойдет, отмахивая правой, мимо высокого постамента с бронзовым Дерябиным, и на плече у каждого солдата будет отливать вороненой сталью АК-47… И Дерябин первый примет этот никому другому невидимый парад…

…Осталась позади доработка АК-47 по замечаниям, полученным во время войсковых испытаний. Далось это нелегко и часто не потому, что мы не могли найти решений технических. Бывало, кое-кто из слишком осторожных специалистов не разрешал экспериментировать с тем, что было уже "решено и подписано". И тогда своего приходилось добиваться не только убеждением и настойчивостью, но, случалось, и хитростью.

Наши труды увенчались успехом – слаженный коллектив старейшего оружейного завода в сжатые сроки начал выпуск автоматов АК-47 на высоком, по тому времени, техническом уровне.

В начале 1949 года за свой труд я получил Сталинскую премию. Узнал об этом из газеты. Я и сейчас хорошо помню, с каким волнением читал эти строки: "Сталинская премия первой степени присуждается старшему сержанту Калашникову Михаилу Тимофеевичу за разработку образца вооружения". Такой же премии были удостоены и работы моих коллег-оружейников. Дегтярева и Симонова – за новые образцы стрелкового оружия.

На меня обрушился поток поздравлений – от родственников, друзей, товарищей по работе, коллег. Многих удивляла молодость и малый чин конструктора, удостоенного столь высокой награды. Радость мою разделили все те, кто помогал мне, кто болел за меня, кто "участвовал в становлении конструктора-оружейника". Премия моя была признанием не только моего труда, но и их тоже. Все это говорило о том, что под многолетним трудом подведена определенная черта. Теперь передо мной уже не ставился вопрос: "Что дальше? Как дальше?" Дорога была ясна.

В том же году было оформлено мое увольнение в запас.

Ижевск стал постоянным местом жительства для всей моей семьи. Смена мест проживания была для меня раньше просто сменой комнат в гостиницах или общежитиях. А теперь мне надо было перевозить на новое место и всю свою семью, до этого жившую на подмосковном полигоне, надо обзаводиться домом и хозяйством: в то время у нас было уже две дочери. Жена взяла на себя все заботы по обустройству на новом месте. На ее же плечи легли все заботы по воспитанию детей, по хозяйству, так как я до глубокой ночи пропадал на работе, захваченный новыми проблемами».

Тщательный расчет, сравнительная простота и своеобразное изящество схемы с широким применением принципа многофункциональности деталей обусловили высокую надежность оружия в любых условиях. Немало способствовал этому тщательный подбор материалов, в частности, оружейной стали для изготовления ствола и наиболее ответственных деталей оружия. Живучесть ствола автомата составляет 15-18 тысяч выстрелов. Автомат компактен, удобен при стрельбе и переноске. Немаловажное значение имеет простота разборки автомата и ухода за ним.

Автоматика АК действует за счет отвода пороховых газов через боковое отверстие в стенке канала ствола. Газовый поршень со штоком жестко связан с затворной рамой. После отхода затворной рамы под действием давления газов на нужное расстояние отработанные газы выходят в атмосферу через отверстия в газовой трубке. Запирание канала ствола осуществляется поворотом затвора, при этом два боевых выступа затвора заходят в соответствующие пазы ствольной коробки. Поворот затвора производится скосом затворной рамы. Затворная рама является ведущим звеном автоматики: она задает направление движения подвижных частей, воспринимает большинство ударных нагрузок, в продольном канале затворной рамы помещена возвратная пружина.

Рукоятка перезаряжания расположена справа и выполнена заодно с затворной рамой. При отпирании затвора движущейся назад затворной рамой происходит предварительное смещение находящейся в патроннике гильзы. Это способствует сбросу давления в патроннике и предотвращает разрыв гильзы при последующем извлечении даже при очень сильном загрязнении патронника. Выброс стреляной гильзы вправо через окно ствольной коробки обеспечивают установленный на затворе подпружиненный выбрасыватель и жесткий отражатель ствольной коробки. «Вывешенное» положение подвижных деталей в ствольной коробке со сравнительно большими зазорами обеспечило надежную работу системы при сильной загрязненности.

Ударный механизм – куркового типа с вращающимся на оси курком и П-образной боевой пружиной, выполненной из двойной витой проволоки. Спусковой механизм позволяет вести непрерывный и одиночный огонь.

Все детали автоматики и ударно-спускового механизма компактно собраны в ствольной коробке, играющей, таким образом, роль и затворной коробки, и корпуса ударно-спускового механизма. Первые партии АК-47 имели, в соответствии с заданием, штампованную ствольную коробку с вкладышем ствола из поковки. Однако технология не позволила тогда достичь требуемой жесткости коробки, и в серийном производстве холодную штамповку заменили фрезерованием коробки из цельной поковки, что вызвало увеличение веса оружия.

Автомат имеет традиционный секторный прицел с расположением прицельной колодки в средней части оружия и мушки у дульной части ствола на треугольном основании. Мушка, регулируемая по высоте, с боков укрыта «крыльями стойки», прицел насечен до 800 метров.

Для удобства удержания служат пистолетная рукоятка, цевье и ствольная накладка, изготовленные из дерева. АК-47 выпускался с постоянным деревянным или складным (вперед и вниз) металлическим (АКС-47 или АКС) прикладом. АКС поставлялся на вооружение воздушно-десантных и специальных войск. В процессе производства деревянные детали из березовых заготовок постепенно были заменены: приклад стали выполнять из фанерной плиты, ствольную накладку – из клееного шпона, пистолетную рукоятку – из пластмассы. Небольшая конструкторская группа Калашникова совместно с технологами Ижевского завода несколько снизила вес автомата за счет внедрения новых марок сталей.

К автомату примыкался плоский штык с длиной клинка 200 миллиметров и шириной 22 миллиметра.

Огонь из автомата может вестись пулями нескольких типов: обыкновенной, трассирующей, бронебойно-зажигательной и зажигательной. Магазин стальной, коробчатый, секторной формы с шахматным расположением 30 патронов.

В начале 1950-х годов началась разработка унифицированной системы стрелкового вооружения на базе единого образца. В качестве кандидатов на базовый образец рассматривались АК, СКС и РПД. Победителем вышла схема Калашникова. После принятия АКМ и РПК сформировалось 7,62-миллиметровое семейство оружия: на базе основных узлов и деталей изготавливались автоматы АКМ, АКМС, АКМН и АКМСН, ручные пулеметы РПК, РПКС, РПКН и РПКСН.

В начале 1970-х годов завершилась разработка 5,45-миллиметрового патрона. Вскоре под него была создана новая модификация автомата – АК-74. Все деревянные части заменили пластмассовыми. Параллельно выпускался АКС-74 со складным металлическим прикладом треугольной формы. Чуть позже был сконструирован укороченный АКС-74У.

В начале 1990-х годов появилась новая модификация автомата – АК-74М. Позже на ее основе была разработана так называемая сотая серия автоматов – АК-101, – 102, – 103, – 105, – 106 – различных калибров. Модели охотничьих самозарядных карабинов «Сайга» и карабинов «Вепрь» созданы соответственно на основе АКМ и ручного пулемета Калашникова.

Главными производителями автоматов системы Калашникова стали Ижевский и Вятско-Полянский машиностроительные заводы.

Отличную репутацию АК снискал благодаря своей надежности, возможности стрелять практически в любых условиях, даже если автомат засорен песком или в него попала вода. Сейчас в мире появилось оружие более легкое, меткое, удобное по сравнению с автоматом АК – и все же не столь надежное. Не отличается оно и тем уникальным сочетанием высоких боевых качеств, простоты освоения и обслуживания, экономичной технологии производства, которое характерно для автомата Калашникова. Недаром военные говорят, что АК – это оружие, «созданное солдатом для солдат».

В 1995 году на вооружение Российской армии начали поступать новые автоматы – автоматы ижевского конструктора Никонова АН-94, или «Абакан». Именно этот автомат постепенно будет вытеснять из арсеналов некоторых частей всемирно известный «Калашников». Главное преимущество нового оружия – высокая точность стрельбы, кучность.

Внешне «Абакан» во многом похож на АК-74. Автомат Никонова стреляет стандартными патронами калибра 5,45 миллиметров (высота гильзы – 39 миллиметров).

«"Абакан" снаряжен знакомым, изогнутым вперед рожком магазина, «пистолетной» рукояткой, расположенной позади магазина, – пишет в журнале «Калейдоскоп» Вадим Пешков. – Но на этом явное сходство кончается. Конструктор Геннадий Никонов отказался от «калашниковской» открытой верхней газоотводной трубки; сделал оружие более современным по дизайну; ввел третий режим огня: «Абакан» может стрелять одиночными очередями по два выстрела и автоматически.

Двухпульная очередь «Абакана» объясняется, конечно, не столько стремлением к экономии боеприпасов, сколько сверхспособностью нового автомата выстреливать первые две пули со скоростью 1800 выстрелов в минуту и без отдачи (!). В этом, собственно, главный секрет конструкции. Короткими очередями можно точно бить в цель, даже не прижимая к плечу приклада. Кстати, после первых двух молниеносных пуль автомат переходит на другой режим скорострельности – на нормальный, "калашниковский", – 10 выстрелов в секунду.

В условиях современного боя, как показала практика, главная цель малокалиберного автоматического оружия – поразить обнаруженного неприятеля с первого выстрела, а самому тотчас укрыться. Строчить некогда. Первые две-три пули из «никонова» полетят туда, куда прицелились. Хороший рядовой стрелок с «Абаканом» в руках превращается в настоящего снайпера. Дальнобойность АН-94 – 1000 метров.

Все, кто держал новый автомат в руках, утверждают, что он гораздо легче АК-74. При беспрерывной стрельбе по мишени демонстрирует высокую кучность. Тридцать пуль со ста метров ложатся рядом в круг диаметром 15 сантиметров. И выстрел автомата Никонова тише, чем АК-74. Для снайперского оружия это немаловажно (враг не должен слышать, откуда стреляют)».

Западные специалисты уже признали автомат Никонова одним из самых современных видов боевого индивидуального оружия, а западные конструкторы пытаются придать эффект «первых двух выстрелов без отдачи» новым натовским автоматам.

Вместе с тем «Абакан» более сложное по конструкции оружие. Возможно, его ждет судьба оружия специального назначения. Массовым оружием еще много лет будет оставаться АК-74. Хотя не исключено, что военные реформы в армии и ее сокращение подтолкнут военных к более быстрому перевооружению.

Помимо «Калашникова» и «никонова» есть еще один, о котором стоит рассказать – это автомат для подводной стрельбы Данилова. Первый в мире автомат для подводной стрельбы (АПС) был изобретен Владимиром Симоновым. Его приняли на вооружение в 1976 году. Тульский оружейный завод производит сегодня его небольшими партиями и продает в основном за рубеж.

«А между тем уже существует образец другого подводного оружия, – пишет в газете «Труд-7» Ольга Филатова, – не известного даже многим специалистам, который существенно превосходит Симоновский АПС по всем параметрам: оружие двух сред – разработка никому не известного оружейника, доктора технических наук, профессора Тульского артиллерийского инженерного института Юрия Данилова.

Симоновский автомат предназначен исключительно для подводной стрельбы. На суше же он не выдерживает нагрузки мощного патрона и разрушается после двухсот выстрелов. А из автомата Данилова можно с равным успехом стрелять и в воде и в воздухе. Верхний предел живучести этого оружия – 15 тысяч выстрелов. Это показали полигонные испытания, которые недавно проводились в Санкт-Петербурге. Там же подтвердилось, что "стреляющий Данилов" по ряду параметров превосходит автомат Калашникова.

"Данилов" под водой стреляет специальными патронами-дротиками (26 патронов в магазине). На суше к нему присоединяется стандартный магазин "Калашникова". Причем смену магазина можно произвести под водой. Самое главное в изобретении, как считает сам полковник Данилов, то, что конструкцию удалось избавить от газового пузыря, возникающего в результате выстрела и таким образом позволяющего обнаружить место, где скрывается водолаз-стрелок. Кроме того, в отличие от АПС, к которому невозможно присоединить какое-либо приспособление (просто нет никаких посадочных мест), автомат Данилова совместим с любой оптикой, можно даже прикрепить подствольный гранатомет, штык-нож, глушитель…»

Однако изобретение до сих пор не запущено в производство.

«Я неоднократно разговаривал с профессионалами, – говорит Данилов – Не хочу называть их фамилий. По их логике получается, что такого быть не должно, чтобы человек, не работая на оружейном производстве, занимался разработками.

Я доказал им, что мой автомат превосходит другие, и они были вынуждены согласиться с этим. Но свой образец они продают за границу, их организация живет за счет этого. Моя разработка как бы "переходит дорогу", поэтому у коллег и нет особого желания реально оценить мое изобретение».


    Ваша оценка произведения:

Популярные книги за неделю