355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Семен Блинкин » В мире незримого » Текст книги (страница 6)
В мире незримого
  • Текст добавлен: 12 октября 2016, 04:40

Текст книги "В мире незримого"


Автор книги: Семен Блинкин


Жанры:

   

Медицина

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 9 страниц)

Пути и методы ослабления вируса кори

Попадая в организм человека через носоглотку и верхние дыхательные пути, вирус кори проникает в кровь, распространяется по организму и вызывает общее – инфекционное заболевание и интоксикацию (отравление).

Вирулентность коревого вируса заключается также в поражении слизистой оболочки дыхательных путей, полости рта и глаз, а также кожи. В результате возникает воспалительный процесс слизистых оболочек и появляется коревая сыпь на лице, туловище, конечностях. Корь опасна своими осложнениями и, помимо этого, снижает иммунитет к другим инфекциям. Вот эти проявления, возникающие в организме под влиянием вирулентности коревого вируса, надо устранить, лишив его свойства поражать организм, но создавать надежную невосприимчивость к кори.

Начались поиски. Они проводились в разных странах и привели к положительным результатам. В Англии вирусологом Дж. Эндерсом был получен ослабленный вирус под названием «эдмонстон». Исходный вирулентный вирус был выделен из крови больного. Для того чтобы вирус ослабить, пришлось провести 24 последовательных пассажа в культуре тканей почек человека, 28 пассажей в культуре клеток амниона[12]12
  Амнион – одна из оболочек зародышей высших позвоночных животных и человека. По-гречески «амнион» – околозародышевый пузырь.


[Закрыть]
человека, 12 пассажей в развивающихся куриных эмбрионах и еще 14 пассажей в первичной культуре куриного зародыша при температуре 37 °C, В результате вирус был ослаблен, но при введении в организм вызывал сильные реакции.

Исследования продолжались. Ученые изменяли условия экспериментов, увеличивали количество пассажей, понижали температуру, изучали другие тканевые культуры. Наконец, им удалось добиться ослабления вируса и снижения реактогенности (т. е. уменьшить реакцию при введении такого вируса в организм), но при этом уменьшалась способность вируса вызывать иммунитет. Над такими результатами стоило призадуматься. Но это не расхолаживало исследователей.

В нашей стране поисками живой вакцины против кори занимались академики АМН СССР П. Г. Сергиев, В. И. Иоффе, В. М. Жданов, А. А. Смородинцев, М. П. Чумаков и другие ученые.

Заглянем в творческие лаборатории прославленных вирусологов А. А. Смородинцева и М. П. Чумакова. Каждый из них шел к общей цели своими путями.

А. А. Смородинцев со своими сотрудниками получил в начале ослабленный вирус кори Л-4 (Ленинград-4). Для ослабления вирулентности пришлось вирус пассировать около 30 раз через культуры почечной ткани и ткани амниона человека, а затем еще более 20 раз через культуры фибробластов[13]13
  Фибробласты – от латинского слова «фибра» – волокно и греческого «бласте» – росток. Основные клеточные элементы соедини тельной ткани человека и животных.


[Закрыть]
куриных зародышей. Повторялась история с вирусом Эндерса «эдмонстон». Вакцина Л-4 оказалась высокореактогенна, понадобилось вводить ее детям под защитой антител противокоревого гамма-глобулина. А. А. Смородинцев настойчиво ищет новых путей. Создается новый препарат Л-16, более отвечающий требованиям, предъявляемым к живой вакцине. Он оказался менее реактогенным и создавал хороший иммунитет. Успеху ученого содействовала новая методика пассажа через тканевую культуру почек морских свинок.

Получение вакцины Л-16 было большим успехом. Новые варианты Л-4-25 и Л-4-30 получены и изучаются. Вакцина Л-16 вошла в жизнь.

Академик М. П. Чумаков со своим коллективом создает свою живую вакцину-ЭШЧ («эдмонстон» – Шварц-Чумаков), используя пассаж вируса на культуре почечной ткани обезьяны. Наблюдения показали, что вакцина, вызывая незначительные реакции, создает хороший иммунитет против кори у детей. Будущее и проверка в жизни покажут окончательные результаты.

Но нельзя ли вместо тканевых культур животных культивировать вирус кори на человеческих клетках? Не будут ли живые вакцины, полученные таким путем, более безопасными и лишенными побочных действий, связанных с применением чужеродных клеток и тканей? Идея прекрасная, и первые результаты уже наметились в исследованиях Копровского в США, Е. М. Доссер, О. Г. Анджапаридзе со своими коллективами в СССР. Иммунология на верном пути.

Есть надежда, что вакцинация против кори создаст длительный, а возможно, и пожизненный иммунитет. Наука окончательно решает судьбу кори. Корь в недалеком будущем будет побеждена.

Несколько слов о вирусах и вирусе гриппа

Вирусологи уже хорошо видели многие вирусы, не только видели, но и научились управлять ими, а тайн становилось все больше и больше. Едва представив себе величину этих ультрамикроскопических частиц, пришлось заняться проблемой их физиологии и биохимии, а на этой основе изучением изменчивости вирусов. Это оказалось важным и для теории, и для практики. Достаточно одного примера, чтобы представить себе это. Вирус гриппа! На протяжении ряда десятилетий одна волна эпидемий гриппа следует за другой. Возбудителя – гриппозный вирус сравнительно легко «брали в плен», получали его в чистой культуре, тщательно изучали. И вот оказалось, что вирус гриппа своеобразный хамелеон, с каждой эпидемией он менял свои важнейшие свойства. Почему же они изменялись. Какое значение имела, изменчивость вируса гриппа? Это оказалось столь важным, что в вирусологии появились новые представления об особенностях вирусов, а на практике стало труднее бороться с гриппом.

В ряде стран возникали эпидемии гриппа, переболело множество людей. В результате люди приобрели иммунитет, в их организме образовались защитные вещества – антитела против вируса гриппа. За одной волной гриппа следовала другая. Стали изучать эту эпидемию, выделять вирус, и выяснились важные обстоятельства.

Многие из тех людей, которые в предыдущую эпидемию переболели гриппом, заболели снова. А как же иммунитет? Почему он не защитил? Ответ ученые нашли в изменении свойств вируса. Вирус, получивший наименование в прошлую эпидемию типа А, так изменил свои свойства, что его пришлось для различия назвать типом A1, а самое главное, что антитела против типа А не действовали на тип A1 и не защищали против него. Изменчивость же вируса объяснялась, в частности, тем, что вирус тина А, попав в иммунный организм человека, изменился под воздействием его иммунных сил.

В последующие эпидемии гриппа вирусы снова изменялись, и вот стали известны типы А2 (азиатский), разновидность его вирус А2-Гонконг. Известен также вирус гриппа В. Все это осложнило лечение и профилактику гриппа. К примеру, вакцины или сыворотки, созданные против типа А, оказались неэффективными против типа A1 и А2, а тем более против типа В. Вот с какими трудностями встретились вирусологи и какие новые проблемы возникли в вирусологии и здравоохранении.

Вернемся к вирусу-хамелеону, к его изменчивости. Что же меняется в вирусах гриппа? Ученые отвечают: изменились антигенные свойства.

Антиген – это чуждое для организма вещество, особенно белковое, способное вызвать в организме человека или животных образование антител против себя, притом строго специфической направленности. В наших примерах это означает, что антитела против типа А будут действовать только на вирус гриппа типа А, а не на другие.

Итак, изменяются антигенные свойства вирусов. Для того чтобы понять сущность этих свойств, пришлось много поработать вирусологам и биохимикам. Что же они узнали? Оказалось, что вирусы состоят из белков и нуклеиновых кислот. Теперь стало понятным, с чем связаны антигенные свойства вирусов и что может подвергаться изменчивости.

Ученые узнали также, что среди вирусов можно найти еще более сложно устроенные вирусы, которые содержат также ферменты, липиды (жироподобные вещества) и углеводы. Важнейшие все же – белки и нуклеиновые кислоты. Нуклеиновая кислота является как бы центром вирусной частички и окружена белковой оболочкой. Нуклеиновые кислоты играют в жизнедеятельности вирусов важную роль. Если их разрушить, вирусы перестанут размножаться. РНК и ДНК (рибонуклеиновая и дезоксирибонуклеиновая кислоты) обусловливают передачу наследственных признаков и свойств.

Когда удалось расчленить вирусную частичку и отделить белковую часть вируса от нуклеиновых кислот, выяснилось, что носителем болезнетворности являются также нуклеиновые кислоты. Нет, это не фантастика, а совершенно реальные достижения вирусологии, биохимии и физико-химии. Для этого ученым пришлось поставить такие «простые» опыты. Выжали, например, из тонны листьев табака, пораженных мозаичной болезнью, сок, а из него получили немного кристаллов. И тогда только из полученных кристаллов смогли выделить вирусный белок и нуклеиновые кислоты. С какой благодарностью ученые снова вспоминали Д. И. Ивановского и Стэнли и замечательные исследования о живых вирусных кристаллах. Как все это помогло в раскрытии глубоких тайн вирусов, их физиологических и биохимических свойств и изменчивости!

* * *

Не успели ученые понять свойства вирусов-хамелеонов, как в вирусологии появилось новое понятие – «химеры». Выдающиеся достижения вирусологии в этой области являются заслугой группы советских ученых Института вирусологии имени Д. И. Ивановского. Но раньше, чем рассказывать об этом и раскрыть новую страницу вирусологии, заглянем в словари.

Химера… Это слово встречается и в древнегреческой мифологии, и в современной биологии, и в литературе.

В мифологии химерой называли чудовище с львиной пастью, змеиным хвостом и козьим туловищем. В биологии химерой принято называть организм, получившийся в результате естественного и искусственного сращения тканей, принадлежащих разным организмам. Что же касается литературного термина, то словом «химера» обычно называют несбыточную мечту, неосуществимую фантазию. Вдумаемся в эти образные понятия и тогда лучше; поймем, какие химеры получили вирусологи и какой смысл они вкладывали в это слово.

Начнем издалека. Вирусы размножаются только внутриклеточно. Раскрытие сущности этого процесса было грандиозным достижением в вирусологи, учитывая размеры вируса и клетки, а точнее ее ядра. Вторжение в эти объекты наблюдения могло казаться поистине химерой с точки зрения фантастичности экспериментов, о которых ученые мечтали как о чем-то несбыточном. Но мечты сбылись. Химическая структура вируса раскрыта. Наблюдения показали, что, проникая в чувствительную клетку, он «сбрасывает» с себя белковую оболочку, а нуклеиновая кислота внутри ядра начинает в нем и за его счет размножаться.

В вирусологии этот процесс принято называть воспроизводством вирусного потомства. Клетка-«хозяин» разрушается и гибнет, а много новых частичек вируса выходит наружу уже «одетыми» в белковую оболочку, как бы «одежду», которая вне клетки служит вирусу защитой. Так в дальнейшем, но уже в геометрической прогрессии идут взаимоотношения «вирус – клетка», например, при заболевании. Конечно, в этот процесс вовлекаются: лечение, условия внешней среды, индивидуальная реактивность организма и его защитные силы.

Остановимся на образовании защитных веществ, так называемых вирулицидных антител, способных губительно действовать на вирусы. Но почему же антитела действуют не на все вирусы, выделенные из организма? Доказано, что при размножении вирусов в клетке организма, помимо типичных вирусов, образуются «гибриды». Они тоже состоят из белка и нуклеиновых кислот. Нуклеиновые кислоты сохраняли инфекционные свойства, но белки оказались нечувствительными к вирулицидному действию антител. Такие гибриды назвали псевдовирусами, а так как они образовались из типичного вируса и клетки-«хозяина», их назвали химерами. Завеса тайны над тем, почему некоторая часть вирусов не поддавалась действию антител иммунных сывороток, была снята. Это большое достижение вирусологии было важным для понимания закономерностей биологического синтеза вирусов, а также для практических задач эффективного воздействия на них.

Исследования, проведенные в Институте имени Д. И. Ивановского академиком АМН СССР В. М. Ждановым, профессором Ф. И. Ершовым и кандидатом медицинских наук Л. В. Урываевым, признаны Комитетом по делам изобретений и открытий при Совете Министров СССР крупным научным открытием.

Глава IV. Иммунология шагает в завтра

Метод определяет прогресс науки.

И. П. Павлов


Новые методы, новые вакцины

Поиски методов получения новых живых вакцин проводятся на основе современных научных данных об изменчивости микроорганизмов. Раскрывая тончайшее строение и химический состав микробной клетки и вирусной частички, изучая их физиологию и биохимические свойства, выясняя роль и значение рибонуклеиновой и дезоксирибонуклеиновой кислот (РНК и ДНК), ученые раскрыли тайны передачи наследственных свойств микроорганизмов.

Генетика микроорганизмов за последние десятилетия достигла колоссальных успехов, имеющих огромное теоретическое и вместе с тем практическое значение. Для получения полноценных культур микроорганизмов в производстве вакцин открылись новые перспективы.

Направление и характер исследований по генетике микроорганизмов, как пишет академик В. Д. Тимаков, существенным образом изменились после того, как Эвери Мак-Леод, Мак-Карти установили, что причиной феномена трансформации пневмококков, который наблюдал Грифит, является ДНК. Эти исследования явились новым революционизирующим этапом в изучении закономерностей наследственности и изменчивости, роли нуклеиновых кислот, их структуры и функции, в познании природы гена и его функционирования, в создании основ молекулярной биологии.

Идеи Пастера и созданные на основе принципов аттенуации микробов живые вакцины против сибирской язвы и бешенства стали историческими вехами в развитии вакцинопрофилактики инфекций.

Шли годы, десятилетия. Иммунология и практика здравоохранения обогатились новыми препаратами, но, несмотря на усиленные поиски иммунологов во всем мире, живых вакцин против холеры, дизентерии и сыпного тифа получить не удавалось. Исследователи столкнулись с трудностями в создании методов ослабления микробов, которые вытекали из своеобразия биологических особенностей возбудителей этих инфекций.

В отношении возбудителей сыпного тифа (риккетсий) и других заболеваний (риккетсиозов) были дополнительные преграды, связанные с трудностями культивирования этих микроорганизмов.

Что же касается дизентерии и холеры, необходимо было искать или создавать такие разновидности возбудителей, которые, вызывая легкие (субклинические) формы инфекции, были бы безопасными для вакцинируемых и окружающих их людей.

Создание живых вакцин против холеры и дизентерии также было весьма трудным из-за обилия видов и типов микробов – возбудителей этих инфекций. Приведем некоторые примеры: в дизентерийной группе существуют бактерии Григорьева-Шига, Флекснера, Зонне, Шмитц-Штуцера и ряд других. Среди холерных: вибрионы азиатской холеры (классические биотипы), вибрионы Эль-Тор, известна группа холероподобных вибрионов. Сложными оказались механизмы возникновения и развития таких заболеваний, как дизентерия и холера, места локализации возбудителей в организме, особенности поражения, в частности в кишечнике.

На этом фоне особенно значительны успехи иммунологов, сумевших преодолеть многочисленные трудности, найти новые методы создания живых вакцин и способы введения их в организм. И хотя новые живые вакцины еще во многом являются достоянием эксперимента, но то, что сегодня имеет большое научно-теоретическое значение, завтра войдет в практику здравоохранения и принесет свои плоды.

Живая вакцина против дизентерии. Возбудители дизентерии попадают в организм через рот с загрязненными ими пищевыми продуктами и водой. Проникая в толстый кишечник, они оседают там, размножаются в клетках слизистой оболочки и вызывают острый воспалительный процесс, сопровождающийся местным кровоизлиянием. Следовательно, дизентерия – это кишечная инфекция, где дизентерийные бактерии ведут себя в толстом кишечнике как внутриклеточные паразиты. Все эти соображения оказались важными для разработки способов вакцинации против дизентерии.

Перед исследователями возникли многие вопросы. Как создавать вакцину? Из каких бактерий? Как иммунизировать? Подкожно вводить вакцину или внутрь через рот? Конечно, иммунитет – это особое состояние всего организма, которое создается многими гуморальными и клеточными факторами защиты, а каково значение местных механизмов защиты, имеющих непосредственное отношение к кишечнику? В последние годы – ученые стали придавать большое значение местным факторам защиты кишечника. Профессор Н. Н. Гинсбург, ссылаясь на мнение ряда советских ученых, пишет: «…способность возбудителя дизентерии к внутриклеточному паразитизму позволила сформулировать новые представления о патогенезе[14]14
  Патогенез – от греческих «патос» (страдание), «генезис» (происхождение), т. е. учение о причинах возникновения и развития болезни.


[Закрыть]
этой инфекции. Изменились соответственно и взгляды на иммунитет при ней: местным механизмам защиты придается теперь первостепенное значение». Исходя из этого укрепились и взгляды известного микробиолога А. М. Безредка, обосновавшего в свое время принцип введения вакцин внутрь через рот. Правда, Безредка создавал свои вакцины из убитых микробов. Более перспективными, сулящими вместе с тем и большую эффективность были бы живые вакцины, и, хотя это несравненно более трудный путь, ученые взялись за осуществление этой идеи.

Прежде всего начались поиски бактерий, из которых можно было бы готовить живую вакцину. Хотя цель была одна – создание живых вакцин, пути и методы ослабления вирулентности дизентерийных бактерий оказались разными. Исследования проводились в СССР, США, Югославии, Румынии.

Остановимся на методах исследования, они введут нас в сложный мир творческих поисков ученых разных стран. Американские ученые, наблюдая за изменчивостью свойств дизентерийных бактерий под влиянием физических и химических воздействий, обратили внимание на то, что один из измененных вариантов потерял способность проникать в клетки слизистой оболочки кишечника у экспериментальных животных, вызывать поражение кишечника и смерть. Иначе говоря, полученная разновидность резко отличалась от исходной («родительской»), которая была вирулентной и вызывала смерть морских свинок. Стали проверять стойкость новых свойств у бактерий, а самое главное, возможность с помощью таких невирулентных бактерий создавать иммунитет.

Опыты, поставленные на морских свинках и обезьянах, дали обнадеживающие результаты. Во-первых, микробы оказались стойко невирулентными; во-вторых, введение через рот морским свинкам и обезьянам создавало иммунитет, защищающий их от заражения вирулентными дизентерийными бактериями, но… Выявилась важная подробность. Иммунитет создавался только против того типа дизентерийных бактерий, из которого состояли вакцины.

Полученные результаты потребовали поисков других вариантов бактерий. Исследования привели к новым успехам. Понадобилось применение лишь новых методов. Как прав был великий русский ученый И. П. Павлов, который говорил, что метод определяет прогресс науки. В чем же заключались новые методы? Ученые на основе достижений генетики[15]15
  Генетика – наука о наследственности организмов и их изменчивости.


[Закрыть]
и, в частности, изучения хромосомного[16]16
  Хромосомы – сложноорганизованные структурные элементы клеточного ядра или ядерных веществ в цитоплазме у микробов, содержащие факторы наследственности – гены.


[Закрыть]
аппарата болезнетворных дизентерийных бактерий и безвредных кишечных палочек путем скрещивания получили микроб-гибрид. И вот при указанном скрещивании дизентерийные бактерии потеряли способность вызывать дизентерию, но оказались в состоянии создавать иммунитет. Опыты на морских свинках и обезьянах доказали это. Выяснилось, что при введении внутрь (через рот) микробы-гибриды проникали в толстый кишечник, вызывая быстро проходившую легкую воспалительную реакцию. Видимо, эта специфическая реакция, вызванная ослабленными дизентерийными бактериями, и создавала невосприимчивость (иммунитет) к дизентерии. Углубленное, изучение этого процесса показало, что в организме иммунизированных обезьян вирулентные дизентерийные бактерии не способны проникать в клетки слизистой оболочки кишечника и вызывать в них поражения.

Это было большим успехом иммунологии, использовавшей новейшие достижения генетики микробов. На строго научную основу были поставлены дальнейшие исследования по получению новых гибридов дизентерийных бактерий. Ведь существует много различных дизентерийных бактерий, а иммунитет нужно создавать против важнейших из них. За последние годы ученые получили гибриды дизентерийных бактерий Флекснера и Зонне. В наше время именно эти представители группы дизентерийных бактерий играют наиболее важную роль в распространении дизентерии. Так были созданы сложные поливакцины («поли» – по-гречески много) из различных вариантов дизентерийных бактерий, показавшие большую эффективность в опытах на обезьянах.

В Советском Союзе и Румынии успешно были проведены опыты культивирования вирулентных дизентерийных культур Флекснера и Зонне на искусственных питательных средах. Из микробов, утративших вирулентность, были приготовлены вакцины в сухом виде и, в частности, в виде драже, которые вводятся через рот. Опыты, проведенные на экспериментальных животных, показали их безвредность и способность вызывать иммунитет.


    Ваша оценка произведения:

Популярные книги за неделю