Текст книги "Книга шифров. Тайная история шифров и их расшифровки"
Автор книги: Саймон Сингх
Жанр:
Культурология
сообщить о нарушении
Текущая страница: 24 (всего у книги 26 страниц)
Квантовые деньги Виснера основывались главным образом на физике фотонов. Как показано на рисунке 73 (а), фотон во время своего движения производит колебания. Все четыре фотона летят в одном направлении, но в каждом случае угол колебаний различен. Угол колебаний называется поляризацией фотона, и лампочкой накаливания создаются фотоны всех поляризаций, что означает, что у части фотонов колебания будут происходить вверх-вниз, у части фотонов – влево-вправо, а у остальных колебания будут происходить при любых углах между этими направлениями. Для простоты предположим, что фотоны обладают только четырьмя возможными поляризациями, которые мы обозначим .
Если на пути фотонов установить фильтр, называющийся поляризационным, то выходящий пучок света будет состоять из фотонов, которые колеблются в одном определенном направлении; другими словами, все фотоны будут иметь одну и ту же поляризацию. Мы можем рассматривать поляризационный фильтр как в некотором роде сито, а фотоны – как спички, беспорядочно рассыпанные по ситу. Спички проскользнут сквозь сито только в том случае, если они располагаются под нужным углом. Любой фотон, поляризованный в том же направлении, что и поляризация поляризационного фильтра, заведомо пройдет через него без изменений, а фотоны, поляризованные в направлении, перпендикулярном фильтру, будут задержаны.
К сожалению, аналогия со спичками не срабатывает, когда мы рассматриваем диагонально поляризованные фотоны, попадающие на поляризационный фильтр с вертикальной поляризацией. Хотя диагонально расположенные спички будут задержаны вертикальным ситом, совсем не обязательно, что это же самое произойдет с диагонально поляризованными фотонами, попадающими на поляризационный фильтр с вертикальной поляризацией. На самом деле, когда диагонально поляризованные фотоны встретятся с поляризационным фильтром с вертикальной поляризацией, то половина из них будет задержана, а половина пройдет через фильтр, причем те, которые пройдут, приобретут вертикальную поляризацию. На рисунке 73 (b) показаны восемь фотонов, попадающих на поляризационный фильтр с вертикальной поляризацией, а на рисунке 73 (с) показано, что через фильтр благополучно прошли только четыре из восьми фотонов. Прошли все вертикально поляризованные фотоны и половина диагонально поляризованных фотонов, а все горизонтально поляризованные фотоны задержаны.
Рис. 73 (а) Хотя колебания фотонов происходят во всех направлениях, мы, для простоты рассмотрения, предполагаем, что имеется только четыре различных направления, как показано на данном рисунке. (b) Лампочка испустила восемь фотонов, которые колеблются в различных направлениях. Говорят, что каждый фотон имеет поляризацию. Фотоны летят к поляризационному фильтру с вертикальной поляризацией, (с) По другую сторону фильтра уцелела только половина фотонов. Вертикально поляризованные фотоны прошли, а горизонтально поляризованные фотоны нет. Прошла половина диагонально поляризованных фотонов, после чего они стали вертикально поляризованными.
Именно такая способность задерживать определенные фотоны и объясняет, каким образом действуют поляроидные солнцезащитные очки. По сути, вы можете рассмотреть влияние поляризационных фильтров, экспериментируя с линзами от поляроидных солнцезащитных очков. Сначала вытащите одну линзу и зажмурьте или прикройте чем-нибудь один глаз, а вторым глазом смотрите через оставшуюся линзу. Не удивительно, что мир выглядит таким темным, ведь линза задерживает множество фотонов, которые иначе попали бы в ваш глаз. В этот момент все фотоны, попавшие в ваш глаз, имеют одну и ту же поляризацию. Затем держите вторую линзу перед линзой, через которую вы смотрите, и медленно вращайте ее. В определенный момент при вращении снятая линза не будет оказывать никакого влияния на количество света, который попадает в ваш глаз, потому что ее ориентация такая же, что и у закрепленной линзы – все фотоны, которые прошли через снятую линзу, пройдут также и через закрепленную линзу. Если теперь вы повернете снятую линзу на 90°, все станет совершенно черным. При таком расположении поляризация снятой линзы перпендикулярна поляризации закрепленной линзы, так что все фотоны, прошедшие через снятую линзу, задерживаются закрепленной линзой. Теперь, если вы повернете снятую линзу на 45°, то окажетесь в промежуточном положении, когда половина фотонов, прошедших через снятую линзу, сумеют пройти и через закрепленную линзу.
Виснер планировал воспользоваться поляризацией фотонов в качестве способа создания долларовых банкнот, которые никогда нельзя будет подделать. Его идея заключалась в том, чтобы в каждой долларовой банкноте было 20 ловушек для фотонов – крошечных устройств, способных захватить и удержать фотон. Он предположил, что банки могли бы использовать четыре поляризационных фильтра, ориентированных четырьмя различными способами (), чтобы заполнить 20 ловушек 20 поляризованными фотонами; причем для каждой банкноты использовалась бы отличная от других последовательность поляризованных фотонов. К примеру, на рисунке 74 показана банкнота со следующей поляризационной последовательностью (). Хотя на рисунке 74 эти поляризации показаны в явном виде, но в действительности они будут скрыты от взора. На каждой банкноте отпечатан также обычный номер серии – В2801695Е для долларовой банкноты, показанной на рисунке. Банк-эмитент может идентифицировать каждую долларовую банкноту в соответствии с ее поляризационной последовательностью и отпечатанным номером серии и составить список номеров серий и соответствующих поляризационных последовательностей.
Теперь фальшивомонетчик сталкивается с проблемой: он не может просто подделать долларовую банкноту с произвольным номером серии и случайной поляризационной последовательностью в ловушках для фотонов, поскольку такой пары в банковском списке нет, и банк обнаружит, что эта долларовая банкнота является фальшивой. Чтобы подделка была качественной, фальшивомонетчик должен в качестве образца использовать подлинную банкноту, каким-то образом измерить его 20 поляризаций, а затем сделать копию долларовой банкноты, взяв за образец номер серии и соответствующим образом заполнив ловушки для фотонов. Однако измерение поляризации фотонов является исключительно сложной задачей, и если фальшивомонетчик не сможет точно измерить их в подлинной банкноте-образце, то он не смеет надеяться сделать копию.
Чтобы понять всю сложность измерения поляризации фотонов, нам необходимо выяснить, как мы собираемся его выполнять. Единственный способ выяснить что-либо о поляризации фотона – это воспользоваться поляризационным фильтром. Чтобы измерить поляризацию фотона в определенной ловушке для фотонов, фальшивомонетчик выбирает поляризационный фильтр и ориентирует его в определенном направлении, скажем, вертикально, . Если фотон, вылетающий из ловушки для фотонов, окажется вертикально поляризованным, он пройдет через поляризационный фильтр с вертикальной поляризацией, и фальшивомонетчик вполне справедливо предположит, что это вертикально поляризованный фотон.
Если же вылетающий фотон является горизонтально поляризованным, то через поляризационный фильтр с вертикальной поляризацией он не пройдет, и фальшивомонетчик вполне справедливо предположит, что это горизонтально поляризованный фотон. Однако может случиться так, что вылетающий фотон окажется диагонально поляризованным ( или ), и тогда он может как пройти через фильтр, так и не пройти через него; в любом случае фальшивомонетчик не сумеет определить его истинную природу. Фотон с поляризацией может пройти через поляризационный фильтр с вертикальной поляризацией, и в этом случае фальшивомонетчик ошибочно предположит, что это вертикально поляризованный фотон. Но этот же самый фотон может не пройти через фильтр, и в этом случае фальшивомонетчик ошибочно предположит, что это горизонтально поляризованный фотон. С другой стороны, если фальшивомонетчик собирается измерить фотон в другой ловушке для фотонов, ориентируя фильтр диагонально, допустим, , то этим он правильно определит природу диагонально поляризованного фотона, но безошибочно идентифицировать вертикально или горизонтально поляризованный фотон не сумеет.
Проблема для фальшивомонетчика состоит в том, что для определения поляризации фотона он должен правильно сориентировать поляризационный фильтр, но он не знает, какую ориентацию использовать, так как не знает поляризацию фотона. Такая парадоксальная ситуация свойственна физике фотонов. Представим себе, что фальшивомонетчик выбирает -фильтр для измерения фотона, вылетающего из второй ловушки для фотонов, а фотон не проходит через фильтр. Фальшивомонетчик может быть уверен, что этот фотон не был -поляризован, поскольку такой фотон прошел бы через фильтр. Однако фальшивомонетчик не может сказать, был ли этот фотон таким, который заведомо не прошел бы через фильтр, то есть -поляризован, или же его поляризация была такова, что в половине случаев он будет задержан, то есть он был – или -поляризован.
Рис. 74 Квантовые деньги Стивена Виснера. Каждая банкнота является уникальной благодаря своему номеру серии, который можно легко видеть, и 20 ловушкам для фотонов, чье содержимое является загадкой. В ловушках для фотонов находятся фотоны с различными поляризациями. Банк знает поляризационные последовательности, соответствующие каждому номеру серии, фальшивомонетчик же – нет.
Сложность при измерении фотонов является одним из положений принципа неопределенности, открытым в 20-е годы немецким физиком Вернером Гейзенбергом. Он сформулировал свое в высшей степени специальное положение в виде простого утверждения: «Мы в принципе не можем знать настоящее во всех его подробностях». Это не означает, что мы не знаем всего, потому что у нас нет достаточно средств измерения или потому что наше оборудование плохо сконструировано. Напротив, Гейзенберг утверждал, что логически невозможно измерить все характеристики определенного объекта с абсолютной точностью. В нашем конкретном случае мы не можем с абсолютной точностью измерить все характеристики находящихся в ловушках фотонов. Принцип неопределенности – это еще одно причудливое следствие квантовой теории.
Квантовые деньги Виснера учитывают тот факт, что подделка денег является двухступенчатым процессом: во-первых, фальшивомонетчику необходимо провести измерение оригинальной банкноты с высокой точностью, а затем он должен сделать ее копию. За счет использования фотонов, долларовую банкноту теперь измерить точно стало невозможно, и поэтому на пути подделки денег возник барьер.
Наивный фальшивомонетчик полагает, что если он не может измерить поляризации фотонов в ловушках, то этого не сможет сделать и банк. Он может попробовать изготовить долларовые банкноты, заполняя ловушки для фотонов произвольной поляризационной последовательностью. Банк, однако, способен проверить подлинность банкнот. Он сверяет номер серии со своим тайным списком, чтобы выяснить, какие фотоны должны находиться в ловушках для фотонов. Поскольку банк знает, какие поляризации следует ожидать в каждой из ловушек, он может правильным образом сориентировать поляризационный фильтр для каждой ловушки и выполнить точное измерение. Если банкнота фальшивая, то есть когда фальшивомонетчик заполнил ловушки произвольной поляризационной последовательностью, это приведет к неправильным результатам измерений и банкнота будет признана подделкой. Например, если банк применяет -фильтр для измерения фотона, который должен иметь -поляризацию, но оказывается, что фотон задерживается фильтром, это означает, что фальшивомонетчик заполнил ловушку неправильным фотоном. Если же банкнота окажется подлинной, то банк повторно заполнит ловушки для фотонов соответствующими фотонами и вновь запустит ее в обращение.
Короче говоря, фальшивомонетчик не может измерить поляризации в подлинной банкноте, поскольку он не имеет представления, какого вида фотоны находятся в каждой из ловушек для фотонов, и не может поэтому знать, как сориентировать поляризационный фильтр, чтобы точно его измерить. С другой стороны, банк способен проверить поляризации в подлинной банкноте, потому что он сам изначально задал поляризацию, и поэтому знает, как сориентировать поляризационный фильтр для каждой из ловушек.
Квантовые деньги – это блестящая идея. И к тому же совершенно неосуществимая. Начать с того, что инженеры пока что не разработали способ улавливать в ловушки фотоны с заданными поляризованными состояниями на достаточно долгое время. Даже если такой способ и существует, реализовать его окажется слишком дорого. Защита каждой долларовой банкноты может стоить где-то около 1 млн долларов. Но несмотря на всю их нереализуемость, квантовая теория в квантовых деньгах применяется весьма любопытным способом, так что невзирая на отсутствие интереса и поддержки со стороны своего научного руководителя Виснер направил статью в научный журнал. Ее отвергли. Он направил статью в три других журнала; ее отвергли еще три раза. Виснер заявил, что они просто не разбираются в физике.
Казалось, что только один человек разделял заинтересованность Виснера концепцией квантовых денег. Это был его старый друг по имени Чарльз Беннет, который несколькими годами ранее окончил вместе с ним университет Брандейса. Беннета отличало любопытство, проявляемое им в различных областях науки. Он говорил, что уже в три года знал, что хочет быть ученым, и даже мать не смогла притушить его детское увлечение ею. Однажды она вернулась домой и обнаружила на плите кипящую кастрюлю с каким-то странным тушеным мясом. По счастью, она не соблазнилась попробовать его; как потом выяснилось, это были останки черепахи, которую юный Беннет кипятил в щелочи, чтобы отделить мясо от костей и получить великолепный образец ее скелета. В юношеском возрасте интересы Беннета простирались от биологии до биохимии, а к тому времени, как поступить в Брандейс, он решил посвятить себя химии. В аспирантуре Беннет вплотную занялся физической химией, а затем переключился на исследования в физике, математике, логике и, вдобавок, программировании.
Зная широту интересов Беннета, Виснер надеялся, что тот в полной мере оценит концепцию квантовых денег, и передал ему копию своей отвергнутой статьи. Беннет сразу же увлекся этой идеей, посчитав ее одной из самых прекрасных, с которыми он когда-либо сталкивался. В следующие десять лет он время от времени перечитывал статью, задаваясь вопросом, существует ли способ реализовать каким-либо образом эту гениальную идею. Даже став в начале 80-х научным сотрудником исследовательской лаборатории Томаса Дж. Уотсона компании IВМ, Беннет не перестал размышлять об идее Виснера. Журналы, может, и не хотели публиковать ее, но Беннета она увлекла.
Рис. 75 Чарльз Беннет.
Как-то раз Беннет рас казал об идее квантовых денег Жилю Брассарду, программисту из Монреальского университета. Беннет и Брассард, сотрудничавшие в различных исследовательских проектах, снова и снова обращались к статье Виснера, обсуждая ее сложности. Мало-помалу они начали осознавать, что идея Виснера смогла бы найти применение в криптографии. Для того чтобы Ева сумела дешифровать зашифрованное сообщение между Алисой и Бобом, она вначале должна перехватить его, что означает, что она должна каким-то образом точно определить содержимое передаваемого сообщения. Квантовые деньги Виснера были надежными, поскольку точно определить поляризацию фотонов, находящихся в ловушках в долларовой банкноте, было невозможно. Беннет и Брассард задались вопросом, что произойдет, если зашифрованное сообщение будет представлено, а затем передано с помощью поляризованных фотонов. Вроде бы, теоретически, Ева не сможет безошибочно прочесть зашифрованное сообщение, а раз не сможет прочесть зашифрованное сообщение, то не сможет и дешифровать его.
Беннет и Брассард стали придумывать систему, которая работала бы по следующему принципу. Представьте себе, что Алиса хочет отправить Бобу зашифрованное сообщение, которое состоит из последовательности 1 и 0. Вместо этих 1 и 0 она посылает фотоны с определенными поляризациями. У Алисы есть две возможных схемы, с помощью которых она может связать поляризации фотонов с 1 или 0. В первой схеме, называемой ортогональной[37] или +-схемой, для представления 1 она посылает , а для представления 0 – . Во второй схеме, называемой диагональной или Х-схемой, для представления 1 она посылает , а для представления 0 – .
При отправке сообщения, представленного в двоичном виде, она постоянно переключается с одной схемы на другую совершенно непредсказуемым образом. Так что двоичное сообщение 1101101001 может быть передано следующим образом:
Алиса передает первую 1 с использованием +-схемы, а вторую 1 – с использованием Х-схемы. Так что в обоих случаях передается 1, но всякий раз она представляется различным образом поляризованными фотонами.
Если Ева захочет перехватить это сообщение, ей потребуется определить поляризацию каждого фотона, точно так же как и фальшивомонетчику необходимо определить поляризацию каждого фотона в ловушках для фотонов долларовой банкноты. Чтобы измерить поляризацию каждого фотона, Ева должна решить, каким образом сориентировать свой поляризационный фильтр по мере прихода каждого фотона. Она не может знать наверняка, какой схемой воспользовалась Алиса для каждого из фотонов, поэтому наугад выбирает ориентацию поляризационного фильтра, которая окажется неверной в половине случаев. А следовательно, она не сможет точно определить содержимое передаваемого сообщения.
Чтобы было проще представить себе затруднительность положения Евы, предположим, что в ее распоряжении имеются два типа детекторов для определения поляризации. +-детектор способен с абсолютной точностью измерять горизонтально и вертикально поляризованные фотоны, на не может достоверно измерить диагонально поляризованные фотоны и просто ошибочно считает их вертикально или горизонтально поляризованными фотонами. С другой стороны, Х-детектор может с абсолютной точностью измерять диагонально поляризованные фотоны но не способен надежно измерить горизонтально и вертикально поляризованные фотоны, ошибочно считая их диагонально поляризованными фотонами. Так, если для измерения первого фотона, имеющего поляризацию, Ева использует Х-детектор, то она ошибочно посчитает его фотоном с поляризациями или . Если Ева ошибочно посчитала его фотоном, то проблемы у нее не возникнет, потому что он также представляет собой 1, но вот если она ошибочно посчитала его фотоном, то это станет для нее бедой, ибо этот фотон представляет собой 0. Что еще хуже, так это то, что у Евы есть только один шанс точно измерить фотон. Фотон неделим, и поэтому она не может разделить его на два фотона и измерить их с помощью обеих схем.
Похоже, что у данной системы есть ряд славных свойств. Ева не может быть уверенной в точном перехвате зашифрованного сообщения, так что у нее нет никакой надежды и дешифровать его. Правда, данной системе присуща серьезная и, видимо, неразрешимая проблема: Боб находится в том же положении, что и Ева, так как у него также нет возможности узнать, какой поляризационной схемой воспользовалась Алиса для каждого из фотонов, и поэтому он тоже будет ошибаться при приеме сообщения. Очевидное решение проблемы – это согласование Алисой и Бобом, какую поляризационную схему они будут применять для каждого фотона. Для вышеприведенного примера Алиса и Боб должны иметь список, или ключ, с помощью которого будет прочитано + х + х х х + + х х. Однако мы теперь вновь вернулись к той же старой проблеме распределения ключей: каким образом Алиса должна безопасно передать список поляризационных схем Бобу?
Разумеется, Алиса могла бы зашифровать список поляризационных схем с помощью шифра с общим ключом, например, RSA, а затем отправить его Бобу. Представьте, однако, что мы живем в то время, когда RSA взломан, возможно, в результате создания мощных квантовых компьютеров. Система Беннета и Брассарда должна быть независимой и не опираться на RSA. В течение долгих месяцев Беннет и Брассард пытались придумать способ обойти проблему распределения ключей. В 1984 году оба они стояли на платформе станции Кротон-Хармон неподалеку от исследовательской лаборатории Томаса Дж. Уотсона компании IBM. Они ожидали поезд, который доставил бы Брассарда обратно в Монреаль, и проводили время в непринужденной беседе о злоключениях и бедствиях Алисы, Боба и Евы. Приди поезд на несколько минут раньше, они бы помахали друг другу рукой на прощание, а проблема распределения ключей так и осталась бы нерешенной. Но вместо этого – эврика! – они создали квантовую криптографию – самый стойкий вид криптографии, который был когда-либо придуман.
По их способу для квантовой, криптографии требуется три подготовительных этапа. Хотя эти этапы не включают в себя отправку зашифрованного сообщения, с их помощью осуществляется безопасный обмен ключом, с помощью которого позднее можно будет зашифровать сообщение.
Этап 1. Алиса начинает передавать случайную последовательность из 1 и 0 (биты), используя для этого случайным образом выбираемые ортогональные (горизонтальная и вертикальная поляризации) и диагональные поляризационные схемы. На рисунке 76 показана такая последовательность фотонов, движущихся к Бобу.
Этап 2. Боб должен измерить поляризацию этих фотонов. Поскольку он не имеет представления, какой поляризационной схемой Алиса пользовалась для каждого из фотонов, то в произвольном порядке выбирает +-детектор и Х – детектор. Иногда Боб выбирает правильный детектор, иногда – нет. Если Боб воспользуется не тем детектором, то он вполне может неправильно распознать фотон Алисы. В таблице 27 указаны все возможные случаи. К примеру, в верхней строке для посылки 1 Алиса использует ортогональную схему и поэтому передает ; далее Боб использует правильный детектор, определяет и выписывает 1 в качестве первого бита последовательности. В следующей строке действия Алисы те же самые, но Боб теперь использует неверный детектор, и поэтому он может определить или , что означает, что либо он верно выпишет 1, либо неверно – 0.
Этап 3. К этому моменту Алиса уже отправила последовательность 1 и 0, а Боб уже определил их; какие-то правильно, какие-то – нет. После этого Алиса звонит Бобу по обычной незащищенной линии и сообщает ему, какую поляризационную схему она использовала для каждого фотона, но не как она поляризовала каждый из фотонов. Так, она может сказать, что первый фотон был послан с использованием ортогональной схемы, но не скажет, какой это был фотон: или . Боб сообщает Алисе, в каких случаях он угадал с правильной поляризационной схемой. В этих случаях он, несомненно, измерил правильную поляризацию и верно выписал 1 или 0. В конечном итоге Алиса и Боб игнорируют все те фотоны, для которых Боб пользовался неверной схемой, и используют только те из них, для которых он угадал с правильной схемой. В действительности они создали новую, более короткую последовательность битов, состоящих только из правильных измерений Боба. Весь этот этап изображен в виде таблицы в нижней части рисунка 76.
Благодаря этим трем этапам, Алисе и Бобу удалось образовать общую согласованную последовательность цифр, 11001001, которая показана на рисунке 76. Ключевым для этой последовательности является то, что она случайна, поскольку получена из исходной последовательности Алисы, которая сама была случайной. Более того, события, когда Боб использует правильный детектор, сами являются случайными. Поэтому данная согласованная последовательность может использоваться в качестве случайного ключа. И вот теперь-то можно начать процесс зашифровывания.
Рис. 76 Алиса передает последовательность из 1 и 0 Бобу. Каждая 1 и каждый О представлены поляризованным фотоном в соответствии либо с ортогональной (горизонтальная и вертикальная поляризации), либо с диагональной поляризационной схемой. Боб измеряет каждый фотон с помощью либо своего ортогонального, либо диагонального детектора. Он выбирает правильный детектор для самого первого фотона и верно определяет его как 1. Однако для следующего фотона его выбор детектора неверен. По случайности он правильно определил его как 0, но позднее этот бит будет тем не менее отброшен, поскольку Боб не может быть уверен, что он измерил его правильно.
Таблица 27 Все возможные случаи на втором этапе при обмене фотонами между Алисой и Бобом.
Эта согласованная случайная последовательность может использоваться в качестве ключа для шифра одноразового шифрблокнота. В главе 3 описывается, каким образом случайный набор букв или цифр – одноразовый шифрблокнот – может создать нераскрываемый шифр – не практически, а абсолютно нераскрываемый. Ранее говорилось, что единственная проблема с одноразовым шифрблокнотом – это сложность его безопасной доставки, но способ Беннета и Брассарда решает эту проблему. Алиса и Боб достигли договоренности об одноразовом шифрблокноте, а законы квантовой физики фактически не позволяют Еве успешно его перехватить. Теперь самое время стать на место Евы, после чего мы увидим, почему она не сумеет перехватить ключ.
Во время передачи Алисой поляризованных фотонов Ева пытается измерить их, но она не знает, использовать ли +-детектор или, может быть, Х – детектор. В половине случаев выбор детектора будет неверным. Это та же самая ситуация, в которой находится и Боб, поскольку он тоже в половине случаев выбирает неправильный детектор. Однако после этой передачи Алиса сообщает Бобу, какой схемой он должен был воспользоваться для каждого из фотонов, и они договариваются использовать только те фотоны, которые были измерены при использовании Бобом правильного детектора. Это, впрочем, ничем не поможет Еве, поскольку половину из этих фотонов она измерит не тем детектором, который был нужен, и поэтому неверно определит некоторые фотоны, которые составляют окончательный ключ.
Можно также рассматривать квантовую криптографию на примере колоды карт, а не поляризованных фотонов. У каждой игральной карты есть достоинство и масть, например, валет червей или шестерка треф, и, как правило, мы, взглянув на карту, сразу же видим ее достоинство и масть. Представьте, однако, что можно измерить либо только достоинство, либо только масть, но никак не обе вместе. Алиса берет карту из колоды и должна решить, что измерить: достоинство или масть. Предположим, что она решила измерить масть, которая является «пиками». Этой взятой картой оказалась четверка пик, но Алиса знает только, что это пики. После этого она передает карту по телефону Бобу. В этот момент Ева старается провести измерение карты, но, к сожалению, она решила измерить ее достоинство, которое является «четверкой». Когда карта приходит к Бобу, он решает измерить ее масть, которая по-прежнему «пики», и он записывает ее. После этого Алиса звонит Бобу и спрашивает его, масть ли он измерил, – а как раз это он и сделал, так что Алиса и Боб теперь знают, что у них есть некоторая общая информация: они оба на своих блокнотах сделали запись «пики». Ева же в своем блокноте сделала запись «четверка», что вообще не имеет никакой пользы.
После этого Алиса берет из колоды другую карту, скажем, короля бубей, но она, опять-таки, может измерить только один параметр. На этот раз она решает измерить ее достоинство, которое будет «король», и передает карту по телефону Бобу. Ева старается провести измерение карты и также делает выбор в пользу измерения ее достоинства – «король». Когда карта приходит к Бобу, он решает измерить ее масть, являющуюся «бубнами». После этого Алиса звонит Бобу и спрашивает его, достоинство ли карты он измерил, – и тот должен признать, что на этот раз он ошибся и измерил ее масть. Алиса и Боб не беспокоятся об этом, поскольку могут проигнорировать эту конкретную карту и повторить попытку с другой картой, наобум вытащенной из колоды. В этом последнем случае догадка Евы оказалась правильной, и она измерила то же, что и Алиса – «король», – но карта была отброшена, потому что Боб неправильно измерил ее. Таким образом Боб не беспокоится о сроих ошибках, так как они с Алисой могут условиться пропускать их, Ева же со своими ошибками осталась у разбитого корыта. После того как будут посланы несколько карт, Алиса и Боб имеют возможность договориться о последовательности мастей и достоинств, которые могут затем быть использованы в качестве основы для некоторого ключа.
Квантовая криптография позволяет Алисе и Бобу договориться о ключе, Ева же не может перехватить этот ключ, не сделав ошибок. Более того, у квантовой криптографии есть еще одно достоинство: она позволяет Алисе и Бобу определить, перехватывает ли Ева сообщения. Присутствие Евы в телефонной линии становится явным, потому что всякий раз, как она измеряет фотон, она рискует изменить его, и эти изменения видны Алисе и Бобу.
Допустим, что Алиса посылает , а Ева измеряет его неправильно выбранным детектором – +-детектор. +-детектор преобразует поступающий фотон, и тот на выходе детектора становится либо , либо фотоном, поскольку для фотона это единственная возможность пройти через детектор Евы. Если Боб измеряет этот видоизмененный фотон своим Х – детектором, то тогда он может либо зарегистрировать , что на самом деле послала Алиса, или же он может получить , то есть измерение окажется неверным. Для Алисы и Боба это окажется непонятной ситуацией, ведь Алиса послала диагонально поляризованный фотон, и Боб воспользовался нужным детектором, и все же он смог измерить его неверно. Короче говоря, когда Ева выбирает неправильный детектор, она «исказит» некоторые фотоны, и это заставит Боба сообщить по телефону об ошибках, даже если он воспользовался правильно выбранным детектором. Эти ошибки могут быть обнаружены, если Алиса и Боб выполняют обычную проверку на наличие ошибок.
Проверка на наличие ошибок проводится после трех предварительных этапов; к этому времени Алиса и Боб уже получили одинаковые последовательности из 1 и 0. Допустим, что они создали последовательность, состоящую из 1075 двоичных цифр. У Алисы и Боба есть только один способ проверить, что их соответствующие последовательности совпадают: Алиса звонит Бобу и зачитывает ему свою последовательность целиком. К сожалению, если Ева осуществляет перехват сообщений, она сможет перехватить и полный ключ. Ясно, что проверять всю последовательность неразумно, да в этом и нет необходимости. Вместо этого Алиса просто должна выбрать какие-нибудь произвольные 75 цифр и проверить только их. Если эти 75 цифр совпадают с теми, которые получил Боб, то весьма маловероятно, чтобы Ева смогла осуществить перехват в процессе первоначальной передачи фотонов. В действительности, вероятность того, что Ева подключилась к телефонной линии и не повлияла на измерения Боба этих 75 цифр, составляет менее одной триллионной. Ввиду того, что эти 75 цифр открыто обсуждались Алисой и Бобом, они просто отбрасывают их, и их одноразовый шифрблокнот таким образом сокращается с 1075 до 1000 двоичных цифр. С другой стороны, если Алиса и Боб обнаружат несоответствие среди этих 75 цифр, тогда им станет известно, что Ева осуществила перехват; в этом случае им придется отказаться полностью от этого одноразового шифрблокнота, перейти на другой телефон и начать все заново.