Текст книги "Об интеллекте"
Автор книги: Сандра Блейксли
Соавторы: Джефф Хокинс
сообщить о нарушении
Текущая страница: 4 (всего у книги 19 страниц)
По правде говоря, подобный взгляд заслуживает того, чтобы его придерживался какой бы то ни было разработчик разумных машин. Только подумайте! Стала бы шахматная игра менее реальной оттого, что утерянную фигуру коня заменили бы солонкой? Очевидно, нет. Функционально солонка полностью соответствует настоящему «коню», поскольку ее можно переставлять по клеточкам доски согласно тем же правилам, что и «коня». Таким образом, шахматная партия остается шахматной партией, а не чем-то иным. Подумайте также, изменился бы смысл этого предложения, если бы я прошелся по нему курсором, удаляя, а затем восстанавливая каждый символ.
Приведу еще один пример. Известно ли вам, что каждые несколько лет ваше тело полностью обновляется, вплоть до последнего атома. Несмотря на это, вы остаетесь собой, а роль атомов не меняется, хотя меняются они сами. То же самое справедливо и в отношении головного мозга: если бы какой-то сумасшедший ученый вздумал заменить каждый из ваших нейронов функционально эквивалентной микросхемой, вы остались бы сами собой и даже не ощутили бы, что нечто в вас изменилось.
Согласно изложенному принципу, искусственная система, имеющая ту же архитектуру, что и биологическая (например, построенная по образу и подобию живого мозга), будет по-настоящему разумной. Защитники идеи искусственного интеллекта, коннекционисты и я сам являемся функционалистами, поскольку все мы уверены в том, что интеллект обеспечивает человеку нечто отнюдь не мистическое в головном мозге.
Все мы уверены в том, что научимся когда-то создавать разумные машины, возможно, не очень скоро.
Но существуют разные определения функционализма. Наряду с тем, что я только что представил вам как роковую ошибку, приведшую к провалу идеи искусственного интеллекта и парадигмы коннекционистов, – ошибка, основанная на последовательности «входящий-исходящий сигнал», – следует назвать еще несколько причин, по которым мы на сегодняшний день не способны создавать разумные машины. Пока сторонники идеи искусственного интеллекта придерживались подхода, определенно обреченного на провал, коннекционисты, на мой взгляд, преимущественно оставались в тени. Ученые, занятые в сфере искусственного интеллекта, спрашивают: «Почему мы, инженеры, должны ограничивать себя решениями, которые случайно возникли в ходе эволюции?!» В некотором роде они правы. Биологические системы, такие как головной мозг и гены, неизящны. Общеизвестная метафора – механизм Руба Гольдберга, названный в честь выдающегося американского карикатуриста (инженера по образованию), лауреата Пулитцеровской премии Рэувена (Руба) Люциуса Гольдберга. В машинах Гольдберга (разумеется, вымышленных) соединенные причудливым образом десятки блоков, рычагов, белок в колесе, электрических вентиляторов, противовесов, воздушных шариков и клеток с канарейками взаимодействуют сложным образом, чтобы, например, заточить карандаш или надеть шляпу на изобретательного хозяина.
Существуют, однако, энтузиасты, которые строят, так сказать, настоящие машины Гольдберга в металле, и последние потом выставляются на всевозможных конкурсах и выставках.
Среди инженеров-разработчиков программного обеспечения распространен термин клудж, которым обозначают программы, созданные случайным образом, содержащие массу неточностей, бесполезных, усложняющих аспектов, часто непонятных самим программистам, создавшим их. Ученые, работающие в сфере искусственного интеллекта, опасаются того, что мозг представляет собой такой клудж, которому уже несколько миллионов лет и который полон рудиментов. Если так, рассуждают они, то почему бы не отбросить всю ерунду и не начать сызнова?!
Многие философы и психологи, придерживающиеся когнитивной традиции, соглашаются с таким видением. Они принимают метафору, описывающую разум как программное обеспечение, «установленное» в головной мозг – органический эквивалент компьютерного «железа». В компьютерах «железо» и программное обеспечение существуют порознь. Одна и та же программа может быть установлена на любой универсальной машине Тьюринга. В ваших силах установить WordPerfect на ПК, или на Macintosh, или на Cray supercomputer (несмотря на то, что перечислены три принципиально разные конфигурации). И конфигурация не имеет для вас значения, если вы осваиваете WordPerfect. Согласно нашей аналогии, мозг не может научить нас тому, что такое интеллект.
Защитники идеи искусственного интеллекта любят приводить в качестве примера исторические факты, когда научные открытия радикально отличались от биологических аналогов.
Например, как нам удалось создать летательные аппараты? Не путем ли имитации летательных движений крыльев птиц? Отнюдь. Крылья самолетов неподвижны, а летит он потому, что у него есть двигатель. Рукотворная конструкция, совсем не похожая на природную, работает – причем гораздо лучше, чем последняя.
И созданные нами наземные средства передвижения, способные обогнать гепарда, имеют не четыре конечности, а колеса. Несмотря на то что в процессе эволюции не было создано ничего, хотя бы отдаленно напоминающего колесо, последнее, тем не менее, является революционным изобретением, позволяющим великолепно передвигаться по ровным поверхностям.
Философы порой обращаются к метафоре «когнитивного колеса», отражающей возможное решение проблемы создания искусственного интеллекта, вероятно, принципиально отличное от того, как функционирует мозг. Другими словами, программа, благодаря которой машина воспроизводит (или даже превосходит) человеческое исполнение какой-либо задачи в узком, но полезном аспекте, подобна мозгу.
Я убежден, что данная интерпретация, которую можно было бы назвать «Цель оправдывает средства», вводит теоретиков искусственного интеллекта в глубокое заблуждение.
Как показал эксперимент Сирла «Китайская комната», поведенческого соответствия недостаточно. Поскольку интеллект изначально присущ головному мозгу, нам следует заглянуть внутрь, чтобы понять, что представляет собой разум.
В наших исследованиях мозга, и особенно неокортекса, нам следует соблюдать осторожность в определении того, какие особенности являются всего лишь рудиментами прошлого, потому что даже в машинах Руба Гольдберга можно найти кое-что полезное. Но, как мы убедимся далее, здесь, возможно, присутствует изящество, превосходящее по мощности лучшие компьютеры, и оно ожидает того, что его обнаружат в нервной системе.
Коннекционисты интуитивно чувствовали, что мозг – не компьютер, и разгадки его секретов не надо искать в сообщении нейронов между собой. Это хорошее начало, но обычно дело дальше не шло. Хотя тысячи разработчиков бились над созданием трехслойных нейронных сетей и продолжают заниматься этим по сей день, нам далеко до разработки такой их модификации, которая в полной мере отражала бы работу мозга.
На протяжении пятидесяти лет мы старались поместить интеллект в компьютер. На сегодняшний день мы имеем текстовые процессоры Word, базы данных, видеоигры, мобильные телефоны. Но до создания по-настоящему разумных машин нам еще очень далеко. Чтобы достичь успеха, нам надо отталкиваться от устройства биологического «двигателя» интеллекта – неокортекса. Нам надо отделить разум от мозга. Это единственно возможный путь к успеху.
3. Мозг человека
В чем состоит принципиальное различие между человеческим мозгом и программируемым искусственным интеллектом, а также нейронными сетями? Как мы увидим в последующих главах, архитектура мозга может многое рассказать о его функционировании и о принципиальных отличиях от компьютера.
Предлагаю начать наш анализ с рассмотрения самого органа. Представьте, что перед нами на столе лежит мозг, и мы его разрезаем пополам. Первое, что вы отметите, – внешняя оболочка мозга выглядит очень однородной. Она напоминает головку цветной капусты, испещренную многочисленными извилинами и бороздами. Это кора головного мозга, в которой преобладает неокортекс (около 90%) – новая кора, которая впервые появилась у млекопитающих. Тончайшая ткань нейронов обволакивает более старые филогенетические отделы головного мозга. Наше внимание будет приковано в первую очередь к неокортексу. Все функции, связанные с работой разума (восприятие, речь, воображение, способности к математике, искусству, музыке, прогнозированию и так далее) связаны с этим отделом головного мозга. Чтение данной этой книги – тоже отражение одного из процессов, происходящих в неокортексе.
Должен сознаться, что меня можно обвинить в шовинизме в отношении неокортекса. Отдавая себе отчет в том, что далеко не все разделяют мои взгляды, хочу обосновать свою позицию, пока мы еще не углубились в дебри. У каждой части человеческого мозга есть поклонники, посвящающие свое время ее изучению, поэтому гипотеза о том, что вся сущность разума может быть постигнута благодаря изучению только лишь неокортекса, будет встречена критикой со стороны инакомыслящих. Они возразят: «Вы не разберетесь в работе неокортекса, не включив в свой анализ некую зону X человеческого мозга, потому что они тесно взаимосвязаны, а зона X выполняет такие-то и такие-то функции». Не могу не согласиться. Безусловно, все отделы головного мозга важны для того, чтобы быть человеком. (Любопытно, что исключением из этого правила является часть мозга, которая включает наибольшее количество клеток, – мозжечок. Человек, у которого поврежден или от рождения отсутствует данный отдел мозга, все равно сможет вести практически полноценную жизнь. Большинство других зон мозга жизненно важны для человека.) Мой контраргумент – я же не собираюсь создавать людей! Моим намерением является понять разум и создать мыслящий компьютер. Существует огромная разница между тем, чтобы быть человеком и обладать интеллектом. У разумного компьютера нет пульса, мускулов, человекоподобного тела, сексуальных потребностей, он не чувствует голода и не испытывает эмоций. Человек – это намного больше, чем разумный компьютер. Мы являемся биологическими созданиями со всем необходимым, иногда нежелательным, багажом, собранным за многие годы эволюционного развития. Если вы захотите создать разумные механизмы, деятельность которых была бы неотличима от человеческой, способные без малейших трудностей пройти тест Тьюринга, тогда вам придется воссоздать и другие признаки, совокупность которых делает человека человеком. Если же ваша цель – создание мыслящей машины, не обязательно во всем подобной человеку, тогда имеет смысл сосредоточиться на изучении той части мозга, которая отвечает за разум.
Всем оскорбленным моей однобокой заинтересованностью неокортексом хочу сказать следующее: я с готовностью признаю важность других составляющих человеческого мозга (таких, как ствол, подкорковые узлы или миндалевидное тело), но настаиваю на том, что зоной действия интеллекта является именно неокортекс, а также две других значимых для моего исследования области мозга – таламус и гиппокамп (мы обсудим их немного позже). В долгосрочной перспективе нужно понять функциональную роль всех зон мозга. Однако начать следует с неокортекса, к чему мы и приступим.
Возьмите шесть визитных карточек (или игральных карт) и сложите их в стопку. (Лучше всего, если вы действительно выполните это задание, а не просто прочтете описание.) В руках у вас простейшая модель коры головного мозга. Толщина вашей стопки будет составлять около двух миллиметров и поможет вам составить представление о толщине слоев коры головного мозга. Как и стопка визиток или карт, кора головного мозга имеет толщину около двух миллиметров и состоит из шести слоев, каждый из которых имеет примерно такую же толщину, как одна визитная карточка или игральная карта.
Площадь коры головного мозга примерно составляет около 2200 см², что вдвое превышает площадь поверхности стандартной клавиатуры или соответствует размеру большой салфетки. У других млекопитающих кора головного мозга имеет гораздо меньшие размеры: у крысы она размером с почтовую марку, у обезьяны – как конверт. Независимо от размеров, общей чертой, характерной для коры головного мозга большинства млекопитающих, является шестислойное строение. У человека слои коры головного мозга ничуть не толще и не содержат каких-то особенных «разумных» клеток. Все дело в соотношении площадей неокортекса и тела. Это соотношение у человека гораздо выше, чем у других млекопитающих.
Кроме того, для размещения такого большого мозга в теле человека природа была вынуждена модифицировать его общее анатомическое строение. Чтобы зрелый плод мог появиться на свет через родовые пути, у женщины в процессе эволюции изменилось строение таза. (Палеоантропологи считают, что это произошло также по причине перехода предков человека к прямохождению – передвижению на двух конечностях.) Однако этого было недостаточно, поэтому эволюция свернула неокортекс в черепной коробке, подобно тому, как лист бумаги можно скомкать и поместить в бокал.
Кора головного мозга образована нервными клетками, или нейронами. На площади, равной крошечному квадрату со стороной один миллиметр (вдвое меньше, чем буква о в этом тексте), содержится примерно сто тысяч нейронов. Подсчитать точное количество нервных клеток в коре головного мозга практически невозможно, тем не менее некоторые анатомы утверждают, что их число составляет порядка 30 млрд., хотя никто не удивился бы, если фактическая цифра оказалась намного меньшей или большей.
Стало быть, в вашей голове живут 30 млрд. нейронов, хранящих ваши знания, навыки, накопленный жизненный опыт. После 25 лет размышлений о мозге данный факт кажется мне не менее поразительным, чем раньше. Тончайшая пленка, состоящая из нервных клеток, видит, чувствует, творит наше мировоззрение. Это просто невероятно! Наслаждение теплотой летнего дня и смелые мечты о будущем – все создается этими клетками. Много лет спустя после публикации статьи в журнале Scientific American Фрэнсис Крик написал книгу под названием Поразительная гипотеза. Поразительная гипотеза состояла в том, что разум создается нейронами. Ничего другого не существует: никакой магии, никакого специального соуса, только нейроны, исполняющие информационный танец. Надеюсь, вы прониклись тем, насколько важным было это открытие. Существует большой философский канал, соединяющий нервные клетки и опыт нашего сознания, однако разум и мозг – это одного поля ягоды. Называя свой тезис гипотезой, Крик просто проявил политическую корректность. То, что клетки мозга – эти тридцать миллиардов нейронов – творят разум, совсем не предположение, а научный факт. Чтобы разобраться в том, как кора головного мозга формирует сознание, мы рассмотрим ее структуру более подробно.
Давайте вернемся к нашему секционному столу и еще раз взглянем на мозг в разрезе. Осматривая кору головного мозга невооруженным глазом, мы отметим, что она довольно однородна. Лишь большая продольная борозда разделяет два полушария головного мозга, а глубокая центральная борозда – его лобную долю и теменную. Других различимых разграничительных линий не существует. Одинаков и цвет всех видимых невооруженным глазом отделов мозга.
Тем не менее людям давно известно, что такие границы все же существуют. Еще до того как нейрологи обнаружили наличие обратных связей в коре головного мозга, им было известно, что за разные психические функции отвечают определенные отделы головного мозга. Человек, у которого повреждено правое полушарие, может лишиться чувствительности левой половины своего тела или способности воспринимать внешнюю среду слева от себя. При поражении левой лобной доли, где расположен центр Брока, возникает афазия Брока, которая характеризуется невозможностью объединения отдельных речевых движений в единый речевой акт (при этом словарный запас и способность понимать слова остаются неизменными). Поражение веретенообразной борозды, пролегающей по нижней поверхности височной доли, может лишить человека способности распознавать лица – он не узнает свою мать, жену, детей и даже свое собственное лицо на фотографии. Наблюдая за такими трудно вообразимыми мозговыми расстройствами, нейрологи пришли к осознанию того, что кора головного мозга состоит из многих функциональных зон. Каждая зона полунезависима и специализируется на определенных аспектах восприятия или мышления. Возникает ассоциация с лоскутным одеялом, причем почти одинаковым у большинства людей. Функциональная организация головного мозга имеет форму отраслевой иерархии.
Понятие «иерархия» очень важное, поэтому я хочу обсудить его подробнее и дать ему четкое определение, на которое буду ссылаться в последующих главах книги. Любая иерархическая система характеризуется тем, что одни элементы расположены выше, а другие – ниже. В иерархии делового мира, например, менеджер среднего звена расположен выше клерка и ниже вице-президента компании. Иерархическое расположение и физическая позиция в пространстве не тождественны: даже если кабинет менеджера находится этажом ниже той комнаты, в которой работает клерк, последний все равно стоит ниже в иерархической структуре компании. Я подчеркиваю это различие, чтобы в дальнейшем у вас не возникало сомнений, что я имею в виду, когда говорю, что какая-либо функциональная зона является высшей или низшей. Физическое местонахождение в структуре мозга в данном случае роли не играет. Все функциональные зоны головного мозга обитают в одной и той же ткани коры. Одна зона будет «выше» или «ниже» другой в зависимости от того, как они связаны и взаимодействуют друг с другом. Так, низшие зоны поставляют информацию в высшие через определенные нейронные каналы связи. В свою очередь, высшие зоны используют совершенно другие нейронные каналы связи для передачи обратных сигналов[7]7
В отечественной науке выделяют такие зоны коры: первичные (проекционные), вторичные, третичные (интегративные, ассоциативные). – Примеч. ред.
[Закрыть]. Кроме этого, еще существуют вторичные связи между отдельными областями иерархии – по аналогии с коммуникацией коллег одного уровня, но работающих в разных филиалах одной и той же компании. Двое ученых – Дэниэль Феллеман и Дэвид ван Эссен разработали схему коры головного мозга обезьяны, на которой изображены десятки областей, связанных между собой в сложную иерархию. Можно предположить, что похожая иерархия существует и в коре головного мозга человека.
Первичные сенсорные зоны, в которые непосредственно поступает информация об окружающем мире, являются низшими функциональными зонами. Эти области занимаются обработкой первичной информации на самом простом, базовом уровне. Например, зрительная информация поступает в кору головного мозга через первичную зрительную зону, назовем ее V1. Зона V1 обеспечивает зрительные свойства низшего уровня, такие как восприятие мелких контурных сегментов, простых составляющих движения, бинокулярное рассеивание (для стереоизображения), основные цвета, информация о контрастности. Зона V1 посылает информацию в зоны V2, V4, IT (о них мы расскажем позже), а также в другие зоны коры головного мозга. Каждая из этих зон отвечает за более узко специализированные или абстрактные аспекты восприятия визуальной информации. Например, нервные клетки, образующие зону V4, позволяют нам воспринимать объекты средней сложности, такие как формы звезд различных цветов. Зона МТ специализируется на восприятии движущихся объектов. На более высоких иерархических уровнях расположены зоны, отвечающие за запоминание всевозможных визуальных объектов (людей, животных, предметов и т. д.) и ассоциативные связи между ними.
Похожая иерархическая структура существует и в других отделах мозга, ответственных за получение информации об окружающем мире по другим сенсорным каналам. Так, есть первичная слуховая зона А1 и иерархия слуховых областей, расположенных над ней, а также соматосенсорная (ответственная за восприятие физических ощущений) зона S1 и иерархия соматосенсорных областей, расположенных над ней.
Наконец, сенсорная информация поступает в ассоциативные зоны (данное название используют для описания тех областей коры головного мозга, которые получают и оценивают информацию, исходящую от разных рецепторов). Например, есть зоны, получающие информацию от органов зрения и осязания. Именно благодаря этим ассоциативным зонам вы понимаете связь между видом мухи, ползущей по вашей руке, и щекочущим чувством на коже руки. Большинство ассоциативных областей получают значительно переработанную информацию от нескольких органов чувств, но их функции до сих пор остаются невыясненными. Позже мы еще вернемся к иерархической структуре коры головного мозга.[8]8
Считается, что первичные зоны коры головного мозга обеспечивают элементарные ощущения; вторичные – целостные образы (люди, бабочки, звуки и т. д.); третичные (называемые еще ассоциативной корой) обеспечивают совместную работу различных анализаторов и формирование знаков и символов; при раздражении третичных зон у человека во время нейрохирургических операций на мозге могут возникнуть сценоподобные галлюцинации. (Например, человек может «видеть» и «слышать», как смеются его друзья, находящиеся на большом расстоянии от места операции. При этом, больной сам удивляется происходящему, так как осознает, где находится.)
Такая иерархичность организации зон является продуктом долгой эволюции животного мира. Например, у ежа и крысы первичная и вторичная зоны почти не дифференцированы, а третичных зон нет вообще. У человека, напротив, первичные зоны занимают небольшое место, они как бы вытеснены вторичными, а третичные зоны мозговой теменно-височно-затылочной коры занимают подавляющую часть места и наиболее развиты. – Примеч. ред.
[Закрыть]
В лобных долях коры головного мозга расположены моторные зоны, также имеющие иерархическое строение. Низшая моторная зона М1 посылает сигналы в спинной мозг и непосредственно управляет мускулами. Высшие зоны осуществляют обратную связь, посылая сложные моторные команды в зону M1. Иерархия моторных зон и иерархия сенсорных зон удивительно похожи, словно построены по одной и той же модели. В моторной области информация поступает из зон высшего порядка в зону M1 низшего порядка приводит мускулы в движение; в сенсорных областях органы чувств посылают информационные сигналы вверх по иерархической лестнице. В действительности же информационные сигналы передаются в обоих направлениях. То, что является обратной связью для сенсорных областей, одновременно является выходной информацией для моторных областей, и наоборот.
Большинство схематических изображений мозга представляют собой упрощенные отображения потоков информации и иерархических отношений зон коры головного мозга. Согласно таким описаниям, сенсорные сигналы из органов чувств (зрение, слух, осязание) поступают в первичные сенсорные зоны и по мере передвижения вверх по иерархии подвергаются обработке, потом проходят через ассоциативные зоны, поступают в лобные доли коры головного мозга и, видоизмененные, передаются назад в моторные зоны. Я не оспариваю такие представления. Действительно, когда вы читаете вслух, зрительная информация на самом деле поступает в зону V1, передается вверх к ассоциативным зонам, потом поступает в моторные зоны, расположенные в лобных долях коры головного мозга, и преобразуется в команду, заставляющую мышцы речевого аппарата сокращаться и воспроизводить звуки. Но не все так просто. Я хотел бы предостеречь вас от такого излишне упрощенного подхода, в котором сложные процессы передачи информации считаются односторонними, как будто сигналы всегда передаются в одном и том же направлении, подобно деталям автомобиля при сборке на конвейере. Я утверждаю, что информационные сигналы в коре головного мозга одновременно передаются и в нисходящем направлении, причем обратные информационные потоки, поступающие от зон высшего порядка к низшим, имеют большую информационную насыщенность. Возвращаясь к примеру с чтением вслух, высшие зоны коры головного мозга посылают к первичным зонам зрительного восприятия намного больше информации, чем получают ее от взгляда, бегущего по строкам книги! Ниже мы еще коснемся вопроса обратной передачи информации. А теперь – внимание: хотя иерархия строения коры головного мозга действительно существует, не стоит считать, что информационные потоки всегда движутся одними и теми же путями.
Вернемся к нашему воображаемому секционному столу Допустим, у нас есть очень мощный микроскоп. Мы сделали небольшой срез коры головного мозга, нанесли краску на несколько нервных клеток и рассматриваем их под микроскопом. Если бы мы окрасили все нейроны, то увидели бы однородную черную массу, поскольку клетки очень плотно прилегают друг к другу. Но, окрасив лишь небольшую их часть, мы сможем увидеть шестислойную структуру, о которой упоминалось выше. Слои различаются по типам и плотности составляющих их нейронов, а также по характеру связей между ними.
Рассмотрим строение нейрона. Любая нервная клетка состоит из тела клетки, или сомы, и двух типов внешних древоподобных ветвей: аксона («передатчика») и дендритов («приемников»). Тело клетки включает ядро, которое содержит информацию о наследственных свойствах, и плазму, обладающую молекулярными средствами для производства необходимых нейрону материалов. Нейрон получает сигналы (импульсы) от других нейронов через дендриты и передает сигналы, сгенерированные телом клетки, вдоль аксона, который в конце разветвляется на волокна. На окончаниях этих волокон находятся синапсы. Синапсы (от греч. synapsis – соединение, связь) – это специализированные функциональные контакты между возбудимыми клетками, служащие для передачи и преобразования сигналов.
Нервный импульс – это процесс распространения возбуждения по аксону от тела клетки до окончания аксона. Некоторые аксоны имеют обратное действие, таким образом подавляя возбуждение клетки. Итак, по функциональному значению синапсы могут быть возбуждающими и тормозящими – в зависимости от того, активируют они или подавляют деятельность соответствующей клетки. В зависимости от поведения двух клеток сила синапса может изменяться. Наиболее простая форма синаптического обмена имеет место, когда два нейрона создают возбуждение почти одновременно, а сила взаимодействия между ними возрастает. Исследователь нейронных сетей Дональд Хебб предположил, что синаптическая связь, соединяющая два нейрона, будет усиливаться, если в процессе обучения нейронной сети оба нейрона согласованно испытывают возбуждение либо торможение. Простой алгоритм, реализующий такой механизм обучения, получил название правила Хебба, к которому мы вернемся позже. Помимо переменной силы синапса, существуют также доказательства того, что в результате взаимодействия двух нейронов могут возникнуть совершенно новые синапсы. Возможно, данный процесс происходит постоянно. Научные доказательства такого факта носят противоречивый характер. Независимо от того как изменяется сила синапсов, с уверенностью можно утверждать, что формирование и усиление синапсов – это то, от чего зависит процесс запоминания.
В коре головного мозга существует много типов нейронов, но 80% из них являются пирамидальными. Они называются так потому, что тела их клеток напоминают форму пирамид. За исключением верхнего слоя шестислойной коры головного мозга, которая состоит из километров аксонов, но очень небольшого количества клеток, каждый последующий слой состоит из пирамидальных клеток. Каждый пирамидальный нейрон связан со многими соседними нейронами, и каждый из них посылает длинный аксон к более отдаленным зонам коры головного мозга или к низшим зонам мозга, таким, например, как таламус.
Типичная пирамидальная клетка имеет несколько тысяч синапсов. Из-за исключительно высокой плотности и малых размеров очень трудно установить их точное количество. Причем это количество различно для разных клеток, слоев и зон мозга. Если бы мы заняли консервативную позицию, утверждающую, что средняя пирамидальная клетка состоит из тысячи синапсов (на самом деле это число ближе к 5 или 10 тысячам), тогда кора головного мозга в общей сложности состояла бы из 30 миллиардов синапсов. Это астрономически большое число, которое невозможно охватить человеческим воображением. Такого количества синапсов было бы вполне достаточно, чтобы запомнить все, чему мы учимся на протяжении своей жизни.
Поговаривают, будто Альберт Эйнштейн утверждал, что открыть теорию относительности было очень просто. Ее можно было сформулировать даже из одного наблюдения: скорость света является постоянной для всех наблюдателей, даже если они передвигаются с различной скоростью. На первый взгляд, это идет вразрез с очевидным. Это настолько же нелепо, как и утверждать, что скорость брошенного мяча всегда одинакова независимо от силы броска или того, насколько быстро передвигаются игроки или наблюдатели. Разве по отношению к каждому из них мяч передвигается с одной и той же скоростью, независимо от обстоятельств? На первый взгляд, такое кажется невозможным. Тем не менее для света это был достоверный факт. И тут Эйнштейн спросил себя о том, каковы последствия столь удивительного факта. Он методически размышлял о последствиях неизменной скорости света и пришел к еще более неожиданным расчетам особенной относительности. Время начинает идти медленнее, если вы двигаетесь быстрее, в то время как масса и энергия остаются неизменными. Книги о принципе относительности объясняли, как он работает в повседневной жизни. Теория сама по себе не была сложной, но она шла вразрез с интуицией.
Подобное открытие имело место и в нейрологии, касалось оно коры головного мозга. Многие нейрологи отказывались признавать его только потому, что не понимали, какую пользу из него можно извлечь. И все же это никоим образом не умаляет научную ценность данного поразительного факта. А если внимательно и методично изучить последствия данного открытия, то мы значительно продвинемся в познании свойств и особенностей работы коры головного мозга. Итак, о чем же речь?
Выдающийся ученый Вернон Маунткастл – нейрофизик, работавший в Университете Джона Хопкинса, Балтимор, – в 1978 году опубликовал работу под названием Организующий принцип мозговой функции. В своей публикации автор подчеркнул, что кора головного мозга очень однородна по внешнему виду и строению. Зоны коры, отвечающие за зрительное восприятие, внешне не отличаются от зон, отвечающих за осязание, зон управления двигательной активностью, речевых зон и т. д. Все они выглядят почти одинаково. А если эти зоны выглядят одинаково, значит, заключил Маунткастл, вполне возможно, что они выполняют одну и ту же операцию! Он предположил, что при выполнении разных функций кора головного мозга использует один и тот же инструмент.
Все анатомы в то время, точно так же как и десятки лет до Маунткастла, знали, что кора головного мозга однородна. Но, вместо того чтобы задуматься над смыслом этой однородности, они тратили время и силы на поиск различий между зонами коры головного мозга. Они полагали, что если одна зона отвечает за зрительное восприятие, а другая – за слух, то между ними непременно должны существовать различия. Действительно, определенные различия можно заметить. Зоны коры головного мозга отличаются по толщине, плотности нервных клеток, относительной пропорции разных типов клеток, длине горизонтальных связей, плотности синапсов и многим другим параметрам, которые довольно сложно исследовать. Один из слоев первичной зрительной зоны V1 – из числа наиболее изученных зон мозга – как оказалось (к радости ученых), действительно имеет разделения. Ситуация очень напоминала работу биологов XIX века, которые посвящали свое время изучению малейших различий между видами. Например, большим успехом они считали открытие того, что две внешне совершенно одинаковые мыши на самом деле принадлежали к двум различным видам. Много лет такой тропой следовал и Дарвин, изучая моллюсков. Но Дарвин проявил неординарную проницательность, поставив вопрос о причине поразительной общности всех видов. Общность видов была для него куда более интересной и невероятной, чем их различия.