355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Рудольф Киппенхан » 100 миллиардов солнц: Рождение, жизнь и смерть звезд » Текст книги (страница 19)
100 миллиардов солнц: Рождение, жизнь и смерть звезд
  • Текст добавлен: 6 октября 2016, 01:59

Текст книги "100 миллиардов солнц: Рождение, жизнь и смерть звезд"


Автор книги: Рудольф Киппенхан



сообщить о нарушении

Текущая страница: 19 (всего у книги 21 страниц)

Момент импульса и коллапсирующие облака

Описание физического мира существенно упрощается с введением ряда «законов сохранения». В повседневной жизни мы то и дело пользуемся ими, порой не отдавая себе в этом отчета. Со школьной скамьи мы помним законы сохранения массы и энергии; с этими законами мы сталкиваемся каждый день. Менее очевиден, быть может, тот факт, что момент импульса (момент количества движения, кинетический момент) вращающегося тела, предоставленного самому себе, не может просто так исчезнуть. Однако наглядный пример действия этого закона сохранения всем хорошо знаком. Когда фигуристка делает пируэт на льду, она вначале вращается медленно, вытянув руки в стороны. Когда же она сгибает руки, вращение без всякого внешнего усилия ускоряется. Это происходит в силу закона сохранения момента импульса. То же самое, хотя и не столь завлекательное, наблюдается при вращении облака межзвездного газа. Пусть облако вначале делает один полный оборот за 10 миллионов лет. Когда оно сожмется до одной десятой своего первоначального диаметра, оно будет вращаться в сто раз быстрее, совершая полный оборот за сто тысяч лет. Когда облако еще уменьшится, оно будет вращаться еще быстрее. Грубо говоря, произведение числа оборотов облака за единицу времени на площадь его поверхности (которую приближенно можно считать сферической) в ходе коллапса остается постоянным. Таким образом, чем меньше облако, тем быстрее оно вращается.

При этом все значительнее становится центробежная сила, действующая вдоль экваториальной плоскости против силы тяжести. Коллапсирующее облако сплющивается. Это сказывается на образовании отдельных звезд; имеет это отношение и к образованию нашего Млечного Пути.

История Млечного Пути, восстановленная по следам

Мы не знаем, откуда оно взялось. Когда-то вещество, возникшее в начале мира и носящееся в пространстве, образовало облако в несколько миллиардов солнечных масс и стало уплотняться. Как и всякое вещество, этот газ, выделившийся из турбулентной массы, приобрел вращательное движение. Постепенно облако сжималось и становилось более плотным; в нем выделились отдельные области, превратившиеся в небольшие, самостоятельно уплотняющиеся газовые облака. Возникли первые звезды. Они состояли только из водорода и гелия, и в них происходило термоядерное горение водорода (реакция соединения двух протонов). Довольно скоро наиболее массивные звезды израсходовали свой запас водорода и взорвались, став сверхновыми. В результате этого межзвездный газ обогатился элементами тяжелее гелия. Это происходило повсюду, так как все галактическое облако имело еще шарообразную форму (рис. 12.4, а). Поэтому самые старые звезды и очень старые шаровые скопления находятся в галактическом гало. Звезды галактического гало возникли первыми, задолго до того как Млечный Путь принял форму диска, задолго до появления нашего Солнца. В них тяжелые элементы присутствуют в очень малых количествах: эти звезды возникли из вещества, которое было еще мало обогащено атомами, образовавшимися в результате ядерных реакций в других звездах.

Рис. 12.4. Схема образования Млечного Пути. Примерно 10 миллиардов лет назад из первичной материи образовалось облако, которое стало уплотняться благодаря собственной гравитации. С увеличением плотности образовались первые звезды (точки) и шаровые скопления (жирные точки) (а). Они и сегодня заполняют сферическую область, в которой они возникли, и движутся относительно центра по траекториям, показанным красными стрелками (б). Массивные звезды быстро прошли весь свой путь развития и отдали обратно в межзвездный газ вещество, обогащенное тяжелыми элементами. Стали образовываться звезды, уже богатые тяжелыми элементами. Благодаря вращению уплотненный газ образовал диск. Здесь и по сей день возникают звезды (в). Эта схема объясняет пространственную структуру нашей Галактики и химические различия между периферийными звездами и звездами в центре.

Но эволюция шла дальше. Межзвездный газ постоянно обогащался тяжелыми элементами. В нем возникали пылевые зерна в результате столкновений частиц газа с ядрами конденсации, выброшенными развившимися звездами. Скоро и вращение приобрело заметную скорость. Все уплотняющиеся газопылевые массы принимали форму плоского диска, оставляя за собой шарообразное гало из старых звезд и шаровых скоплений (рис. 12.4,б). Новые звезды образовывались теперь только во все более плоской чечевицеобразной области из вещества, содержащего все большее количество тяжелых элементов. Большая часть газа была уже израсходована, и последние звезды образовывались в галактической плоскости. Первая фаза звездообразования закончилась.

Эта картина объясняет основные свойства нашей Галактики: самые старые звезды принадлежат шарообразному гало и бедны тяжелыми элементами. Самые молодые звезды образуются сегодня лишь в тонком диске, поскольку только здесь осталось еще достаточное количество газа.

Момент импульса, унаследованный от облака, из которого образовалась наша Галактика, виной тому, что наша звездная система имеет форму плоского диска. Именно поэтому мы видим свой Млечный Путь на небе как узкую полосу.

Кто командует образованием звезд?

Что же заставляет сегодня межзвездное вещество конденсироваться в определенных местах в плоскости нашего Млечного Пути и образовывать звезды? Почему в других местах нашей Галактики звезды не образуются? Млечный Путь, если смотреть на него из космической дали, выглядел бы подобно Туманности Андромеды: плоский диск с выраженной спиральной структурой (см. рис. 0.1). У других звездных систем спиральная структура проявляется еще отчетливей (см. рис. 0.4). На снимках удаленных галактик спиральные рукава выделяются потому, что в них возбуждается свечение ионизованного водорода. Как мы уже знаем из примера туманности Ориона, за ионизацию водорода ответственны яркие массивные звезды главной последовательности. Таким образом, спиральные рукава – это области, где имеются молодые звезды, т. е. области, где звезды только возникли. И в нашей Галактике молодые звезды выстраиваются вдоль спиральных рукавов.

С помощью радиоастрономии удается очень детально исследовать распределение межзвездного газа в нашем Млечном Пути; обнаруживается, что в спиральных рукавах плотность газа выше, чем вообще в плоскости Галактики. Итак, дано: с одной стороны, спиральные рукава являются областями повышенной плотности газа, с другой стороны, именно здесь находятся молодые звезды. Спрашивается: чем обусловлена спиральная структура, делающая галактики похожими на огненные колеса фейерверка?

Долгое время попытки объяснить спиральные структуры наталкивались на большие трудности, да и сейчас их возникновение нельзя считать окончательно ясным. Звездная система вращается. Скорость ее вращения может быть измерена (см. приложение А); при этом выясняется, что система вращается не как твердое тело. Скорость вращения уменьшается к периферии, так что центральная часть галактики вращается быстрее.

На первый взгляд нет ничего удивительного в том, что у галактик обнаруживается спиральная структура. Спиральные структуры возникают и при размешивании в чашке кофе с молоком, поскольку на разных расстояниях от центра жидкость вращается с различной скоростью. Можно было бы ожидать, что и любая начальная структура галактики через какое-то время станет спиральной из-за неодинаковости скорости вращения на разных расстояниях от центра.

Карл Фридрих фон Вайцзеккер сказал однажды, что Млечный Путь сегодня должен был бы иметь спиральную структуру, даже если когда-то он был похож на корову. Много лет назад в Гёттингене мы занялись галактической коровой Вайцзеккера; нам помогал Альфред Бэр, который до недавнего времени преподавал в Гамбурге. Результат представлен на рис. 12.5. Еще до того как основная часть звезд завершит первый оборот вокруг центра, корова-галактика превратится в прекрасную спираль. К сожалению, здесь имеется одна неувязка.

Рис. 12.5. Млечный Путь вращается не как твердое тело. Поэтому из произвольной начальной структуры через 100 миллионов лет образуется спиральный объект. К сожалению, спиральные рукава нашей Галактики не поддаются такому объяснению.

Для того чтобы из нашей произвольной начальной структуры образовалась спираль, требуется менее ста миллионов лет. Наш же Млечный Путь раз в сто старше. За это время спираль должна была бы растянуться гораздо сильнее: подобно бороздкам на долгоиграющей пластинке, нити спирали должны были бы стократ и больше обвиваться вокруг центра. Но этого мы не наблюдаем. Спиральные рукава галактики, как видно на рис. 0.4, не вытянулись в нити, и, стало быть, не могут являться остатками какой-то исходной структуры. Поскольку ни одна из наблюдаемых спиральных галактик не обладает нитевидной спиральной структурой, мы должны признать, что спираль не вытягивается. В то же время спиральные рукава состоят из звезд и газа, которые участвуют во вращательном движении. Как же разрешить это противоречие?

Есть только один выход. Нам следует отказаться от предположения, что вещество постоянно принадлежит одним и тем же рукавам спирали, и допустить, что существует поток звезд и газа через рукава спиральной структуры. Хотя звезды и газ участвуют во вращательном движении, сами рукава спирали представляют собой лишь определенные состояния, которые принимают потоки звезд и газа.

Поясним это на примере из повседневного опыта. Пламя газовой горелки не состоит из одного и того же вещества. Оно представляет собой лишь определенное состояние газового потока: здесь молекулы газа вступают в определенные химические реакции. Точно так же спиральные рукава представляют собой такие области галактического диска, в которых поток звезд и газа имеет какое-то определенное состояние. Это состояние определяется особенностями гравитационных сил вещества всей галактики. Объясним это подробнее.

Спиральные рукава: что это такое?

В природе струйные течения часто дают начало регулярным образованиям. Взаимодействие воды и ветра порождает волны прибоя, которые ритмично накатываются на берег. Песчаные морские отмели идут волнистыми складками. При аккуратном смешивании жидкостей разной температуры и плотности тоже могут возникать регулярные структуры. На поверхности остывшего какао в чашке наблюдается правильный узор.

Тенденцию к образованию структур проявляют и звезды, обращающиеся в плоскости галактики вокруг общего центра и находящиеся во власти гравитационного притяжения и центробежной силы.

Представим себе большое число звезд, образующих вращающийся диск. В каждой точке диска центробежная сила и сила тяжести взаимно уравновешиваются. Это равновесие, вообще говоря, неустойчиво. Если где-то плотность звезд выше, то они стремятся сблизиться еще сильнее, подобно частицам пришедшего в неустойчивое состояние межзвездного газа при образовании звезд. Важную роль, однако, играет и центробежная сила, и это усложняет процесс. Рассматриваемая ситуация может быть смоделирована на ЭВМ. На рис. 12.6 представлено решение, полученное для вращающегося диска, состоящего из 200000 звезд. Совершенно самостоятельно образуются длинные спиральные области повышенной плотности звезд: звезды образуют спиральные рукава! Рукава, однако, не растягиваются в нити, поскольку состоят они не из одних и тех же звезд. Поток звезд идет сквозь рукава. Когда звезды движутся по своим круговым орбитам, то, попадая в рукава, они сближаются теснее. Когда звезды выходят из рукавов, расстояние между ними увеличивается. Таким образом, спиральные рукава являются областями, где звезды теснее сближаются между собой, подобно тому как пламя горелки является областью, где молекулы газа вступают в химические реакции.

Рис. 12.6. Упрощенная компьютерная модель движения звезд в нашей Галактике. 200 000 звезд движутся относительно центра плоского диска, мы смотрим сверху. Цифры под картинками обозначают число оборотов, которые совершила система. Видно, что спиральная структура образуется очень быстро. Взаимопроникновение спиралей, т. е. то, что в каждый момент они состоят из различных звезд, можно видеть на примере верхнего рукава на картинках 4,5 и 5,5. Рукав сместился незначительно, звезды же за это время совершили полный оборот вокруг центра. Приведенное здесь решение получил американский астроном Фрэнк Хол в Центре Лэнгли NASA (Хэмптон, шт. Виргиния, США).

Спиральные рукава – это области, где плотность звезд выше, чем в других местах галактического диска. Это хорошо видно на рис. 12.6, но в нормальной галактике изменения плотности так невелики, что непосредственно наблюдать их не удается. Однако вместе с плотностью звезд изменяется и плотность межзвездного газа, участвующего вместе со звездами во вращательном движении: проходя через спиральные рукава, газ уплотняется. В результате этого уплотнения и возникают условия, необходимые для образования звезд. Вот почему звезды образуются в спиральных рукавах. Среди них есть и массивные звезды. Эти яркие голубые звезды возбуждают свечение окружающего газа. Именно светящиеся облака ионизованного водорода создают замечательное зрелище спиральных рукавов, а не более тесно расположенные звезды.

Мы уже познакомились с галактикой в созвездии Гончих Псов (см. рис. 0.4). Здесь мы еще больше узнаем об образовании звезд в спиральных рукавах. Мы смотрим на эту систему издалека: она просвечивает сквозь ближние звезды нашей собственной Галактики. Свет от нее идет двенадцать миллионов лет, прежде чем попадает в наши телескопы. Поскольку мы видим эту галактику, так сказать, сверху, перпендикулярно ее плоскости, можно особенно хорошо различить ее спиральные рукава.

Образование звезд в галактике в созвездии Гончих Псов

От этой галактики идет к нам радиоизлучение. Быстро движущиеся электроны, которые приобрели огромную скорость, по всей видимости, в результате взрывов сверхновых, пролетают сквозь звездную систему, испуская при этом радиоволны. Эти радиоволны принимаются чувствительными радиотелескопами. Можно даже определить, из каких областей галактики излучение сильнее, а из каких слабее. В 1971 г. радиоастрономы Дональд Мэтьюсон, Пит ван дер Крюйт и Вим Броув в Голландии получили радиоизображение этой галактики (рис. 12.7). На этом снимке интенсивность радиоизлучения передается участками различной плотности: чем сильнее радиоизлучение, тем светлее участок снимка. Хотя радиотелескоп дает не столь резкую картину, как оптический телескоп, на снимке хорошо видна спиральная структура. Таким образом, спиральные рукава излучают не только видимый свет, но и радиоволны.

Рис. 12.7. Радиоизображение галактики, показанной на рис. 0.4. На этом компьютерном изображении галактика выглядит такой, какой мы увидели бы ее, будь наши глаза чувствительны к радиоизлучению на волне 21 см и к тому же «видели» бы так же хорошо, как большой радиотелескоп в Вестерборке (Голландия). Радиоизлучение приходит в основном из тех областей, где плотность межзвездного газа повышена. Видно также, что газовые облака в этой галактике имеют почти такую же спиральную структуру, как и распределение молодых звезд. (Снимок Лейденской обсерватории.)

Почему же создаваемое электронами радиоизлучение в одних местах галактики сильнее, а в других слабее? Это связано с самим механизмом возникновения этого излучения, в детали которого мы здесь вдаваться не будем. Достаточно указать, что более сильное радиоизлучение возникает там, где плотность межзвездного газа выше. Тем самым радиоизображение галактики в созвездии Гончих Псов доказывает, что в спиральных рукавах не только звезды стоят ближе друг к другу, но и межзвездный газ имеет более высокую плотность.

Туманность в созвездии Гончих Псов показывает нам и кое-что еще. Можно заметить, что области максимальной интенсивности радиоизлучения не вполне точно совпадают с видимыми рукавами спирали (рис. 12.8). Область наибольшей плотности межзвездного газа слегка смещена внутрь по отношению к видимому рукаву. Что бы это означало? Сквозь спиральные рукава идет поток звезд и межзвездного газа, причем этот поток пересекает рукав так, что входит в него с «внутренней» (обращенной к центру) стороны, а выходит с внешней. Сравнение видимого рукава, подсвечиваемого новорожденными звездами, и радиорукава, соответствующего области максимального сжатия межзвездного газа, позволяет составить следующую картину.

Рис. 12.8. Области максимального радиоизлучения (схематически прорисованные белыми линиями), наложенные на оптическое изображение галактики в созвездии Гончих Псов. Видно, что спиральные рукава максимальной плотности газа и спиральные структуры, образуемые молодыми звездами, не вполне совпадают. Таким образом, следует различать рукава плотности (радиорукава) и видимые рукава галактики.

Звезды и межзвездное вещество обращаются вокруг центра галактики (рис. 12.9). Приближаясь к рукаву спирали, звезды сближаются между собой, газ уплотняется, и тем самым создаются условия, необходимые для возникновения новых звезд. Возникают облака межзвездного газа; они коллапсируют и появляются первые протозвезды. Через некоторое время звезды и межзвездный газ выходят из области максимальной плотности (которая соответствует рукаву на радиоизображении галактики). Но начавшийся там процесс образования звезд продолжается, и через некоторое время из протозвезд возникают первые массивные звезды. Эти яркие голубые звезды возбуждают свечение окружающего газа, и мы наблюдаем это как видимый рукав спирали.

Рис. 12.9. Образование звезд в галактике в созвездии Гончих Псов. Справа вверху схематически показана структура галактики (ср. с рис. 0.4). Область, помеченная штриховым квадратом, показана в увеличенном масштабе в нижней части рисунка. Вещество галактики, вращающейся против часовой стрелки, проходит вначале сквозь рукава плотности (радиорукава). При этом межзвездный газ сжимается. Начинается образование звезд. Через некоторое время появляются первые молодые звезды, они освещают прилежащие массы газа, которые дают видимое излучение (видимые рукава галактики). Поскольку газ от момента уплотнения до момента образования звезд успевает переместиться, радиорукава и видимые рукава не совпадают между собой. Этим объясняется ситуация, показанная на рис. 12.8. Направление движения вещества указано красными стрелками.

Итак, вещество вначале проходит через область повышенной плотности. Здесь начинается процесс образования звезд. Через некоторое время загораются первые звезды, и мы наблюдаем видимый рукав спирали. Поскольку мы знаем, с какой скоростью движутся звезды и газ в галактике в созвездии Гончих Псов, и можем измерить расстояние между радиорукавом и видимым рукавом галактики, мы можем вычислить время, которое проходит с момента уплотнения межзвездного газа до появления первых звезд: оно составляет примерно шесть миллионов лет. В последние 500 000 лет из этих шести миллионов идет процесс того типа, который описывается решениями Ларсона. Требуется пять с половиной миллионов лет, чтобы из межзвездной материи образовалось облако, которое Ларсон положил в основу своей модели.

Прежде чем галактическое вещество успеет совершить полный оборот вокруг центра галактики, жизненный срок массивных звезд истекает. Они возвращают значительную часть своего вещества в межзвездный газ, а сами становятся белыми карликами или взрываются, образуя сверхновые. Поступающее от них в межзвездный газ вещество обогащено атомами тяжелых элементов, возникших в недрах звезд, и при следующем прохождении через спиральный рукав участвует в образовании новых звезд. Лишь вещество, заключенное в компактных объектах – белых карликах или нейтронных звездах, оставшихся после гибели звезд, исключается из этого кругооборота материи.

Когда-то, долгое время спустя после образования звезд галактического гало, вещество нашего Солнца в виде межзвездного газа прошло через спиральный рукав, и тогда образовалось много звезд. Более массивные братья нашего Солнца давно уже закончили свою жизнь, менее же массивные, как и наше Солнце, за это время из-за неравномерного вращения в нашей Галактике, разбрелись по Галактике и скрылись из виду.

Глава 13
Планеты и их обитатели

«Обитаема ли Луна, астроном знает с такой же уверенностью, с какой он знает, кто его отец, но не с такой, с какой он знает, кто его мать».

Георг Кристоф Лихтенберг (1742–1799).

Образование звезд происходит все-таки несколько иначе, чем описано в предыдущей главе, и виной тому наличие момента импульса. Звезды и межзвездный газ обращаются вокруг центра нашего Млечного Пути. Кроме того, каждое отдельное облако вращается и относительно собственного центра, и это вращательное движение сохраняется. Скорость вращения увеличивается, когда облако межзвездного газа и пыли коллапсирует и начинается образование звезды. С этим связаны такие последствия. С увеличением плотности скорость вращения растет, возрастает и центробежная сила. В экваториальной плоскости облака она действует против силы тяжести. Коллапсирующее облако сплющивается, и может случиться, что вместо красивой шарообразной протозвезды, как в решении Ларсона, возникнет устойчивый вращающийся диск (рис. 13.1). Все как будто идет совсем иначе, чем это описано в предыдущей главе.

Рис. 13.1. Схема образования нашей планетной системы. Часть облака межзвездного газа под действием гравитационных сил сжимается. При этом происходит сплющивание облака, так как центробежная сила противодействует сжатию в экваториальной плоскости. Образуется плоский диск, в центре которого рождается Солнце. В окружающем Солнце плоском диске вещество сгущается и образуются планеты, обращающиеся вокруг Солнца в одной плоскости. Масштаб на рисунке не выдержан. Хотя процесс кажется довольно простым, некоторые его детали не ясны по сей день.

Существование нашей планетной системы показывает, что вращение исходного вещества, из которого образуется Солнце, играет важную роль. Планеты движутся в одну и ту же сторону вокруг Солнца, их орбиты лежат практически в одной плоскости, как будто они образовались из плоского вращающегося диска, и их движение до сих пор отражает его вращение. Есть и еще одно соображение. Несмотря на то что в нашей Солнечной системе почти вся масса сосредоточена в Солнце на планеты приходится всего 1,3 % от общей массы, Солнце почти не обладает моментом импульса. Весь момент импульса Солнечной системы обусловлен орбитальным движением планет. Похоже на то, что при коллапсе облака межзвездного газа природа поступила очень находчиво: она разделила момент импульса, которым обладало вещество при образовании звезды. Почти весь момент импульса достался небольшой доле исходной массы, из которой образовались планеты, в то время как из основной части вещества, лишенного теперь момента импульса почти полностью, образовалось центральное тело в духе модели Ларсона.


    Ваша оценка произведения:

Популярные книги за неделю