Текст книги "Язык программирования Python"
Автор книги: Роман Сузи
Жанр:
Программирование
сообщить о нарушении
Текущая страница: 6 (всего у книги 16 страниц) [доступный отрывок для чтения: 6 страниц]
К сожалению, поведение прокси–объекта не совсем такое, как у исходного: он не может быть ключом словаря, так как является нехэшируемым.
Статический метод
Иногда необходимо использовать метод, принадлежащий классу, а не его экземпляру. В этом случае можно описать статический метод. До появления декораторов (до Python 2.4) определять статический метод приходилось следующим образом:
Листинг
class A(object):
def name():
return A.__name__
name = staticmethod(name)
print A.name()
a = A()
print a.name()
Статическому методу не передается параметр с экземпляром класса. Он ему попросту не нужен.
В Python 2.4 для применения описателей (descriptors) был придуман новый синтаксис – декораторы:
Листинг
class A(object):
@staticmethod
def name():
return A.__name__
Смысл декоратора в том, что он «пропускает» определяемую функцию (или метод) через заданную в нем функцию. Теперь писать name три раза не потребовалось. Декораторов может быть несколько, и применяются они в обратном порядке.
Метод класса
Если статический метод имеет свои аналоги в C++ и Java, то метод класса основан на том, что в Python классы являются объектами. В отличие от статического метода, в метод класса первым параметром передается объект–класс. Вместо self для подчеркивания принадлежности метода к методам класса принято использовать cls.
Пример использования метода класса можно найти в модуле tree пакета nltk (Natural Language ToolKit, набор инструментов для естественного языка). Ниже приведен лишь фрагмент определения класса Tree (базового класса для других подклассов). Метод convert класса Tree определяет процедуру преобразования дерева одного типа в дерево другого типа. Эта процедура абстрагируется от деталей реализации конкретных типов, описывая обобщенный алгоритм преобразования:
Листинг
class Tree:
# …
def convert(cls, val):
if isinstance(val, Tree):
children = [cls.convert(child) for child in val]
return cls(val.node, children)
else:
return val
convert = classmethod(convert)
Пример использования (взят из строки документации метода convert()):
Листинг
>>> # Преобразовать tree в экземпляр класса Tree
>>> tree = Tree.convert(tree)
>>> # " " " " " ParentedTree
>>> tree = ParentedTree.convert(tree)
>>> # " " " " " MultiParentedTree
>>> tree = MultiParentedTree.convert(tree)
Метод класса позволяет более естественно описывать действия, которые связаны в основном с классами, а не с методами экземпляра класса.
Метаклассы
Еще одним отношением между классами является отношение класс–метакласс. Метакласс можно считать «высшим пилотажем» объектно–ориентированного программирования, но, к счастью, в Python можно создавать собственные метаклассы.
В Python класс тоже является объектом, поэтому ничего не мешает написать класс, назначением которого будет создание других классов динамически, во время выполнения программы.
Пример, в котором класс порождается динамически в функции–фабрике классов:
Листинг
def cls_factory_f(func):
class X(object):
pass
setattr(X, func.__name__, func)
return X
Использование будет выглядеть так:
Листинг
def my_method(self):
print «self:", self
My_Class = cls_factory_f(my_method)
my_object = My_Class()
my_object.my_method()
В этом примере функция cls_factory_f() возвращает класс с единственным методом, в качестве которого используется функция, переданная ей как аргумент. От этого класса можно получить экземпляры, а затем у экземпляров – вызвать метод my_method.
Теперь можно задаться целью построить класс, экземплярами которого будут классы. Такой класс, от которого порождаются классы, и называется метаклассом.
В Python имеется класс type, который на деле является метаклассом. Вот как с помощью его конструктора можно создать класс:
Листинг
def my_method(self):
print «self:", self
My_Class = type('My_Class', (object,), {'my_method': my_method})
В качестве первого параметра type передается имя класса, второй параметр – базовые классы для данного класса, третий – атрибуты.
В результате получится класс, эквивалентный следующему:
Листинг
class My_Class(object):
def my_method(self):
print «self:", self
Но самое интересное начинается при попытке составить собственный метакласс. Проще всего наследовать метакласс от метакласса type (пример взят из статьи Дэвида Мертца):
Листинг
>>> class My_Type(type):
… def __new__(cls, name, bases, dict):
… print «Выделение памяти под класс», name
… return type.__new__(cls, name, bases, dict)
… def __init__(cls, name, bases, dict):
… print «Инициализация класса», name
… return super(My_Type, cls).__init__(cls, name, bases, dict)
…
>>> my = My_Type(«X», (), {})
Выделение памяти под класс X
Инициализация класса X
В этом примере не происходит вмешательство в создание класса. Но в __new__() и __init__() имеется полный программный контроль над создаваемым классом в период выполнения.
Примечание:
Следует заметить, что в метаклассах принято называть первый аргумент методов не self, а cls, чтобы напомнить, что экземпляр, над которым работает программист, является не просто объектом, а классом.
Мультиметоды
Некоторые объектно–ориентированные «штучки» не входят в стандартный Python или стандартную библиотеку. Ниже будут рассмотрены мультиметоды – методы, сочетающие объекты сразу нескольких различных классов. Например, сложение двух чисел различных типов фактически требует использования мультиметода. Если «одиночный» метод достаточно задать для каждого класса, то мультиметод требует задания для каждого сочетания классов, которые он обслуживает:
Листинг
>>> import operator
>>> operator.add(1, 2)
3
>>> operator.add(1.0, 2)
3.0
>>> operator.add(1, 2.0)
3.0
>>> operator.add(1, 1+2j)
(2+2j)
>>> operator.add(1+2j, 1)
(2+2j)
В этом примере operator.add ведет себя как мультиметод, выполняя разные действия для различных комбинаций параметров.
Для организации собственных мультиметодов можно воспользоваться модулем Multimethod (автор Neel Krishnaswami), который легко найти в Интернете. Следующий пример, адаптированный из документации модуля, показывает построение собственного мультиметода:
Листинг
from Multimethod import Method, Generic, AmbiguousMethodError
# классы, для которых будет определен мультиметод
class A: pass
class B(A): pass
# функции мультиметода
def m1(a, b): return 'AA'
def m2(a, b): return 'AB'
def m3(a, b): return 'BA'
# определение мультиметода (без одной функции)
g = Generic()
g.add_method(Method((A, A), m1))
g.add_method(Method((A, B), m2))
g.add_method(Method((B, A), m3))
# применение мультиметода
try:
print 'Типы аргументов:', 'Результат'
print 'A, A:', g(A(), A())
print 'A, B:', g(A(), B())
print 'B, A:', g(B(), A())
print 'B, B:', g(B(), B())
except AmbiguousMethodError:
print 'Неоднозначный выбор метода'
Устойчивые объекты
Для того чтобы объекты жили дольше, чем создавшая их программа, необходим механизм их представления в виде последовательности байтов. Во второй лекции уже рассматривался модуль pickle, который позволяет сериализовать объекты.
Здесь же будет показано, как класс может способствовать более качественному консервированию объекта. Следующие методы, если их определить в классе, позволяют управлять работой модуля pickle и рассмотренной ранее функции глубокого копирования. Другими словами, правильно составленные методы дают возможность воссоздать объект, передав самую суть – состояние объекта.
__getinitargs__() Должен возвращать кортеж из аргументов, который будет передаваться на вход метода __init__() при создании объекта.
__getstate__() Должен возвращать словарь, в котором выражено состояние объекта. Если этот метод в классе определен, то используется атрибут __dict__, который есть у каждого объекта.
__setstate__(state) Должен восстанавливать объекту ранее сохраненное состояние state.
В следующем примере класс CC управляет своим копированием (точно так же экземпляры этого класса смогут консервироваться и расконсервироваться при помощи модуля pickle):
Листинг
from time import time, gmtime
import copy
class CC:
def __init__(self, created=time()):
self.created = created
self.created_gmtime = gmtime(created)
self._copied = 1
print id(self), «init», created
def __getinitargs__(self):
print id(self), «getinitargs», self.created
return (self.created,)
def __getstate__(self):
print id(self), «getstate», self.created
return {'_copied': self._copied}
def __setstate__(self, dict):
print id(self), «setstate», dict
self._copied = dict['_copied'] + 1
def __repr__(self):
return "%s obj: %s %s %s» % (id(self), self._copied,
self.created, self.created_gmtime)
a = CC()
print a
b = copy.deepcopy(a)
print b
В результате будет получено
Листинг
1075715052 init 1102751640.91
1075715052 obj: 1 1102751640.91 (2004, 12, 11, 7, 54, 0, 5, 346, 0)
1075715052 getinitargs 1102751640.91
1075729452 init 1102751640.91
1075715052 getstate 1102751640.91
1075729452 setstate {'copied': 1}
1075729452 obj: 2 1102751640.91 (2004, 12, 11, 7, 54, 0, 5, 346, 0)
Состояние объекта состоит из трех атрибутов: created, created_gmtime, copied. Первый из этих атрибутов может быть восстановлен передачей параметра конструктору. Второй – вычислен в конструкторе на основе первого. А вот третий не входит в интерфейс класса и может быть передан только через механизм getstate/setstate. Причем, по смыслу этого атрибута при каждом копировании он должен увеличиваться на единицу (хотя в разных случаях атрибут может требовать других действий или не требовать их вообще). Следует включить отладочные операторы вывода, чтобы отследить последовательность вызовов методов при копировании.
Механизм getstate/setstate позволяет передавать при копировании только то, что нужно для воссоздания объекта, тогда как атрибут __dict__ может содержать много лишнего. Более того, __dict__ может содержать объекты, которые просто так сериализации не поддаются, и поэтому getstate/setstate – единственная возможность обойти подобные ограничения.
Примечание:
Следует заметить, что сериализация функций и классов – лишь кажущаяся: на принимающей стороне должны быть определения функций и классов, передаются же только их имена и принадлежность модулям.
Для хранения объектов используются не только простейшие механизмы хранения вроде pickle.dump/pickle.load или полки shelve. Сериализованные объекты Python можно хранить в специализированных хранилищах объектов (например, ZODB) или реляционных базах данных.
Это также касается передачи объектов по сетям передачи данных. Если простейшие объекты (вроде строк или чисел) можно передавать напрямую через HTTP, XML–RPC, SOAP и т.д., где они имеют собственный тип, то произвольные объекты необходимо консервировать на передающей стороне и расконсервировать на принимающей.
Критика ООП
Объектно–ориентированный подход сегодня считается «самым передовым». Однако не следует слепо верить в его всемогущество. Отдача (в виде скорости разработки) от объектного проектирования чувствуется только в больших проектах и в проектах, которые родственны объектному подходу: построение графического интерфейса, моделирование систем и т.п.
Также спорна большая гибкость объектных программ к изменениям. Она зависит от того, вносится ли новый метод (для серии объектов) или новый тип объекта. При процедурном подходе при появлении нового метода пишется отдельная процедура, в которой в каждой ветке алгоритма обрабатывается свой тип данных (то есть такое изменение требует редактирования одного места в коде). При ООП изменять придется каждый класс, внося в него новый метод (то есть изменения в нескольких местах). Зато ООП выигрывает при внесении нового типа данных: ведь изменения происходят только в одном месте, где описываются все методы для данного типа. При процедурном подходе приходится изменять несколько процедур. Сказанное иллюстрируется ниже. Пусть имеются классы A, B, C и методы a, b, c:
Листинг
# ООП
class A:
def a(): …
def b(): …
def c(): …
class B:
def a(): …
def b(): …
def c(): …
class C:
def a(): …
def b(): …
def c(): …
# процедурный подход
def a(x):
if type(x) is A: …
if type(x) is B: …
if type(x) is C: …
def b(x):
if type(x) is A: …
if type(x) is B: …
if type(x) is C: …
def c(x):
if type(x) is A: …
if type(x) is B: …
if type(x) is C: …
При внесении нового типа объекта изменения в ОО–программе затрагивают только один модуль, а в процедурной – все процедуры:
Листинг
# ООП
class D:
def a(): …
def b(): …
def c(): …
# процедурный подход
def a(x):
if type(x) is A: …
if type(x) is B: …
if type(x) is C: …
if type(x) is D: …
def b(x):
if type(x) is A: …
if type(x) is B: …
if type(x) is C: …
if type(x) is D: …
def c(x):
if type(x) is A: …
if type(x) is B: …
if type(x) is C: …
if type(x) is D: …
И наоборот, теперь нужно добавить новый метод обработки. При процедурном подходе просто пишется новая процедура, а вот для объектного приходится изменять все классы:
Листинг
# процедурный подход
def d(x):
if type(x) is A: …
if type(x) is B: …
if type(x) is C: …
# ООП
class A:
def a(): …
def b(): …
def c(): …
def d(): …
class B:
def a(): …
def b(): …
def c(): …
def d(): …
class C:
def a(): …
def b(): …
def c(): …
def d(): …
Язык программирования Python изначально был ориентирован на практические нужды. Приведенное выше выражается в стандартной библиотеке Python, то есть в том, что там применяются и функции (обычно сильно обобщенные на довольно широкий круг входных данных), и классы (когда операции достаточно специфичны). Обобщенная природа функций Python и полиморфизм, не завязанный целиком на наследовании – вот свойства языка Python, позволяющие иметь большую гибкость в комбинации процедурного и объектно–ориентированного подходов.
Заключение
Даже достаточно неформальное введение в ООП потребовало определения большого количества терминов. В лекции была сделана попытка с помощью примеров передать не столько букву, сколько дух терминологии ООП. Были рассмотрены все базовые понятия: объект, тип, класс и виды отношений между объектами (IS–A, HAS–A, USE–A). Слушатели получили представление о том, что такое инкапсуляция и полиморфизм в стиле ООП, а также наследование – продление времени жизни объекта за рамками исполняющейся программы, известное как устойчивость объекта (object persistence). Были указаны недостатки ООП, но при этом весь предыдущий материал объективно свидетельствовал о достоинствах этого подхода.
Возможно, что именно эта лекция приведет слушателей к пониманию ООП, пригодному и удобному для практической работы.
5. Лекция: Численные алгоритмы. Матричные вычисления.
В данной лекции рассматривается пакет Numeric для осуществления численных расчетов и выполнения матричных вычислений, приводится обзор других пакетов для научных вычислений.
Numeric Python – это несколько модулей для вычислений с многомерными массивами, необходимых для многих численных приложений. Модуль Numeric вносит в Python возможности таких пакетов и систем как MatLab, Octave (аналог MatLab), APL, J, S+, IDL. Пользователи найдут Numeric достаточно простым и удобным. Стоит заметить, что некоторые синтаксические возможности Python (связанные с использованием срезов) были специально разработаны для Numeric.
Numeric Python имеет средства для:
матричных вычислений LinearAlgebra;
быстрого преобразования Фурье FFT;
работы с недостающими экспериментальными данными MA;
статистического моделирования RNG;
эмуляции базовых функций программы MatLab.
Модуль Numeric
Модуль Numeric определяет полноценный тип–массив и содержит большое число функций для операций с массивами. Массив – это набор однородных элементов, доступных по индексам. Массивы модуля Numeric могут быть многомерными, то есть иметь более одной размерности.
Создание массива
Для создания массива можно использовать функцию array() с указанием содержимого массива (в виде вложенных списков) и типа. Функция array() делает копию, если ее аргумент – массив. Функция asarray() работает аналогично, но не создает нового массива, когда ее аргумент уже является массивом:
Листинг
>>> from Numeric import *
>>> print array([[1, 2], [3, 4], [5, 6]])
[[1 2]
[3 4]
[5 6]]
>>> print array([[1, 2, 3], [4, 5, 6]], Float)
[[ 1. 2. 3.]
[ 4. 5. 6.]]
>>> print array([78, 85, 77, 69, 82, 73, 67], 'c')
[N U M E R I C]
В качестве элементов массива можно использовать следующие типы: Int8–Int32, UnsignedInt8–UnsignedInt32, Float8–Float64, Complex8–Complex64 и PyObject. Числа 8, 16, 32 и 64 показывают количество битов для хранения величины. Типы Int, UnsignedInteger, Float и Complex соответствуют наибольшим принятым на данной платформе значениям. В массиве можно также хранить ссылки на произвольные объекты.
Количество размерностей и длина массива по каждой оси называются формой массива (shape). Доступ к форме массива реализуется через атрибут shape:
Листинг
>>> from Numeric import *
>>> a = array(range(15), Int)
>>> print a.shape
(15,)
>>> print a
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
>>> a.shape = (3, 5)
>>> print a.shape
(3, 5)
>>> print a
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
Методы массивов
Придать нужную форму массиву можно функцией Numeric.reshape(). Эта функция сразу создает объект–массив нужной формы из последовательности.
Листинг
>>> import Numeric
>>> print Numeric.reshape(«абракадабр», (5, – 1))
[[а б]
[р а]
[к а]
[д а]
[б р]]
В этом примере–1 в указании формы говорит о том, что соответствующее значение можно вычислить. Общее количество элементов массива известно (10), поэтому длину вдоль одной из размерностей задавать не обязательно.
Через атрибут flat можно получить одномерное представление массива:
Листинг
>>> a = array([[1, 2], [3, 4]])
>>> b = a.flat
>>> b
array([1, 2, 3, 4])
>>> b[0] = 9
>>> b
array([9, 2, 3, 4])
>>> a
array([[9, 2],
[3, 4]])
Следует заметить, что это новый вид того же массива, поэтому присваивание значений его элементам приводит к изменениям в исходном массиве.
Функция Numeric.resize()похожа на Numeric.reshape, но может подстраивать число элементов:
Листинг
>>> print Numeric.resize(«NUMERIC», (3, 2))
[[N U]
[M E]
[R I]]
>>> print Numeric.resize(«NUMERIC», (3, 4))
[[N U M E]
[R I C N]
[U M E R]]
Функция Numeric.zeros() порождает массив из одних нулей, а Numeric.ones() – из одних единиц. Единичную матрицу можно получить с помощью функции Numeric.identity(n):
Листинг
>>> print Numeric.zeros((2,3))
[[0 0 0]
[0 0 0]]
>>> print Numeric.ones((2,3))
[[1 1 1]
[1 1 1]]
>>> print Numeric.identity(4)
[[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]]
Для копирования массивов можно использовать метод copy():
Листинг
>>> import Numeric
>>> a = Numeric.arrayrange(9)
>>> a.shape = (3, 3)
>>> print a
[[0 1 2]
[3 4 5]
[6 7 8]]
>>> a1 = a.copy()
>>> a1[0, 1] = -1 # операция над копией
>>> print a
[[0 1 2]
[3 4 5]
[6 7 8]]
Массив можно превратить обратно в список с помощью метода tolist():
Листинг
>>> a.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
Срезы
Объекты–массивы Numeric используют расширенный синтаксис выделения среза. Следующие примеры иллюстрируют различные варианты записи срезов. Функция Numeric.arrayrange() является аналогом range() для массивов.
Листинг
>>> import Numeric
>>> a = Numeric.arrayrange(24) + 1
>>> a.shape = (4, 6)
>>> print a # исходный массив
[[ 1 2 3 4 5 6]
[ 7 8 9 10 11 12]
[13 14 15 16 17 18]
[19 20 21 22 23 24]]
>>> print a[1,2] # элемент 1,2
9
>>> print a[1,:] # строка 1
[ 7 8 9 10 11 12]
>>> print a[1] # тоже строка 1
[ 7 8 9 10 11 12]
>>> print a[:,1] # столбец 1
[ 2 8 14 20]
>>> print a[-2,:] # предпоследняя строка
[13 14 15 16 17 18]
>>> print a[0:2,1:3] # окно 2x2
[[2 3]
[8 9]]
>>> print a[1,::3] # каждый третий элемент строки 1
[ 7 10]
>>> print a[:,:: – 1] # элементы строк в обратном порядке
[[ 6 5 4 3 2 1]
[12 11 10 9 8 7]
[18 17 16 15 14 13]
[24 23 22 21 20 19]]
Срез не копирует массив (как это имеет место со списками), а дает доступ к некоторой части массива. Далее в примере меняется на 0 каждый третий элемент строки 1:
Листинг
>>> a[1,::3] = Numeric.array([0,0])
>>> print a
[[ 1 2 3 4 5 6]
[ 0 8 9 0 11 12]
[13 14 15 16 17 18]
[19 20 21 22 23 24]]
В следующих примерах находит применение достаточно редкая синтаксическая конструкция: срез с многоточием (Ellipsis). Многоточие ставится для указания произвольного числа пропущенных размерностей (:,:,…,:):
Листинг
>>> import Numeric
>>> a = Numeric.arrayrange(24) + 1
>>> a.shape = (2,2,2,3)
>>> print a
[[[[ 1 2 3]
[ 4 5 6]]
[[ 7 8 9]
[10 11 12]]]
[[[13 14 15]
[16 17 18]]
[[19 20 21]
[22 23 24]]]]
>>> print a[0,…] # 0–й блок
[[[ 1 2 3]
[ 4 5 6]]
[[ 7 8 9]
[10 11 12]]]
>>> print a[0,:,:,0] # срез по первой и последней размерностям
[[ 1 4]
[ 7 10]]
>>> print a[0,…,0] # то же, но с использованием многоточия
[[ 1 4]
[ 7 10]]
Универсальные функции
Модуль Numeric определяет набор функций для применения к элементам массива. Функции применимы не только к массивам, но и к последовательностям (к сожалению, итераторы пока не поддерживаются). В результате получаются массивы.
Функция Описание
add(x, y), subtract(x, y) Сложение и вычитание
multiply(x, y), divide(x, y) Умножение и деление
remainder(x, y), fmod(x, y) Получение остатка от деления (для целых чисел и чисел с плавающей запятой)
power(x) Возведение в степень
sqrt(x) Извлечение корня квадратного
negative(x), absolute(x), fabs(x) Смена знака и абсолютное значение
ceil(x), floor(x) Наименьшее (наибольшее) целое, большее (меньшее) или равное аргументу
hypot(x, y) Длина гипотенузы (даны длины двух катетов)
sin(x), cos(x), tan(x) Тригонометрические функции
arcsin(x), arccos(x), arctan(x) Обратные тригонометрические функции
arctan2(x, y) Арктангенс от частного аргумента
sinh(x), cosh(x), tanh(x) Гиперболические функции
arcsinh(x), arccosh(x), arctanh(x) Обратные гиперболические функции
exp(x) Экспонента (ex)
log(x), log10(x) Натуральный и десятичный логарифмы
maximum(x, y), minimum(x, y) Максимум и минимум
conjugate(x) Сопряжение (для комплексных чисел)
equal(x, y), not_equal(x, y) Равно, не равно
greater(x, y), greater_equal(x, y) Больше, больше или равно
less(x, y), less_equal(x, y) Меньше, меньше или равно
logical_and(x, y), logical_or(x, y) Логические И, ИЛИ
logical_xor(x, y) Логическое исключающее ИЛИ
logical_not(x) Логические НЕ
bitwise_and(x, y), bitwise_or(x, y) Побитовые И, ИЛИ
bitwise_xor(x, y) Побитовое исключающее ИЛИ
invert(x) Побитовая инверсия
left_shift(x, n), right_shift(x, n) Побитовые сдвиги влево и вправо на n битов
Перечисленные функции являются объектами типа ufunc и применяются к массивам поэлементно. Эти функции имеют специальные методы:
accumulate() Аккумулирование результата.
outer() Внешнее «произведение».
reduce() Сокращение.
reduceat() Сокращение в заданных точках.
Пример с функцией add() позволяет понять смысл универсальной функции и ее методов:
Листинг
>>> from Numeric import add
>>> add([[1, 2], [3, 4]], [[1, 0], [0, 1]])
array([[2, 2],
[3, 5]])
>>> add([[1, 2], [3, 4]], [1, 0])
array([[2, 2],
[4, 4]])
>>> add([[1, 2], [3, 4]], 1)
array([[2, 3],
[4, 5]])
>>> add.reduce([1, 2, 3, 4]) # т.е. 1+2+3+4
10
>>> add.reduce([[1, 2], [3, 4]], 0) # т.е. [1+3 2+4]
array([4, 6])
>>> add.reduce([[1, 2], [3, 4]], 1) # т.е. [1+2 3+4]
array([3, 7])
>>> add.accumulate([1, 2, 3, 4]) # т.е. [1 1+2 1+2+3 1+2+3+4]
array([ 1, 3, 6, 10])
>>> add.reduceat(range(10), [0, 3, 6]) # т.е. [0+1+2 3+4+5 6+7+8+9]
array([ 3, 12, 30])
>>> add.outer([1,2], [3,4]) # т.е. [[1+3 1+4] [2+3 2+4]]
array([[4, 5],
[5, 6]])
Методы accumulate(), reduce() и reduceat() принимают необязательный аргумент – номер размерности, используемой для соответствующего действия. По умолчанию применяется нулевая размерность.
Универсальные функции, помимо одного или двух необходимых параметров, позволяют задавать и еще один аргумент, для приема результата функции. Тип третьего аргумента должен строго соответствовать типу результата. Например, функция sqrt() даже от целых чисел имеет тип Float.
Листинг
>>> from Numeric import array, sqrt, Float
>>> a = array([0, 1, 2])
>>> r = array([0, 0, 0], Float)
>>> sqrt(a, r)
array([ 0. , 1. , 1.41421356])
>>> print r
[ 0. 1. 1.41421356]
Предупреждение:
Не следует использовать в качестве приемника результата массив, который фигурирует в предыдущих аргументах функции, так как при этом результат может быть испорчен. Следующий пример показывает именно такой вариант:
>>> import Numeric
>>> m = Numeric.array([0, 0, 0, 1, 0, 0, 0, 0])
>>> add(m[: – 1], m[1:], m[1:])
array([0, 0, 1, 1, 1, 1, 1])В таких неоднозначных случаях необходимо использовать промежуточный массив.
Функции модуля Numeric
Следующие функции модуля Numeric являются краткой записью некоторых наиболее употребительных сочетаний функций и методов:
Функция Аналог функции
sum(a, axis) add.reduce(a, axis)
cumsum(a, axis) add.accumulate(a, axis)
product(a, axis) multiply.reduce(a, axis)
cumproduct(a, axis) multiply.accumulate(a, axis)
alltrue(a, axis) logical_and.reduce(a, axis)
sometrue(a, axis) logical_or.reduce(a, axis)
Примечание:
Параметр axis указывает размерность.
Функции для работы с массивами
Функций достаточно много, поэтому подробно будут рассмотрены только две из них, а остальные сведены в таблицу.
Функция Numeric.take()
Функция Numeric.take() позволяет взять часть массива по заданным на определенном измерении индексам. По умолчанию номер измерения (третий аргумент) равен нулю.
Листинг
>>> import Numeric
>>> a = Numeric.reshape(Numeric.arrayrange(25), (5, 5))
>>> print a
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]
>>> print Numeric.take(a, [1], 0)
[ [5 6 7 8 9]]
>>> print Numeric.take(a, [1], 1)
[[ 1]
[ 6]
[11]
[16]
[21]]
>>> print Numeric.take(a, [[1,2],[3,4]])
[[[ 5 6 7 8 9]
[10 11 12 13 14]]
[[15 16 17 18 19]
[20 21 22 23 24]]]
В отличие от среза, функция Numeric.take() сохраняет размерность массива, если конечно, структура заданных индексов одномерна. Результат Numeric.take(a, [[1,2],[3,4]]) показывает, что взятые по индексам части помещаются в массив со структурой самих индексов, как если бы вместо 1 было написано [5 6 7 8 9], а вместо 2 – [10 11 12 13 14] и т.д.
Функции Numeric.diagonal() и Numeric.trace()
Функция Numeric.diagonal() возвращает диагональ матрицы. Она имеет следующие аргументы:
a Исходный массив.
offset Смещение вправо от «главной» диагонали (по умолчанию 0).
axis1 Первое из измерений, на которых берется диагональ (по умолчанию 0).
axis2 Второе измерение, образующее вместе с первым плоскость, на которой и берется диагональ. По умолчанию axis2=1.
Функция Numeric.trace() (для вычисления следа матрицы) имеет те же аргументы, но суммирует элементы на диагонали. В примере ниже рассмотрены обе эти функции:
Листинг
>>> import Numeric
>>> a = Numeric.reshape(Numeric.arrayrange(16), (4, 4))
>>> print a
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]
>>> for i in range(-3, 4):
… print «Sum», Numeric.diagonal(a, i), "=", Numeric.trace(a, i)
…
Sum [12] = 12
Sum [ 8 13] = 21
Sum [ 4 9 14] = 27
Sum [ 0 5 10 15] = 30
Sum [ 1 6 11] = 18
Sum [2 7] = 9
Sum [3] = 3
Функция Numeric.choose()
Эта функция использует один массив с целыми числами от 0 до n для выбора значения из одного из заданных массивов:
Листинг
>>> a = Numeric.identity(4)
>>> b0 = Numeric.reshape(Numeric.arrayrange(16), (4, 4))
>>> b1 = -Numeric.reshape(Numeric.arrayrange(16), (4, 4))
>>> print Numeric.choose(a, (b0, b1))
[[ 0 1 2 3]
[ 4 -5 6 7]
[ 8 9–10 11]
[ 12 13 14–15]]
Свод функций модуля Numeric
Следующая таблица приводит описания функций модуля Numeric.
Функция и ее аргументы Назначение функции
allclose(a, b[, eps[, A]]) Сравнение a и b с заданными относительными eps и абсолютными A погрешностями. По умолчанию eps равен 1.0e–1, а A = 1.0e–8.
alltrue(a[, axis]) Логическое И по всей оси axis массива a
argmax(a[, axis]) Индекс максимального значения в массиве по заданному измерению axis
argmin(a[, axis]) Индекс минимального значения в массиве по заданному измерению axis
argsort(a[, axis]) Индексы отсортированного массива, такие, что take(a,argsort(a, axis),axis) дает отсортированный массив a, как если бы было выполнено sort(a, axis)
array(a[, type]) Создание массива на основе последовательности a данного типа type
arrayrange(start[, stop[, step[, type]]]) Аналог range() для массивов
asarray(a[, type[, savespace]]) То же, что и array(), но не создает новый массив, если a уже является массивом.
choose(a, (b0,…,bn)) Создает массив на основе элементов, взятых по индексам из a (индексы от 0 до n включительно). Формы массивов a, b1, …, bn должны совпадать
clip(a, a_min, a_max) Обрубает значения массива a так, чтобы они находились между значениями из a_min и a_max поэлементно
compress(cond, a[, axis]) Возвращает массив только из тех элементов массива a, для которых условие cond истинно (не нуль)
concatenate(a[, axis]) Соединение двух массивов (конкатенация) по заданному измерению axis (по умолчанию – по нулевой)
convolve(a, b[, mode]) Свертка двух массивов. Аргумент mode может принимать значения 0, 1 или 2
cross_correlate(a, b[, mode]) Взаимная корреляция двух массивов. Параметр mode может принимать значения 0, 1 или 2
cumproduct(a[, axis]) Произведение по измерению axis массива a с промежуточными результатами
cumsum(a[, axis]) Суммирование с промежуточными результатами
diagonal(a[, k[, axis1[, axis2]]]) Взятие k–й диагонали массива a в плоскости измерений axis1 и axis2
dot(a, b) Внутреннее (матричное) произведение массивов. По определению: innerproduct(a, swapaxes(b, – 1, – 2)), т.е. с переставленными последними измерениями, как и должно быть при перемножении матриц
dump(obj, file) Запись массива a (в двоичном виде) в открытый файловый объект file. Файл должен быть открыт в бинарном режиме. В файл можно записать несколько объектов подряд
dumps(obj) Строка с двоичным представлением объекта obj
fromfunction(f, dims) Строит массив, получая информацию от функции f(), в качестве аргументов которой выступают значения кортежа индексов. Фактически является сокращением для f(*tuple(indices(dims)))
fromstring(s[, count[, type]]) Создание массива на основе бинарных данных, хранящихся в строке
identity(n) Возвращает двумерный массив формы (n, n)
indices(dims[, type]) Возвращает массив индексов заданной длины по каждому измерению с изменением поочередно по каждому изменению. Например, indices([2, 2])[1] дает двумерный массив [[0, 1], [0, 1]].
innerproduct(a, b) Внутреннее произведение двух массивов (по общему измерению). Для успешной операции a.shape[-1] должен быть равен b.shape[-1]. Форма результата будет a.shape[: – 1] + b.shape[: – 1]. Элементы пропадающего измерения попарно умножаются и получающиеся произведения суммируются