355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Робин Ли » Baidu. Как китайский поисковик с помощью искусственного интеллекта обыграл Google » Текст книги (страница 6)
Baidu. Как китайский поисковик с помощью искусственного интеллекта обыграл Google
  • Текст добавлен: 19 апреля 2021, 09:02

Текст книги "Baidu. Как китайский поисковик с помощью искусственного интеллекта обыграл Google"


Автор книги: Робин Ли


Жанр:

   

Публицистика


сообщить о нарушении

Текущая страница: 6 (всего у книги 6 страниц)

Бизнес-вызов: приземление

Однажды Лу Цзичанг сказал: «Голову держи над облаками, но ногами стой на земле». Это значит, что вы должны держать голову выше, чтобы видеть далеко и ясно, но ноги должны ступать по земле, чтобы шаг за шагом двигаться вперед.

Первое, что мы должны сделать, чтобы дать искусственному интеллекту жизнь, – приземлиться. ИИ сулит нам очень большие и долгие изменения. Для приземления потребуется хороший пользовательский опыт получения реальной выгоды. Также потребуется понятный сценарий – интеллектуальный помощник или беспилотный автомобиль должны иметь достаточно информации о людях, чтобы иметь для них ценность. И, наконец, нужна эффективная бизнес-модель, чтобы добиться устойчивости.

Таким образом, задача заключается в том, чтобы преобразовать пользовательский опыт в пользовательскую ценность, а затем подобрать бизнес-модель для создания инновационного цикла: данные – знание – опыт – новые данные. Попав в такой цикл, ИИ сможет продвигаться вперед стремительно, как снежный ком.


Рис. 2-2. Инновационный «маховик» искусственного интеллекта

Генеральный директор (CEO) каждой компании должен обратить внимание на искусственный интеллект. Затем необходимо найти ресурсы, в том числе нанять тех людей, которые действительно разбираются в ИИ, и тех, которые могут взять на себя ответственность за принятие решений. Компаниям, будь то розничная торговля, обрабатывающая промышленность или туризм, следует разработать собственную интеллектуальную стратегию в соответствии с их бизнес-целями, а затем твердо ей следовать. При этом у исполнителей должны быть достаточные полномочия, чтобы посредством стратегического их разделения внедрять ИИ в конкретные операции.

Модель «рабочего двигателя» может использоваться для реализации стратегии ИИ.

Во-первых, в соответствии с направлением развития искусственного интеллекта следует переосмыслить позиционирование предприятия – ориентируясь на свои бизнес-цели, выбрать новое направление развития, определить новую миссию и видение в эпоху ИИ.

Во-вторых, в соответствии с новым позиционированием предприятия разработать интеллектуальную стратегию. Это возлагает на руководство компании большую ответственность. Оно должно четко понимать, «что входит» в сферу, а «что выходит», чтобы принимать эффективные решения.

При принятии решений о «входе/выходе» следует придерживаться определенных принципов. Иерархическая структура принятия решения консультанта Кремниевой долины Джеффри Мура (Jeffrey Moore) – хороший пример оценки развития искусственного интеллекта. Суть в том, чтобы войти в сферу с высоким ростом и выйти из сферы с низким. Искусственный интеллект будет постоянно создавать новые сферы с огромным потенциалом роста, такие как беспилотные автомобили, роботы, умные устройства, диалоговые системы. Но в то же время он может и чинить препятствия для некоторых отраслей. Новые продукты с функциями ИИ заменят уже имеющиеся. Новые аппаратные средства и программные стеки нанесут ущерб старым стекам HW. Хорошей идеей будет составить полный список сфер и категорий высокого роста, возможного роста и низкого. Так руководство сможет принимать систематические и взвешенные решения.

Далее следует определить исходные данные продукта. Является ли он «ценным и уникальным»? Стоит отметить, что в эпоху ИИ успех продукта будет во многом зависеть от способности компании сохранять свою индивидуальность. Только так возможно получить уникальные активы данных (приносящие уникальные знания).

Следующий шаг – понимание неопределенности, риска, прибыли и графика для прогнозирования и управления. «Модель горизонта» – оптимальное решение. Примерный план развития: период H1 (следующие 18 месяцев) – упор делается на основное направление бизнеса; период H2 (следующие 18-36 месяцев) – инвестирует в создание прибыльной инновации; период H3 (следующие 36 месяцев+) – ставки делаются на долгосрочные инновации, которые имеют большой потенциал и высокий риск. Эра искусственного интеллекта предлагает широкий ассортимент возможностей для периодов H2 и H3. А некоторые из инвестиций в ИИ могут помочь увеличить прибыль и от периода H1. Сейчас искусственный интеллект находится на ранней стадии своего развития, что порождает множество неизвестных. Для того, чтобы глубже понять ИИ, важно принимать принципиальные и прагматические решения.

Во-первых, на этапе реализации стратегии внедрения ИИ предприятию следует придерживаться принципа «структурной целостности» в опыте продукта, технологической архитектуре и бизнес-модели. Необходимо развиваться последовательно. Если вы меняете направление ICS (архитектура сервера/клиента) или инвестируете в «автономную систему», технологические решения должны быть синхронизированы с продуктами и бизнес-решениями.

Во-вторых, важно, чтобы предприятия, использующие ИИ, следовали за направлением развития технологии глубокого обучения. Синхронизация имеет большое значение.

Ведущие компании индустрии испытывают потребность в изменении мира, стремятся сформировать мировоззрение мирового технологического общества. Они собирают сильные научно-исследовательские группы и проводят масштабные исследования. Их цели соответствуют позиционированию компаний и совершенствованию их продуктов. DeepMind, Google, Baidu и некоторые другие гиганты отрасли разделяют эту позицию.

Обновление исследовательских механизмов также является важным шагом на пути развития. Ведь традиционно ИТ-индустрия и наука не очень успешны в коммерциализации результатов исследований. Недавние OtherLab или OpenAI и некоторые другие стартапы искусственного интеллекта активно набирают собственные исследовательские команды. И это превращается в тенденцию. Потому что для разработки структурированных и устойчивых решений требуются усилия различных организаций (ранние экосистемы, крупные предприятия, учебные и научно-исследовательские учреждения).

Инвестиции являются важным фактором, который необходимо учитывать. С углублением интеллектуальной революции, ожесточается борьба за таланты. Это приводит к росту стоимости искусственного интеллекта. Некоторые стартапы привлекают внушительные суммы денег, потому что в долгосрочной перспективе отдача от инвестиций может быть очень велика (высокий риск/высокая отдача). Ключ к планированию инвестиций заключается в приоритезации ресурсов и продуманном процессе принятия решений, отражающем риски, связанные с искусственным интеллектом.

После того, как все необходимые условия сойдутся, лидерские качества человека станут решающим фактором, ценнейшим и перспективнейшим. Эпоха ИИ базируется на технологии, которая абсолютно не похожа на предыдущую (в качестве ядра выступают нейронные вычисления). Поэтому она требует от руководства высокого внимания и ответственности. Кроме того, новые отрасли в сфере ИИ настолько разнообразны и междисциплинарны (все, что вы можете себе представить от генетики до робототехники), что компаниям требуются люди, способные работать с инновациями (найти их непросто, потому что сегодняшнее общество сосредоточено на развитии узкоспециализированных отраслей). Билл Бакстон, главный научный сотрудник Microsoft Research, предлагает эффективные решения для создания новаторской команды высшего руководства.

Стоит напомнить, что в основе инновационного «маховика» ИИ лежит цикл обратной связи: данные – знания – опыт – новые данные. Оптимизация емкости и скорости этого цикла обратной связи является важной составляющей планирования.

Необходимая макросреда

Предприятия и научно-исследовательские институты не могут работать без хорошей макросреды. Национальный китайский интеллектуальный план призывает к созданию интеллектуальной инфраструктуры на уровне страны. Ведь чтобы встретить эру искусственного интеллекта, необходимо создать надлежащую почву.

Во-первых, необходимо обеспечить беспрепятственный доступ к данным. Данные становятся стратегическим активом для многих организаций и могут рассматриваться как новый тип «природных ресурсов». Для правительств, в частности, данные могут быть полезны в процессе разработки стратегии политического управления. Это может послужить стимулом для более широкого внедрения инноваций.

Во-вторых, нужны инструменты и платформы с открытым исходным кодом. Эра искусственного интеллекта требует нового стека программного обеспечения Silicon+. При этом важно, чтобы инструменты и платформы с открытым исходным кодом, такие как PaddlePaddle, были доступны и разработчикам, и новаторам. Глядя в будущее, мы должны постоянно снижать степень участия человека в процессах и передавать задачи инструментам и модулям. Например, AWS (Amazon Cloud Service) делает проще вычисления, а некоторые AI-as-a-service (AI-Service) делают технологии ИИ более доступными.

В-третьих, новаторы должны быстро создавать рыночные и политические условия для своих продуктов и пользователей. Это также очень важно. Потому что инновационный «маховик» ИИ требует быстрого цикла обратной связи.

В-четвертых, в начале эпохи искусственного интеллекта поощряются непрерывные прикладные исследования. В частности, разработка ML-алгоритма (машинного обучения), который может получать знания из данных и создавать опыт – ядро инновационного «маховика». На данном этапе развития ИИ непрерывные исследования – важная составляющая деятельности для всех предприятий этой сферы.

В-пятых, следует озаботиться образованием. Требования ИИ к человечеству неизбежно приведут к проблеме нехватки талантов. Образование должно стать обширнее и качественнее для того, чтобы для проектирования и реализации алгоритмов машинного обучения хватало человеческого ресурса.

Наконец, должен быть сформирован новый структурированный подход, превращающий знания внешнего мира в организованный и доступный материал. Это имеет решающее значение для внедрения инноваций ИИ во многие компании и сферы жизни.

Культура и управление интеллектуальным обществом

Потребуются десятилетия, чтобы искусственный интеллект начал полноценно функционировать. Амбиции и претензии на изменения мира требуют долгосрочного инвестирования. Поэтому долгосрочное планирование и стратегическое управление играют важную роль в эпоху искусственного интеллекта. Нас ожидает трансформация культуры бизнеса и управления во всем мире.

В частности, это требует, чтобы руководство устанавливало более крупный «лицензионный пакет». Он позволит руководящей группе иметь больше свободы и возможностей делать ставки на инновации. Это важный аспект ежегодного управления. Маск говорил, что «инновация, потерпевшая неудачу, не должна быть наказана».

От компаний, пострадавших от ИИ, потребуется обновление всей организации, чтобы влиться в обновленный мировой ландшафт. Высшее руководство должно жестко держать руку на пульсе и управлять процессами трансформации.

Одним из факторов, связанных с долгосрочным менеджментом, является создание новой организационной структуры, которая будет достаточно зрелой, чтобы легко адаптироваться к изменениям, вызванным искусственным интеллектом. Alphabet (Управляющая компания Google после реорганизации) – одна из самых ранних попыток. В этом отношении китайские компании внедряют больше управленческих инноваций, чем США.

Культура – это сила организации, которая может выйти за рамки нескольких поколений лидеров и деловой активности. Для многих зрелых компаний (Google, Baidu) доступ к возможностям искусственного интеллекта представляет собой серьезную проблему: потребность в новых талантах, новых патентах на технологии и создании новой культуры. Очень важно быть активными, терпеливыми и настойчивыми, поскольку культурная трансформация является одной из самых сложных задач для зрелого предприятия. Кроме того, забыть о старых методах работы гораздо сложнее, чем внедрить новые.

Так как мы находимся на начальной стадии развития искусственного интеллекта, привлечение и поддержание специалистов очень важно для управленцев.

В целом, долгосрочное планирование и стратегическое управление являются ключом к использованию любой важной возможности не только в эпоху ИИ. Как изменить существующую инфраструктуру, чтобы привлечь больше денег, талантов и добиться больших результатов – интересная и сложная задача для лидеров бизнеса. Решение глубоких, интересных и сложных проблем является признаком прогресса человечества.

Современное состояние развития технологий ИИ

Статьи на темы искусственного интеллекта, глубокого обучения и новых исследований выходят каждый день. Сегодня, как в эпоху Возрождения, наука меняется на глазах. Ведь истинный смысл науки заключается в том, чтобы наблюдать за миром и обобщать знания. Мы наблюдаем, как мир становится все более компетентным. Мы используем алгоритм глубокого обучения, и появляются новые знания.

Это не только физика, биология, материаловедение… Каждая область науки отчаянно быстро движется вперед. Таким образом, человечество находится в состоянии быстрого прогресса. Давайте в конце этой главы снова обратим внимание на квантовые вычисления.

Отметим очень интересную связь между искусственным интеллектом и нейро-вычислительными структурами, использующими распределенное векторное представление слов. Их основные операции основываются на линейной алгебре, а не булевой. Это говорит о том, что человеческий мозг в чем-то схож с физикой. Даже ученые предполагают, что человеческий мозг работает по принципу, аналогичному квантовой физике, теори и алгоритму квантовых вычислений.

Квантовые вычисления имеют важное значение в сфере искусственного интеллекта. Microsoft и Google, например, создали лабораторию квантового ИИ и ведут активную разработку проектов в этой области. Вопрос об уместности квантовых вычислений в ИИ не должен рассматриваться совсем. А вот вопрос о том, когда квантовые вычисления станут частью искусственного разума, уместен. Существуют разные мнения на это счет. Некоторые отмечают промежуток времени до 5 лет или даже меньше до того момента, как появятся ранние квантовые машины.

Почему квантовые вычисления так важны? Потому что они тесно соприкасаются с человеческим интеллектом. В основе квантовых вычислений лежит квантовая суперпозиция. Квантовая способность изменяет состояние при добавлении энергии. Современный компьютер может занимать только одну позицию – цифру 0 или 1. В то время как квантовые суперпозиции могут занимать три позиции одновременно. А их вычислительная мощность растет экспоненциально.

Преимущество в том, что многие проблемы с данными могут быть решены с помощью квантовых вычислений. Предыдущий подход – это разложение чисел. Например, шифрование и дешифрование данных, декомпозиция с использованием простых чисел. Довольно трудно получить большое число при разложении простых. Например, вычислить разрушение Земли таким образом практически невозможно. Но с помощью квантового алгоритма вычислений это станет не только возможным, но и относительно быстрым процессом. Этот алгоритм сделает машинное обучение вполне естественным.

В связи с этим необходимо усовершенствовать аппаратное обеспечение. В настоящее время все аппаратные средства базируются на булевой алгебре, а основные вычисления глубинного обучения обеспечиваются матричными и тензорными расчетами, а не вычислениями 0 и 1. И они должны выполнять дифференциальные операции. Квантовые вычисления идентичны, и каждый раз, когда квантовая энергия изменяется, образуется вычислительная связь между матрицей и тензором. Природа этих вычислений на самом деле та же самая, что и в человеческом мозге. Мэтью Фишер, Пан Цзяньвэй, Чжу Цин Чжи и другие ученые считают, что суть сознания – это квантовая запутанность.

В 2007 году журнал Nature опубликовал результаты лабораторных исследований, которые проводились под руководством Грэма Флеминга в Калифорнийском университете в Беркли. В ходе исследования лазеры сверхкоротких импульсов были применены для облучения светособирающих комплексов. Это помогло установить, что квантовые эффекты играют незаменимую роль в фоточувствительном синтезе. Революция в области квантовых вычислений – это доказательство единения природы и человеческого интеллекта. Открытие влияния квантовых эффектов на живые организмы в значительной степени вдохновило человечество на новые исследования квантовых вычислений и человеко-машинных комбинаций.

Несмотря на то, что квантовый компьютер еще не создан, многие люди уже предполагают найти ему применение в сфере машинного обучения. В этой области уже существует множество передовых статей и исследований. Предположительно через 10 лет после появления квантового компьютера это приведет к фундаментальному изменению в индустрии искусственного интеллекта. Квантовые вычисления ИИ и глубокие вычисления ядра обучения полностью совпадают. Теперь мы идем в обход: любой алгоритм должен превращаться в булевую алгебру, используя 0 и 1 для моделирования дифференциального уравнения.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.


    Ваша оценка произведения:

Популярные книги за неделю