355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Фостер Флинт » История Земли » Текст книги (страница 10)
История Земли
  • Текст добавлен: 4 октября 2016, 04:37

Текст книги "История Земли"


Автор книги: Ричард Фостер Флинт



сообщить о нарушении

Текущая страница: 10 (всего у книги 26 страниц)

Дискуссия

Эволюция в основе своей состоит в адаптации – приспособлении к окружающей среде. Изменения происходят постоянно – они имеют или характер мутаций или происходят в результате новых сочетаний свойств, возникающих в последующих поколениях. Они поставляют сырой материал, над которым работает естественный отбор. При этом испытываются всевозможные виды новых приспособлений, и те из них, которые оказались «успешными» в данных условиях, сохраняются и в будущем, неудачные же постепенно отсеиваются.

Когда Чарлз Дарвин впервые описал естественный отбор в 1859 г., он рассматривал этот процесс с точки зрения приспособленности организма для жизни в данной среде, конкуренции между отдельными особями, преуспевания некоторых групп и исчезновения менее приспособленных.

В рамках геологической истории успех групп организмов зависит от двух факторов: 1) способности эффективно воспроизводиться и 2) способности занимать территорию и удерживать ее в условиях конкуренции. В истории динозавров, цветковых растений или мамонтов ледникового периода все эти вопросы не имели никакого отношения к морали. Мораль – это человеческое понятие, и оно вступает в силу лишь на поздних.этапах истории человека.

Следует добавить, что изучение летописи ископаемых остатков не приводит нас к установлению какой-либо общей цели эволюции. Не доказано, что эволюция следовала в каком-либо определенном направлении и стремилась к определенной цели. Другими словами, эволюция, очевидно, не имеет программы. Очевидно, она не следует также и по прямой линии. Ее пути часто переплетаются (как мы видели на рис. 30) и отклоняются от прямого направления, но они никогда не повторяются в точности. Такой путь развития мы определяем как вероятностный, являющийся результатом непрерывного ряда ответных реакций живых организмов на новые возможности, возникающие при изменении среды.

Сколько времени потребовалось для того, чтобы процесс эволюции создал все то огромное разнообразие растений и животных – более миллиона видов, – которое существует сейчас? В начале этого процесса, как ,мы отмечали в седьмой главе, постепенно возникли первые одноклеточные организмы. Это было более 3 миллиардов лет назад. Ближе к нашему времени органический мир достиг в основном своего современного состояния к концу плиоцена, возможно 2-3 миллиона лет назад. Большая часть эволюционных процессов протекла в интервале между этими двумя моментами. Никого, кто изучал этот процесс, не удивит то обстоятельство, что развитие организмов могло достичь современной степени приспособленности и разнообразия за отрезок времени немногим более 3 миллиардов лет. Ученые считают, что этого времени было вполне достаточно. Действительно, если бы геологические процессы, которые вызывали изменения среды обитания, протекали быстрее, то возможно, что та же степень эволюционного развития, которую мы видим сейчас, могла быть достигнута за более короткое время.

Скорость эволюционных изменений, конечно, менялась в широких пределах в зависимости от времени и места, была неодинаковой у различных видов организмов и зависела, как и сейчас, от скорости и пространственного распределения изменений окружающей среды. Например, набор ископаемых остатков показывает, что за 63 миллиона лет геологического времени, то есть за кайнозойскую эру, беспозвоночные морские организмы развивались медленно и изменились незначительно, а большинство наземных животных развивалось гораздо быстрее и при этом сильно изменялось. Эта разница отражает различия в скорости изменения среды. Природная обстановка на суше быстро реагировала на поднятия, горообразование и изменение температур и атмосферных осадков, в то время как природные условия в море оставались сравнительно стабильными. И все же с точки зрения человеческого календаря любая скорость эволюции кажется малой. За период, предположительно составляющий 10 000 лет, в течение которого собаки и скот были одомашнены и подверглись воздействию искусственного отбора, не образовалось ни одного нового вида. Искусственные изменения привели не более чем к появлению разновидностей в пределах одного вида.

Мы должны подчеркнуть этот основной принцип. Пока окружающие условия остаются стабильными, популяция организмов тоже остается стабильной, с небольшими эволюционными изменениями. Когда же среда начинает изменяться и, таким образом, становится неустойчивой, населяющие ее организмы также становятся нестабильными. Таким образом, окружающая среда создает предпосылки для проверки биологических "изобретений", которые постоянно появляются. Когда мы проследим историю живых организмов, восстановленную по ископаемым остаткам, мы увидим много примеров таких "изобретений"; некоторые из них оказались успешными, а другие, не выдержав испытаний, исчезли с лица Земли.

Тесная связь организмов со средой, их восприимчивость к изменениям среды, которая ясно прослеживается по ископаемым остаткам, найденным в древних пластах, должна послужить уроком современному человеку. На территориях, где в сильной степени развита промышленность, подчас происходят резкие изменения условий жизни. Некоторые из этих изменений более заметны и невыгодны для организмов (по крайней мере некоторых), чем изменения, обусловленные климатическими колебаниями или другими природными процессами. Изменения обоих видов, как можно ожидать, вызывают соответствующие ответные реакции (приспособление или постепенное вымирание) в биосфере этих территорий. Возможные последствия этого не следует недооценивать человеку – единственному виду, который вызывает изменения и может их контролировать с учетом конечных результатов – благоприятных или катастрофических для животных и растений Земли.

Литература

Blum H. F., 1951. Time's arrow and evolution: Princeton University Press.

De Вeer G. R., 1964. Atlas of evolution: Thomas Nelson 8c Sons Ltd., Lodnon.

Dobzhansky Theodosius. 1950. The genetic basis of evolution: "Scientific American", January 1950, p. 2-11.

Mood у Р. A., 1962, Introduction to evolution: 3d ed., Harper 8c Row, Inc., New York.

Smith H. W.. 1961, From fish to philosopher: The Natural History Library. Anchor Books. Doubleday 8cCo., Garden City, New York. (Paperback.)

Stebbins G. L.. 1966, Processes of organic evolution: Prentice-Hall, Englewood Cliffs. N. J.

Volpe E. P., 1967. Understanding evolution: W. C. Brown Co., Dubuque. la. (Paperback.).

Yanofsky Charles. 1967, Gene structure and protein structure: "Scientific American", v. 216, p. 80-94.

Глава девятая. Особенности ископаемых остатков

Палеонтологическая летопись

В нашем обсуждении геохронологической шкалы и эволюции органического мира часто упоминалась летопись ископаемых остатков, или палеонтологическая летопись. Под этим термином подразумевается вся совокупность собранных, определенных, занесенных в каталоги и описанных ископаемых остатков различных видов, которые хранятся в музеях, университетах и других научно-исследовательских учреждениях во всем мире. Палеонтологическая летопись включает сотни коллекций и миллионы больших и малых ископаемых, от огромных динозавров и китов до микроскопических животных и растений. Сюда относятся не только сами ископаемые, но и все, что о них написано, целые библиотеки научных книг и статей, в которых содержатся описания и рисунки ископаемых и рассматривается их положение в геохронологической шкале. К настоящему времени полностью описано 100 000 видов ископаемых морских беспозвоночных, и это число постоянно увеличивается.

Таким образом, составление летописи ископаемых – очень большое и важное дело, в котором участвуют тысячи ученых и технических специалистов, и это становится очевидно для каждого, кто посетит какой-либо институт, занимающийся изучением ископаемых остатков. Каждый любознательный посетитель хочет знать, как выглядят ископаемые, как могут сохраняться животные и растения в течение миллионов лет и каким образом в случае необходимости производится реконструкция ископаемых. Ответ на эти вопросы сделал бы нашу историю живых организмов гораздо более понятной.

Что мы могли бы знать об истории Земли, если бы организмы, населявшие Землю в прошлом, хотя бы частично не сохранились в ископаемом состоянии? Конечно, мы знали бы о геологических циклах, о принципе актуализма и движении плит земной коры. Но наша шкала геологического времени была бы очень примитивной и гораздо менее полезной, чем сейчас, наши реконструкции природных условий прошлого гораздо менее полными, а пути эволюции можно было бы восстанавливать лишь предположительно.

Сохранение органических остатков

Существованием ископаемых в довольно большом количестве мы обязаны процессу консервации некогда живых организмов. Хотя большая часть отдельных организмов, некогда живших на Земле, была уничтожена, местами их тела или части тел оказались защищенными от воздействия кислорода. Они были быстро погребены под осадками и затем превращены в породы в результате осаждения минерального вещества из медленно просачивающихся вод, пропитывающих грунт. Такова в общих чертах история большинства ископаемых. Давайте посмотрим более внимательно, каким путем сохраняются органические остатки.

Когда животное или растение умирает, большая часть его вещества довольно быстро подвергается разрушению. Другие организмы, среди которых особенно важную роль играют бактерии, пожирают или химически разлагают его. Обычной реакцией в химическом разложении как органического, так и неорганического вещества является окисление. Мы видим в лесу, что ствол упавшего дерева, пролежавший на земле несколько лет, становится бурым и сгнивает. Ископаемые остатки, встречающиеся в пластах пород, составляют лишь ничтожную часть когда-то живших организмов, избежавшую общей участи. В виде исключения их тела были защищены от окисления и трупоядных животных, что обычно происходило благодаря погружению в воду в момент смерти или вскоре после него.

Огромное большинство ископаемых остатков принадлежит морским беспозвоночным – различным моллюскам и им подобным организмам. Мягкие ткани их тел или заживо съедались хищниками, или пожирались животными-могильщиками после смерти этих организмов. Но твердые раковины сохранялись и заносились осадками, отлагавшимися на дне моря. На суше возможность сохранения была гораздо меньше. Но даже там некоторые животные и растения попадали в живом или мертвом виде в воду, которая предохраняла их тела от окисления. Другие быстро погребались под накапливающимися осадками, которые вскоре после этого насыщались грунтовыми водами. Часто захоронение как животных, так и растений происходило при паводках на реках (фото 13). Другой причиной сохранности могло быть быстрое накопление вулканического пепла, а иногда и текущей лавы. Короче говоря, главными факторами, обеспечивающими сохранность остатков на первых этапах, были быстрое погребение или погружение в воду, или и то и другое вместе. Почти такое же значение имеет третий фактор – наличие в мертвом организме твердого вещества (раковины, костей, зубов или рогов), которое противостоит действию трупоядных организмов и химическому разложению. Почти все ископаемые остатки состоят из одних скелетов; мягкие ткани сохраняются редко и только в совершенно особых условиях. Однако, если тело захороняется целиком, оно может сохраняться до мельчайших деталей (фото 4). Даже игра красок на крыльях ископаемых насекомых сохранилась в течение сотен миллионов лет.

Фото 13. Это песчаное русло временного водотока большую часть времени сухое или почти сухое. При сильных ливнях по нему течет мутный поток, в котором тонут животные, а их трупы уносятся течением и быстро погребаются в аллювии

Способы сохранения. Образование ископаемых остатков не обязательно заканчивается после захоронения. Они могут подвергаться и другим воздействиям, в том числе таких процессов, которые полностью меняют их состав или разрушают вещество, сохраняя внешнюю форму.

Наиболее простой пример представляет тело, которое оказалось заключенным в лед, асфальт или другое природное вещество, которое сохраняет материал этого тела. Именно так случилось с 36 мамонтами и несколькими шерстистыми носорогами, найденными в северной Сибири за последние 200 лет; их трупы сохранились в грунтах, находившихся в мерзлом состоянии со времени последнего оледенения. Мясо, по крайней мере одного из них, было настолько свежим, что его ели ездовые собаки. Распространено ошибочное мнение о том, что некоторые из этих мамонтов были найдены во льду ледников. Это не так. Насколько нам известно, они были заключены в промерзшем иле. Возможно, животные утонули в болотах как раз перед осенними заморозками, при этом ил промерз на большую глубину, и на следующий год, ранней весной, еще до того, как он оттаял, речное половодье отложило толстый слой аллювия. Этот слой препятствовал таянию залегавших ниже пород. Радиоуглеродные определения возраста, сделанные для шкуры и шерсти этих животных, показали, что между самым ранним и самым поздним захоронением прошло более 30 000 лет. Таким образом, если взять только 36 найденных мамонтов, то в среднем захоронение животных, утонувших в трясине, должно было происходить только раз в 800 лет. По сравнению с этим число мамонтов, которые погибли более обычным способом, должно быть гораздо больше. Согласно подсчетам, из Сибири были вывезены в виде слоновой кости бивни 20 000-30 000 мамонтов, найденных на поверхности. Возможно, еще большее количество бивней и целых туш все еще погребено в мерзлом иле.

Другой пример – это туши шерстистых носорогов ледниковой эпохи, сохранившиеся даже с характерной для них длинной шерстью в нефти, которая сочилась из земли и затем затвердевала. В восемнадцатой главе описан случай захоронения костей миллионов млекопитающих в нефтяном озере в Калифорнии [такие же захоронения есть и около города Баку. – Ред.]. Химизм сохранения остатков в нефти во многом сходен с мумификацией человеческих останков, использовавшейся древними египтянами. Бальзамировщики использовали нефть, которая не пропускает воздуха и потому препятствует окислению.

Фото 14. Окаменелое дерево. Срез небольшого ствола. Клеточная структура сохранилась вследствие заполнения клеток кремнеземом

Гораздо чаще – практически всегда – мягкие части трупов разрушаются, а твердые подвергаются окаменению. Этот процесс, в основе химический, протекает в толще грунта и представляет собой часть медленно протекающего процесса превращения осадков в осадочные породы. Медленно просачивающаяся грунтовая вода отлагает минеральные вещества в пористых внутренних частях костей или в полостях клеток растений (фото 14). Грунтовая вода может также растворять первичное вещество раковин или костей и замещать его каким-либо другим веществом, обычно кремнеземом, иногда в виде опала; реже, при соответствующем химизме среды, происходит замещение каким-либо редким минералом, как, например, чистым серебром. Наконец, окаменение может совершаться путем естественной возгонки, происходящей глубоко под землей. При этом процессе водород и кислород, содержавшиеся в исходном органическом веществе, медленно выделяются в виде различных газов и остается только углерод. Таким образом, форма организма, очень часто это бывают рыбы, сохраняется в виде почти чистого угля (фото 15).

Фото 15. Рыба длиной 15 см (род Redfieldius), сохранившаяся в углефицированном виде в результате естественной возгонки в триасовых сланцах (Дурхэм Конн, США)

Хотя большая часть известных нам ископаемых представляет собой окаменелые раковины и кости, существуют и другие способы консервации организмов. В слоях ила и глины, отложенных на дне глубоких озер, часто встречаются отпечатки листьев (фото 16). Листья опускаются на дно озера и постепенно покрываются отложениями. Вещество листа разлагается, но отпечаток его формы остается. Иногда таким же образом сохраняются отпечатки насекомых (фото 36).

Фото 16. Отпечаток листа платана в эоценовых алевролитах, штат Юта. Сам лист разрушен; темный цвет объясняется наличием минерального вещества, отложенного грунтовыми водами во время превращения первичного осадка в горную породу

Редкая разновидность отпечатка была обнаружена в слое базальта – лавовом лотоке олигоценового или миоценового возраста – около города Каули, штат Вашингтон. Двадцать-двадцать пять миллионов лет назад на пути этого потока, наступавшего на мелководное озеро, оказался лежавший на боку труп носорога длиной более двух метров; труп был заключен в лаву, которая в воде остыла настолько быстро, что не разрушила органических тканей. Таким же образом лава залила и росшие поблизости деревья.

Открытые в 1935 г. остатки носорога представляли собой небольшую полость в теле лавового потока, имевшую форму раздувшегося трупа носорога (рис. 33); в этой полости находились челюсть, зубы и другие кости животного. Для изучения формы тела носорога был сделан гипсовый слепок полости.

Рис. 33. Реконструкция позы трупа ископаемого носорога (Вашингтон). (Пояснение дано в тексте.)

Еще один вид ископаемых остатков, никогда не содержавших органического вещества, – это отпечатки следов (фото 17). Из них сохраняются только те следы, которые были перекрыты тонкими отложениями, прежде чем их успела разрушить эрозия. Иногда даже крохотные следы мелких насекомых (фото 18), а также отпечатки дождевых капель сохраняются очень отчетливо. Такие отпечатки не просто редкость. Они содержат информацию о размере животного, длине конечностей, наличии когтей, копыт и т.д., а также о том, как передвигалось это животное – шагами, бегом иди прыжками. Другой, на первый взгляд странный, но надежный источник сведений – это окаменевшие экскременты животных. Изучение их тонких срезов под микроскопом помогает определить, какую пищу употребляли животные, и неопровержимо свидетельствует о том, что некоторые из них были каннибалами. Они питались животными того же вида.

Фото 17. Цепочки следов, в большинстве длиной 25-45 см, оставленных динозаврами на поверхности напластования триасовых песчаников. Государственный заповедник динозавров, Коннектикут. Более 200 миллионов лет назад этот песчаник был песчаным аллювием. Стрелками указаны гораздо более мелкие следы, возможно, принадлежащие животному, изображенному на рис. 47

Таковы основные способы образования и консервации ископаемых остатков – глубокое промерзание тел, окаменение костей и раковин, естественные отливки, отпечатки следов; всем им сопутствует захоронение тем или иным способом, обычно очень быстрое (фото 19).

Фото 18. Следы насекомых и птиц в алевролитах, оставленные около 45 миллионов лет назад на побережье эоценового озера в штате Юта

Реконструкция. Для того чтобы ископаемые остатки могли по-настоящему изучать специалисты, они должны быть реконструированы. Некоторые ископаемые, особенно морские беспозвоночные (двустворчатые моллюски, улитки, устрицы), почти не требуют реконструкции, кроме разве подбора соответствующих друг другу створок раковины. Но реконструкция ископаемого позвоночного животного – задача гораздо более сложная. Чаще всего отдельные кости оказываются сдвинутыми или разбросанными. Прежде чем собирать их, каждую кость нумеруют (или помечают как-то иначе) и тщательно фотографируют в том положении, в каком она была найдена. Затем, уже в лаборатории, они очищаются от вмещающей породы и подбираются по порядку специалистом, знающим анатомию.

Фото 19. Палеонтологи откапывают кости огромного динозавра диплодока в юрских песчаниках во впадине Бигхорн, Вайоминг

Восстановление скелета вымершего животного основывается на общих анатомических закономерностях, но реконструкция мягких тканей, кожи и шерсти не может быть совершенно точной, потому что она может осуществляться только по аналогии с ныне живущими родственными видами. Хотя о различных, менее очевидных анатомических подробностях можно только догадываться, все же ископаемые остатки рассказывают нам гораздо больше, чем это кажется с первого взгляда. Остатки наземных животных включают не только кости, зубы, рога и пластинки панциря, но также превосходные отпечатки шкуры и следы, сохранившиеся до мельчайших подробностей. В некоторых случаях можно судить об умственных способностях животного по форме и величине гипсовой отливки внутричерепной полости, содержавшей мозг. Конфигурация черепа позволяет также судить об органах чувств – зрения, слуха, обоняния – и предположить, могло ли это животное издавать звуки. Иногда ископаемые кости сохраняют даже следы болезней животного. При восстановлении облика вымерших млекопитающих, живших во время последнего оледенения, современным ученым приходят на помощь художники каменного века, которые оставили на стенах пещер изображения животных (на которых они охотились) в том виде, в каком они их наблюдали (рис. 34).

Рис. 34. Точное изображение вымерших млекопитающих ледниковой эпохи, сделанное художниками позднего каменного века. Вверху шерстистый носорог. Внизу найденное в Западной Франции изображение нападающего мамонта, вырезанное на куске клыка 10 000-16 000 лет назад. Художник не вырезал до конца клыки, хобот и передние ноги


    Ваша оценка произведения:

Популярные книги за неделю