355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Фейнман » Фейнмановские лекции по физике. 8. Квантовая механика I » Текст книги (страница 3)
Фейнмановские лекции по физике. 8. Квантовая механика I
  • Текст добавлен: 8 октября 2016, 17:18

Текст книги "Фейнмановские лекции по физике. 8. Квантовая механика I"


Автор книги: Ричард Фейнман



сообщить о нарушении

Текущая страница: 3 (всего у книги 9 страниц) [доступный отрывок для чтения: 4 страниц]

§ 5. Спектр абсолютно черного тела

Мы хотим теперь использовать наши правила для бозе-частиц, чтобы еще раз получить спектр излучения абсолютно черного тела [см. гл. 42 (вып. 4)]. Мы сделаем это, подсчитав, сколько фотонов содержится в ящике, если излучение находится в тепловом равновесии с атомами в ящике. Допустим, что каждой световой частоте со соответствует определенное количество N атомов с двумя энергетическими состояниями, отличающимися на энергию DЕ =hw (фиг. 2.6).

Фиг. 2.6. Излучение и поглощение фотона с частотой w.

Состояние с меньшей энергией мы назовем «основным», с большей – «возбужденным». Пусть Nосни Nвозб – средние числа атомов в основном и возбужденном состояниях; тогда для теплового равновесия при температуре Т из статистической механики следует

Каждый атом в основном состоянии может поглотить фотон и перейти в возбужденное состояние, и каждый атом в возбужденном состоянии может испустить фотон и перейти в основное состояние. При равновесии скорости этих двух процессов должны быть равны. Скорости пропорциональны вероятности событий и количеству имеющихся атомов. Пусть n – среднее число фотонов, находящихся в данном состоянии с частотой w. Тогда скорость поглощения из этого состояния есть Nocнn|а|2, а скорость испускания в это состояние есть Nвозб(n+1)|а|2, Приравнивая друг другу эти две скорости, мы получаем

Сопоставляя это с (2.30), имеем

Отсюда найдем

Это и есть среднее число фотонов в любом состоянии с частотой w при тепловом равновесии в полости. Поскольку энергия каждого фотона hw, то энергия фотонов в данном состоянии

есть nhw, или

Кстати говоря, мы уже получали подобное выражение в другой связи [см. гл. 41 (вып. 4), формула (41.15)]. Вспомните, что для гармонического осциллятора (скажем, грузика на пружинке) квантовомеханические уровни энергии находятся друг от друга на равных расстояниях hw, как показано на фиг. 2.7.

Фиг. 2.7. Уровни энергии гармонического осциллятора.

 

Обозначив энергию n-го уровня через nhw. мы получили, что средняя энергия такого осциллятора также давалась выражением (2.33). А сейчас это выражение было выведено для фотонов путем подсчета их числа и привело к тому же результату. Перед вами – одно из чудес квантовой механики. Если начать с рассмотрения таких состояний или таких условий для бозе-частиц, когда они друг с другом не взаимодействуют (мы ведь предположили, что фотоны не взаимодействуют друг с другом), а затем считать, что в эти состояния могут быть помещены нуль, или одна, или две и т. д. до n частиц, то оказывается, что эта система ведет себя во всех квантовомеханических отношениях в точности, как гармонический осциллятор. Таким осциллятором считается динамическая система наподобие грузика на пружинке или стоячей волны в резонансной полости. Вот почему можно представлять электромагнитное поле фотонными частицами. С одной точки зрения можно анализировать электромагнитное поле в ящике или полости в терминах множества гармонических осцилляторов, рассматривая каждый тип колебаний, согласно квантовой механике, как гармонический осциллятор. С другой, отличной точки зрения ту же физику можно анализировать в терминах тождественных бозе-частиц. И итоги обоих способов рассуждений всегда точно совпадают. Невозможно установить, следует ли на самом деле электромагнитное поле описывать в виде квантуемого гармонического осциллятора или же задавать количество фотонов в каждом состоянии. Оба взгляда на вещи оказываются математически тождественными. В будущем мы сможем с равным правом говорить либо о числе фотонов в некотором состоянии в ящике, либо о номере уровня энергии, связанного с некоторым типом колебаний электромагнитного поля. Это два способа говорить об одном и том же. То же относится и к фотонам в пустом пространстве. Они эквивалентны колебаниям полости, стенки которой отошли на бесконечность.

Мы подсчитали среднюю энергию произвольного частного типа колебаний в ящике при температуре T; чтобы получить закон излучения абсолютно черного тела, остается узнать только одно: сколько типов колебаний бывает при каждой энергии. (Мы предполагаем, что для каждого типа колебаний найдутся такие атомы в ящике – или в его стенках,– у которых есть Уровни энергии, способные приводить к излучению этого типа колебаний, так что каждый тип может прийти в тепловое равновесие.) Закон излучения абсолютно черного тела обычно формулируют, указывая, сколько энергии в единице объема уносится светом в малом интервале частот от со до w+Dw. Так что нам нужно знать, сколько типов колебаний с частотой в интервале Dw имеется в ящике. Хотя вопрос этот то и дело возникает в квантовой механике, это все же чисто классический вопрос, касающийся стоячих волн.

Ответ мы получим только для прямоугольного ящика. Для произвольного ящика выходит то же, только выкладки куда сложней. Нас еще будет интересовать ящик, размеры которого намного больше длины световых волн. В этом случае типов колебаний будет мириады и мириады; в каждом малом интервале частот Dw их окажется очень много, так что можно будет говорить об их «среднем числе» в каждом интервале Dw при частоте to. Начнем с того, что спросим себя, сколько типов колебаний бывает в одномерном случае – у волн в натянутой струне. Вы знаете, что каждый тип колебаний – это синусоида, кривая, обращающаяся на обоих концах в нуль; иначе говоря, на всей длине линии (фиг. 2.8) должно укладываться целое число полуволн.

Фиг. 2.8. Типы стоячих волн на отрезке.

Мы предпочитаем пользоваться волновым числом k=2p/l; обозначая волновое число j-го типа колебаний через kj, получаем

где j – целое. Промежуток dk между последовательными типами равен

Нам удобно выбрать столь большое kL, что в малом интервале Dk; оказывается множество типов колебаний.

Обозначив число типов колебаний в интервале Dk через, имеем

Физики-теоретики, занимающиеся квантовой механикой, обычно предпочитают говорить, что типов колебаний вдвое меньше; они пишут

И вот почему. Им обычно больше нравится мыслить на языке бегущих волн – идущих направо (с k положительными) и идущих налево (с k отрицательными). Но «тип колебаний», или «собственное колебание»,– это стоячая волна, т. е. сумма двух волн, бегущих каждая в своем направлении. Иными словами, они считают, что каждая стоячая волна включает два различных фотонных «состояния». Поэтому если предпочесть под подразумевать число фотонных состояний с данным k (где теперь уже k может быть и положительным, и отрицательным), то тогда окажется вдвое меньше. (Все интегралы теперь нужно будет брать от k=-Ґ до k =+Ґ, и общее число состояний вплоть до любого заданного абсолютного значения k получится таким, как надо.) Конечно, стоячие волны мы тогда не сможем хорошо описывать, но подсчет типов колебаний будет идти согласованно.

Теперь наши результаты мы обобщим на три измерения. Стоячая волна в прямоугольном ящике должна обладать целым числом полуволн вдоль каждой оси. Случай двух измерений дан на фиг. 2.9.

Фиг. 2.9. Типы стоячих волн в двух измерениях.

Каждое направление и частота волны описываются вектором волнового числа k. Его х-, у– и z-компоненты должны удовлетворять уравнениям типа (2.34). Стало быть, мы имеем

Число типов колебаний с kxв интервале Dkx, как и прежде, равно

то же и с Dky, и с Dkz. Если обозначить через (k) число таких типов колебаний, в которых векторное волновое число k обладает х-компонентой в интервале от kxдо kx+Dkx, у-компонентой в интервале от kyдо ky+Dky и z-компонентой в интервале от kzдо. kz +Dkz, то

Произведение Lx Ly Lzэто объем V ящика. Итак, мы пришли к важному результату, что для высоких частот (длин волн, меньших, чем габариты полости) число мод (типов колебаний) в полости пропорционально ее объему V и «объему в k-пространстве» DkхDkyDkz. Этот результат то и дело появляется то в одной, то в другой задаче, и его стоит запомнить:

Хоть мы этого и не доказали, результат не зависит от формы

ящика.

Теперь мы применим этот результат для того, чтобы найти число фотонных мод для фотонов с частотами в интервале Dw. Нас интересует всего-навсего энергия разных собственных колебаний, а не направления самих волн. Мы хотим знать число собственных колебаний в данном интервале частот. В вакууме величина k связана с частотой формулой

|k| =w/c. (2.39)

Значит, в интервал частот Dw попадают все моды, отвечающие векторам k, величина которых меняется от k до k+Dk независимо от направления. «Объем в k-пространстве» между k и k+Dk – это сферический слой, объем которого равен

4pk2Dk.

Количество собственных колебаний (мод) тогда равно

Однако раз нас интересуют частоты, то надо подставить k=w/c, и мы получаем

Но здесь возникает одно усложнение. Если мы говорим о собственных колебаниях электромагнитной волны, то каждому данному волновому вектору k может соответствовать любая из двух поляризаций (перпендикулярных друг другу). Поскольку эти собственные колебания независимы, то нужно (для света) удвоить их число. И мы имеем

Мы показали уже [см. (2.33)], что каждое собственное колебание (мода, тип колебаний, «состояние») обладает в среднем

энергией

Умножая это на число собственных колебаний, мы получаем энергию DЕ. которой обладают собственные колебания лежащие в интервале Dw

Это и есть закон для спектра частот излучения абсолютно черного тела, найденный нами уже однажды в гл. 41 (вып. 4). Спектр этот вычерчен на фиг. 2.10.

Фиг. 2.10. Спектр частот излучения в полости при тепловом равновесии (спектр «абсолютно черного тела»).

На оси ординат отложена величина

отличающаяся от dE/dw постоянным множителем

Вы теперь видите, что ответ зависит от того факта, что фотоны являются бозе-частицами – частицами, имеющими тенденцию собираться всем вместе в одном и том же состоянии (амплитуда такого поведения велика). Бы помните, что именно Планк, изучавший спектр абсолютно черного тела (который представлял загадку для классической физики) и открывший формулу (2.43), положил тем самым начало квантовой механике.

§ 6. Жидкий гелий

Жидкий гелий при низких температурах обладает рядом странных свойств, на подробное описание которых у нас, к сожалению, не хватает времени. Многие из них просто связаны с тем, что атом гелия – это бозе-частица. Одно из этих свойств– жидкий гелий течет без какого бы то ни было вязкого сопротивления. Это в действительности та самая «сухая» вода, о которой мы говорили в одной из прежних глав (при условии, что скорости достаточно низки). Причина здесь вот в чем. Чтобы жидкость обладала вязкостью, в ней должны быть внутренние потери энергии; надо, чтобы одна из частей жидкости могла двигаться не так, как оставшаяся жидкость. Это означает, что должна быть возможность выбивать некоторые атомы в состояния, отличные от тех, в которых пребывают другие атомы. Но при достаточно низких температурах, когда тепловое движение становится очень слабым, все атомы стремятся попасть в одни и те же условия. Так, если некоторые из них движутся в одну сторону, то и все атомы пытаются двигаться все вместе таким же образом. Это своего рода жесткость по отношению к движению, и такое движение трудно разбить на неправильные турбулентные части, как это было бы, скажем, с независимыми частицами. Итак, в жидкости бозе-частиц есть сильное стремление к тому, чтобы все атомы перешли в одно состояние,– стремление, представляемое множителем Ц(n+1), полученным нами ранее. (А в бутылке жидкого гелия n, конечно, очень большое число!) Это движение не происходит при высоких температурах, потому что тогда тепловой энергии хватает на то, чтобы перевести разные атомы во всевозможные различные высшие состояния. Но при достаточном понижении температуры внезапно наступает момент, когда все атомы гелия стремятся оказаться в одном и том же состоянии. Гелий становится сверхтекучим. Кстати, это явление возникает лишь у изотопа гелия с атомным весом 4. Отдельные атомы изотопа гелия с атомным весом 3 суть ферми-частицы, и жидкость здесь самая обычная. Поскольку сверхтекучесть бывает лишь у Не4, то со всей очевидностью этот эффект квантовомеханический, вызываемый бозевской природой a-частицы.

§ 7. Принцип запрета

Ферми-частицы ведут себя совершенно иначе. Посмотрим, что произойдет, если мы попытаемся поместить две ферми-частицы в одно и то же состояние. Вернемся к нашему первоначальному примеру и поинтересуемся амплитудой того, что две идентичные ферми-частицы рассеются в почти одинаковом направлении. Амплитуда того, что частица а пойдет в направлении 1, а частица b – в направлении 2, есть

<1|a>.<2|b>,

тогда как амплитуда того, что направления вылетающих частиц обменяются местами, такова:

<2|а><1|b>.

Раз мы имеем дело с ферми-частицами, то амплитуда процесса является разностью этих двух амплитуд:

<1|а><2|b>-<2|а><1|b>. (2.44)

Следует сказать, что под «направлением 1» мы подразумеваем, что частица обладает не только определенным направлением, но и заданным направлением своего спина, а «направление 2» почти совпадает с направлением 1 и отвечает тому же направлению спина. Тогда <1|а> и <2|а> будут примерно равны. (Этого могло бы и не быть, если бы состояния 1 и 2 вылетающих частиц не обладали одинаковым спином, потому что тогда по каким-то причинам могло бы оказаться, что амплитуда зависит от направления спина.) Если теперь позволить направлениям 1 и 2 сблизиться друг с другом, то полная амплитуда в уравнении (2.44) станет равной нулю. Для ферми-частиц результат много проще, чем для бозе-частиц. Просто абсолютно невозможно, чтобы две ферми-частицы, например два электрона, оказались в одинаковом состоянии. Вы никогда не обнаружите два электрона в одинаковом положении и со спинами, направленными в одну сторону. Двум электронам невозможно иметь один и тот же импульс и одно и то же направление спина. Если они оказываются в одном и том же месте или в одном и том же состоянии движения, то единственное, что им остается,– это завертеться навстречу друг другу.

Каковы следствия этого? Имеется множество замечательных эффектов, проистекающих из того факта, что две ферми-частицы не могут попасть в одно и то же состояние. На самом деле почти все особенности материального мира зависят от этого изумительного факта. Все разнообразие, представленное в периодической таблице элементов, в основе своей является следствием только этого правила.

Конечно, мы не можем сказать, на что был бы похож мир, если бы это правило – и только оно одно – изменилось; ведь оно является частью всей структуры квантовой механики, и невозможно сказать, что бы еще изменилось, если бы правило, касающееся ферми-частиц, стало бы другим. Но все же попробуем представить себе, что случилось бы, если бы переменилось только это правило. Во-первых, можно показать, что каждый атом остался бы более или менее неизменным. Начнем с атома водорода. Он заметно не изменился бы. Протон ядра был бы окружен сферически симметричным электронным облаком (фиг. 2.11, а).

Фиг. 2.11. Так могли бы выглядеть атомы, если бы электроны вели себя как бозе-частицы.

Как мы уже писали в гл. 38 (вып. 3), хоть электрон и притягивается к центру, принцип неопределенности требует, чтобы было равновесие между концентрацией в пространстве и концентрацией по импульсу. Равновесие означает, что распределение электронов должно характеризоваться определенной энергией и протяженностью, определяющими характеристические размеры атома водорода.

Пусть теперь имеется ядро с двумя единицами заряда, например ядро гелия. Это ядро будет притягивать два электрона, и, будь они бозе-частицами, они бы, если не считать их электрического отталкивания, сплотились близ ядра как можно тесней. Атом гелия выглядел бы так, как на фиг. 2.11, б. Точно так же и атом лития, у которого ядро заряжено трехкратно, обладал бы электронным распределением, похожим на то, что изображено на фиг. 2.11, в. Каждый атом выглядел бы более или менее, как раньше: круглый шарик, все электроны в котором сидят близ ядра; не было бы никаких выделенных направлений и никаких сложностей.

Но из-за того, что электроны – это ферми-частицы, действительное положение вещей совершенно иное. Для атома водорода оно в общем-то не меняется. Единственное отличие в том, что у электрона есть спин (показан на фиг. 2.12, а стрелочкой).

Фиг. 2.12. Атомные конфигурации, для настоящих, фермиевского типа электронов со спином. 1 / 2 .

В случае же атома гелия мы уже не сможем посадить один из электронов на другой. Впрочем, погодите, это верно лишь тогда, когда их спины направлены одинаково. Но если они разведут свои спины врозь, то они уже будут вправе занять одно и то же место. Так что атом гелия тоже не очень-то изменится. Он будет выглядеть так, как показано на фиг. 2.12, б. А вот для лития положение вещей совершенно изменится. Куда сможем мы пристроить третий электрон? Его нельзя посадить прямо на первые два, потому что оба направления спина заняты. (Вы помните, что и у электрона, и у любой частицы со спином 1/2 имеются лишь два допустимых направления спина.) Третий электрон не сможет приблизиться к месту, оккупированному двумя другими, он обязан занять особое положение в каком-то ином состоянии, намного дальше от ядра (фиг. 2.12, в). (Мы здесь говорим обо всем довольно грубо, потому что на самом-то деле все три электрона тождественны, а раз мы не можем в действительности разобраться, кто из них кто, то наш рисунок верен только в общих чертах.)

Теперь мы уже начинаем понимать, отчего у разных атомов бывают разные химические свойства. Из-за того, что третий электрон в литии намного дальше, он связан несравненно слабее. Увести один электрон у лития куда легче, чем у гелия. (Опыт говорит, что для ионизации гелия нужно 25 в, а для ионизации лития лишь 5 в.) Это отражается на валентности атома лития. Свойства валентности, касающиеся направлений, связаны с волновой картиной внешнего электрона, но мы не будем сейчас входить в подробности. Становится понятной важность так называемого принципа запрета, утверждающего, что никакие два электрона не могут оказаться в точности в одном и том же состоянии (включая спин).

Принцип запрета несет также ответственность за крупномасштабную стабильность вещества. Мы раньше уже объясняли, что отдельные атомы вещества не обваливаются благодаря принципу неопределенности, тогда можно понять, почему не бывает так, чтобы два атома водорода прижались друг к другу сколь угодно тесно, почему все протоны не могут сойтись вплотную, образовав вокруг себя электронную тучу. Ответ, конечно, состоит в том, что поскольку в одном месте может находиться не более двух электронов с противоположными спинами, то атомы водорода вынуждены держаться поодаль друг от друга. Так что крупномасштабная стабильность вещества на самом деле есть следствие того, что электроны – это ферми-частицы. Конечно, если у двух атомов спины внешних электронов направлены в противоположные стороны, то они могут оказаться вплотную друг к другу. Именно так и возникает химическая связь. Оказывается, что два рядом стоящих атома обладают меньшей энергией, если между ними стоит электрон. Это своего рода электрическое притяжение двух положительных ядер к электрону между ними. Можно поместить пару электронов – коль скоро их спины противоположны – примерно посредине между двумя ядрами, и так возникает самая сильная из химических связей. Более сильной связи не бывает, потому что принцип запрета не позволит, чтобы в пространстве между атомами оказалось больше двух электронов. Считается, что молекула водорода выглядит примерно так, как изображено на фиг. 2.13.

Фиг. 2.13. Молекула водорода.

Хочется сказать еще об одном следствии из принципа запрета. Вы помните, что если оба электрона в атоме гелия хотят оказаться поближе к ядру, то их спины обязательно должны смотреть навстречу друг другу. Допустим теперь, что нам бы захотелось расположить поблизости друг от друга два электрона с одним и тем же спином, скажем, приложив столь фантастически сильное магнитное поле, что спины выстроились бы в одну сторону. Но тогда два электрона не смогут занять одного положения в пространстве. Один из них вынужден будет занять другую геометрическую позицию (фиг. 2.14).

фиг. 2.14. Гелий с одним электроном в высшем энергетическом состоянии.

Более удаленный от ядра электрон будет обладать меньшей энергией связи. Поэтому энергия всего атома станет чуть выше. Иными словами, если два спина противоположны, то это приводит к намного более сильному взаимному притяжению.

Стало быть, существует взаимодействие, стремящееся расположить спины навстречу друг другу, когда электроны сближаются. Если два электрона пытаются попасть в одно и то же место, то спины стремятся выстроиться навстречу друг другу. Эта кажущаяся сила, стремящаяся ориентировать спины в разные стороны, намного мощнее слабеньких сил, действующих между магнитными моментами двух электронов. Вы помните, что, когда мы толковали о ферромагнетизме, возникала загадка, отчего это электроны в разных атомах имеют столь сильную тенденцию выстраиваться параллельно. Хотя здесь еще нет количественного объяснения, но уже можно поверить в следующий процесс: электроны, окружающие один из атомов, взаимодействуют при помощи принципа запрета с внешними электронами, которые высвободились и бродят по кристаллу. Это взаимодействие заставляет спины свободных электронов и внутренних электронов принимать противоположные направления. Но свободные электроны и внутриатомные электроны могут выстроиться противоположно лишь при условии, что у всех внутренних электронов спины направлены одинаково (фиг. 2.15).

Фиг. 2.I5. Вероятный механизм, действующий в ферромагнитном кристалле. Спины электронов проводимости устанавливаются антипараллельно спинам неспаренных внутренних электронов.

Кажется весьма вероятным, что именно влияние принципа запрета, действующего косвенно через свободные электроны, кладет начало большим выстраивающим силам, ответственным за ферромагнетизм.

Упомянем еще один пример влияния принципа запрета. Мы уже говорили ранее, что ядерные силы, действующие между нейтроном и протоном, между протоном и протоном и между нейтроном и нейтроном, одинаковы. Почему же так получается, что протон с нейтроном могут пристать друг к другу, образовав ядро дейтерия, а вот ядер просто с двумя протонами или просто с двумя нейтронами не существует? Действительно, дейтрон связан энергией около 2,2 Мэв, а соответствующей связи между парой протонов, которая бы создала изотоп гелия с атомным весом 2, не существует. Таких ядер не бывает. Комбинация двух протонов не дает связанного состояния.

Ответ складывается из двух эффектов: во-первых, из принципа запрета; во-вторых, из того факта, что ядерные силы довольно чувствительны к направлению спина. Силы, действующие между нейтроном и протоном,—это силы притяжения; они чуть больше, когда спины параллельны, и чуть меньше, когда они направлены противоположно. Оказывается, что различие между этими силами достаточно велико, чтобы дейтрон возникал лишь в том случае, когда спины нейтрона и протона параллельны, а когда спины противоположны, то притяжения не хватает на то, чтобы связать частицы воедино. Поскольку спины нейтрона и протона каждый равен 1/2и направлены они в одну сторону, то спин дейтрона равен единице. Мы знаем, однако, что двум протонам не разрешается сидеть друг на друге, если их спины параллельны. Если бы не было принципа запрета, два протона были бы связаны. Но раз они не могут существовать в одном месте и с одним и тем же направлением спина, ядра Не2 не существует. Протоны с противоположными спинами могли бы сойтись, но тогда им не хватило бы энергии связи для образования стабильного ядра, потому что ядерные силы при противоположных спинах чересчур слабы, чтобы связать пару нуклонов. В том, что силы притяжения между нейтронами и протонами с противоположными спинами существуют, можно убедиться из опытов по рассеянию. Сходные же опыты по рассеянию двух протонов с параллельными спинами показывают, что и между ними существует притяжение. Итак, принцип запрета помогает нам понять, почему дейтерий может существовать, а Не2 нет.

* Перестановка dS 1 и dS 2 в (2.11) приводит к другому событию, так что оба элемента поверхности обязаны пройтись по всей площади счетчика. В (2.13) мы рассматриваем dS 1 и dS 2 как пару и включаем все, что может случиться. Если интегралы опять включают все, что случится, когда dS 1 и dS 2 поменяются местами, то все считается дважды.

 

 


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache