Текст книги "Величайшее Шоу на Земле: свидетельства эволюции."
Автор книги: Ричард Докинз
Жанр:
Биология
сообщить о нарушении
Текущая страница: 6 (всего у книги 27 страниц)
Беляев с его лисами, поскольку они становятся ручными и преданными
Эти изменения были побочными эффектами. Беляев и его команда преднамеренно не занимались их селекцией, их интересовала только приручаемость. Остальные похожие на собачьи черты, по-видимому, прибыли под эволюционным покровительством генов приручаемости. Генетиков этим не удивишь. Они выделяют широко распространенное явление, названное «плейотропия», которая выражается в том, что гены имеют несколько эффектов, внешне не связанных. Ударение здесь на слове «внешне». Развитие эмбриона – это очень сложный процесс. По мере того, как мы узнаем о деталях, это «внешне не связанные» превращается в «связанные путем, который мы теперь понимаем, но не понимали прежде». По-видимому, гены висящих ушей и пегого меха плейотропно связаны с генами приручаемости и у лис и у собак. Это иллюстрирует важный вопрос об эволюции. Когда Вы замечаете черту животного и спрашиваете, какова ее дарвинистская ценность для выживания, Вы, возможно, ставите неправильный вопрос. Может оказаться так, что черта, которую вы выбрали, является не той, которая имеет значение. Она, возможно, «прибыла под покровительством», притянута в процессе эволюции некоторой другой чертой, с которой она связана плейотропно.
Итак, эволюция собаки, если прав Коппингер, была делом не только искусственного отбора, а сложной смесью естественного отбора (который преобладал на ранних стадиях приручения), и искусственного отбора (который вышел на первый план позже). Переход мог быть непрерывным, что снова подчеркивает подобие – как понял Дарвин – между искусственным и естественным отбором.
СНОВА ЦВЕТЫ
Давайте теперь, в третьем из наших разминочных набегов на естественный отбор, перейдем к цветам и опылителям и увидим кое-что из способностей естественного отбора управлять эволюцией. Биология опыления предоставляет нам некоторые довольно удивительные факты, и поразительность достигает кульминации в орхидеях. Неудивительно, что Дарвин был настолько увлечен ими; неудивительно, что он написал книгу, которую я уже упомянул, «О различных приспособлениях, посредством которых Британские и заморские орхидеи опыляются насекомыми». Некоторые орхидеи, своего рода «волшебные пули», такие как мадагаскарские, которые мы встречали ранее, дают нектар, но другие нашли способ обойти затраты на кормление опылителей, обманывая их вместо этого. Есть орхидеи, которые напоминают самок пчел (или ос или мух) достаточно сильно, чтобы обманом заставить самцов пытаться совокупляться с ними. Насколько такое их подражание напоминает самок одного конкретного вида насекомых, настолько самцы этого вида могут служить волшебными пулями, летящими от цветка к цветку только одного вида орхидеи. Даже если орхидея напоминает «какую-нибудь пчелу» а не пчелу конкретного вида, то пчелы, которых она обманывает, все еще будут «более-менее волшебными» пулями. Если Вы или я пристально вглядитесь в «мушью орхидею», офрис насекомоносную или «пчелиную орхидею», офрис пчелоносную (см. цветную страницу 5), мы сможем отличить ее от реального насекомого; но взглянув случайно уголком глаза, мы были бы введены в заблуждение. И даже глядя на нее прямо, я сказал бы, что «пчелиные орхидеи» на картинке (h) явно скорее являются «шмелиными» орхидеями, чем орхидеями «домашних пчел». У насекомых сложные глаза, которые не столь остры как наши глаза камерного типа, поэтому формы и цвета орхидей, подражающих насекомым, усиливаемые обольстительными ароматами, подражающими ароматам самок насекомых, более чем способны обмануть самцов. Кстати, вполне вероятно, что схожесть усиливается, если смотреть в ультрафиолетовом диапазоне, чего мы лишены.
Так называемая пауковая орхидея, Brassia (цветная страница 5 (k)), достигает опыления другим родом обмана. Самки различных видов одиночных ос («одиночных», потому что они не живут социально большими гнездами, как обыкновенные осенние надоедливые насекомые, названные американцами желтыми жакетами, yellowjackets) ловят пауков, жалят их, чтобы парализовать, и откладывают на них свои яйца как на живую кормовую базу для личинок. «Пауковые» орхидеи достаточно напоминают пауков, чтобы обманом заставить самок ос пытаться их жалить. В процессе они поднимают поллинии – комки зерен пыльцы, производимые орхидеями. Когда они летят дальше, чтобы попытаться ужалить другую паучью орхидею, поллинии переносятся. Кстати, я не могу не добавить в точности обратный случай с пауком Epicadus heterogaster, который мимикрирует под орхидею. Насекомые прилетают к этому «цветку» в поисках нектара, и сразу оказываются съеденными им.
Некоторые из самых удивительных орхидей, практикующих эту уловку соблазнения, могут быть найдены в западной Австралии. Различные виды рода Drakaea известны как «молотковые» орхидеи. Каждый вид имеет тесные отношения с определенными видом осы, известным как Thynnidae. Части цветка имеют грубое сходство с насекомым, обманом заставляющим самца осы Thynnidae пытаться спариться с ним. До сих пор в моем описании нет резких отличий от других Drakaea, мимикрирующих под насекомых орхидей. Но Drakaea имеет замечательную дополнительную уловку – ее рукав: поддельная «оса» держится на конце подвешенной «руки» со сгибающимся «локтем». Вы можете ясно видеть сгиб на картинке (цветная страница 5 (g)). Колебательные движения осы, захватывающей поддельную осу, заставляют «локоть» сгибаться, и оса многократно раскачиваясь вперед-назад, ударяет как молоточек в противоположную сторону цветка – давайте называть ее наковальней – где у того находятся половые органы. Полинии отцепляются и прилипают к осе, которая, в конечном счете, высвобождается и улетает, огорченная, но, очевидно, не умудренная: она повторит представление на другой молотковой орхидее, где вместе с полиниями, которые она переносит, снова бьется о наковальню, так, что ее груз находит предначертанное ему пристанище на женских органах цветка. Я показал фильм об этой поразительной работе в одной из моих Королевских Рождественских Лекций для детей, и его можно увидеть в записи лекции, названной «Ультрафиолетовый Сад».
В той же самой лекции я обсуждал «ковшовые орхидей» Южной Америки, которые достигают опыления столь же замечательным, но несколько иным способом. У них так же есть специализированные опылители, не осы, а маленькие пчелы, из группы под названием орхидейные пчелы, Euglossini. Опять же, эти орхидеи не дают нектара. И эти орхидеи не заставляют пчел спариваться с ними обманом. Вместо этого они обеспечивают жизненно важный элемент содействия трутням, без которых те были бы неспособны привлечь настоящих самок.
Эти маленькие пчелы, которые живут только в Южной Америке, имеют странную привычку. Они идут на изощренные меры, чтобы собирать ароматные или вообще какие-либо пахнущие вещества, которые они хранят в специальных контейнерах, прикрепленных к их увеличенным задним ногам. У различных видов эти вещества с запахом могут браться от цветов, из мертвой древесины или даже из фекалий. Кажется, они используют собранные духи, чтобы привлечь, или добиться расположения, самки. Многие насекомые используют особые ароматы, чтобы привлечь противоположный пол, и большинство из них производит духи в специальных железах. Самки тутового шелкопряда, например, привлекают самцов на удивительно большом расстоянии, выпуская уникальный аромат, который они производят, и который самцы обнаруживают своими антеннами в мельчайших следах буквально за мили. В случае пчел Euglossini аромат используют самцы. И, в отличие от моли женского пола, они не синтезируют свои собственные духи, а используют пахнущие компоненты, которые они собрали, не как чистые вещества, а как тщательно подобранные смеси, которые они складывают, подобно опытным парфюмерам. Каждый вид смешивает характерный коктейль веществ, собранных из различных источников. И есть некоторые виды пчел Euglossini, которые положительно нуждаются для производства своего характерного для вида аромата, вещества, которое поставляется только цветами особых видов орхидей рода Coryanthes – ковшовых орхидей. Общепринятое название пчел Euglossini – «орхидейные пчелы».
Какая утонченная картина взаимной зависимости. Орхидеи нуждаются в пчелах Euglossini по обычной причине – в качестве «волшебной пули». А пчелы нуждаются в орхидеях по скорее странной причине, что они не могут привлечь пчел-самок без веществ, которые или невозможно или, по крайней мере, слишком трудно найти, разве что через бюро товаров ковшовых орхидей. Но путь, которым достигается опыление, является еще более странным, и это, на первый взгляд, делает пчелу скорее жертвой, чем сотрудничающим партнером.
Трутня Euglossini привлекает к орхидее запах веществ, в которых он нуждается для производства своих сексуальных духов. Он садится на край ковша и начинает соскребывать восковые духи в специальные «ароматовые» карманы в ногах. Но край ковша под ногами скользкий, и на это есть причина. Пчела-самец падает в ковш, заполненный жидкостью, в которой он плавает. Он не может подняться по скользкой стороне ковша. Существует только один выход, и это специальное отверстие размером с пчелу в боковине ковша (не видна на картинке, которая приведена на цветной странице 4). Его ведут «ступеньки» к отверстию, и он начинает ползти через него. Плотное облегание становится еще сильнее, когда «губки» (их вы можете видеть на картинке: они выглядят как патрон от токарного станка или электродрели) сжимают и захватывают его. Пока он удерживается в тисках орхидеи, та приклеивает два поллиния к его спине. Клею требуется время, чтобы затвердеть, после чего губки снова расслабляются и выпускают пчелу, которая летит, снаряженная поллиниями на спине. Все еще в поисках драгоценных ингредиентов для своей парфюмерии, пчела садится на другую ковшовую орхидею, и процесс повторяется. На сей раз, однако, когда пчела пробирается через отверстие в ковше, поллинии соскребаются, и они оплодотворяют пестик этой второй орхидеи.
Интимные отношения между цветами и их опылителями являются прекрасным примером того, что называется коэволюцией – совместной эволюцией. Коэволюция часто встречается между организмами, которые могут что-то выиграть друг от друга, товарищества, в котором каждая сторона дает нечто другой, и обе выигрывают от сотрудничества. Другой красивый пример – набор отношений, которые независимо возникли на коралловых рифах, в различных частях света, между рыбами чистильщиками и крупной рыбой. Чистильщики принадлежат к нескольким разным видам, и некоторые из них даже не рыба вовсе, а креветки – хороший случай конвергентной эволюции. Чистка среди рыб кораллового рифа является таким же проработанным жизненным ремеслом, как охота, или щипание зелени, или поедание муравьев среди млекопитающих. Чистильщики получают средства на существование, выбирая паразитов с тел их более крупных «клиентов». То, что это приносит клиентам пользу, было элегантно продемонстрировано путем удаления всех чистильщиков из экспериментальной области рифа, после чего здоровье многих видов рыб ухудшилось. Я обсуждал привычки очистки в другом месте, поэтому не буду останавливаться здесь.
Коэволюция также происходит между видами, не извлекающими выгоду из взаимного присутствия, такими как хищники и добыча, или паразиты и хозяева. Эти типы совместной эволюции иногда называют «гонкой вооружений», и я отложу их обсуждение до главы 12.
ПРИРОДА КАК ОТБИРАЮЩИЙ АГЕНТ
Позвольте мне подвести эту и предыдущую главу к заключению. Отбор – в форме искусственного отбора селекционерами – может превратить дворняжку в пекинеса или дикую капусту в цветную за несколько столетий. Различие между любыми двумя породами собак дает нам общее представление о величине эволюционных изменений, которые могут быть достигнуты меньше чем за тысячелетие. Следующий вопрос, который мы должны задать – как много таких тысячелетий прошло с момента зарождения жизни? Если вспомнить, насколько разительно отличается дворняга от пекинеса, и знать, что между ними всего несколько веков эволюции, то становится интересно, как много времени отделяет нас от начала эволюции, например, млекопитающих? Или с момента, когда рыбы выбрались на сушу? Ответ таков: жизнь началась не столетия назад, а десятки миллионов столетий назад. Измеренный возраст планеты составляет 4,6 миллиарда лет, или 46 миллионов столетий. Со времени общего для всех сегодняшних млекопитающих предка на Земле прошло порядка двух миллионов столетий. Век кажется нам очень продолжительным промежутком времени. Вы можете вообразить два миллиона столетий, сложенных непрерывной цепью? Время, которое прошло с тех пор, как наши предки-рыбы, выползли из воды на сушу, составляет приблизительно три с половиной миллиона столетий: то есть приблизительно в двадцать тысяч раз больше, чем потребовалось, чтобы произвести все разнообразие (действительно очень разных) пород собак от общего предка, которого все они разделяют.
Держите в голове картину различий между пекинесом и дворнягой. Мы здесь не говорим о точных замерах: вполне пойдет просто подумать о различиях между любыми двумя породами собак, поскольку это в среднем – удвоенное количество изменений, внесенных искусственным отбором со времени общего предка. Держите в голове порядок этих эволюционных изменений, потом, экстраполируйте на в 20,000 раз более далекое прошлое. Не так уж трудно становится поверить, что эволюция за это время могла привести нас к количеству изменений, достаточному, чтобы трансформировать рыбу в человека.
Но все это предполагает, что мы знаем возраст Земли и различных ориентиров в ископаемой летописи. Это книга о свидетельствах, поэтому я не могу лишь заявлять даты, а должен подтвердить их. Откуда, в действительности, мы знаем возраст какой-нибудь отдельной горной породы? Откуда мы знаем возраст ископаемого? Откуда знаем возраст Земли? Откуда, если уж на то пошло, мы знаем возраст вселенной? Нам нужны часы, и часы – предмет следующей главы.
ГЛАВА 4. Тишина и медленное время
Если отрицатели истории, которые сомневаются в факте эволюции, не знают биологии, то те, кто думает, что мир возник менее чем десять тысяч лет назад, хуже просто невежд, поскольку они введены в заблуждение до степени извращения. Они отрицают не только факты биологии, но также и факты физики, геологии, космологии, археологии, истории и химии. Эта глава о том, откуда мы знаем возраст горных пород и заключенных в них ископаемых. В ней представлены свидетельства того, что масштаб времени, в течение которого жизнь действовала на этой планете, измеряется не в тысячах лет, а в тысячах миллионов лет.
Помните, что ученые-эволюционисты находятся в положении сыщиков, запоздавших на место преступления. Чтобы точно определить, когда произошли события, мы зависим от следов, оставленных процессами, зависящими от времени – часов в широком смысле. Одним из первых, что сделает прибывший на место убийства сыщик, это попросит врача или патологоанатома определить примерное время наступления смерти. Многое зависит от этой информации, и в детективной беллетристике почти мистическое благоговение получает эта оценка патологоанатома. «Время смерти» является основным фактом, непогрешимым центром, вокруг которого вращаются более или менее натянутые предположения детектива. Но оценка, конечно, предрасположена к погрешности, погрешности которую можно измерить и которая может быть достаточно большой. Патологоанатом использует различные процессы с временной зависимостью, чтобы оценить время смерти: тело охлаждается с характерной скоростью, трупное окоченение наступает в определённое время, и так далее. Это довольно грубые «часы» доступные для того, кто расследует убийство. Часы, доступные ученому-эволюционисту, потенциально намного более точны – в пропорции к применяемой шкале времени, конечно, не с точностью до ближайшего часа! Аналогия с точными часами более убедительна для юрских пород в руках геолога, чем для остывающего трупа в руках патологоанатома.
Часы, созданные человеком, работают в масштабах времени, очень коротких по эволюционным меркам – часы, минуты, секунды – и процессы, зависящие от времени, которые они используют, быстры: раскачивание маятника, вращение пружинки, колебание кристалла, горение свечи, опустошение сосуда с водой или песочных часов, вращение земли (зарегистрированное по солнечному циферблату). Все часы используют некоторый процесс, который идет с постоянной и известной скоростью. Маятник качается с постоянной частотой, которая зависит от длины маятника, но (по крайней мере так гласит теория) не от амплитуды раскачивания или массы груза на его конце. Напольные часы с маятником работают в связке маятника с анкером, который продвигает зубчатое колесо, шаг за шагом; тем самым вращение замедлено до скоростей вращения часовой стрелки, минутной стрелки и секундной стрелки. Пружинные часы работают схожим образом. В электронных часах используется электронный эквивалент маятника – колебание определенных видов кристаллов при запитке их энергией от батареи. Водяные часы и свечные часы намного менее точны, но они были полезны до изобретения часов, отсчитывающих события. Они зависят не от подсчета событий, как это делают маятниковые или цифровые часы, а от измерения некоторой количественной величины. Солнечные часы – неточный способ определить время. Но вращение Земли, являющееся процессом с временной зависимостью, на который они опираются, точен в более медленном масштабе времени тех часов, которые мы называем календарем. Это происходит потому, что к этом масштабе времени они больше не являются измеряющими часами (солнечные часы измеряют непрерывную величину угла положения солнца), а становятся отсчитывающими часами (отсчитывающими циклы день/ночь).
Нам доступны как отсчитывающие, так и измеряющие часы на очень медленном временном масштабе эволюции. Но для расследования эволюции мы не нуждаемся просто в часах, которые бы показывали текущее время, как это делают солнечные или наручные часы. Мы нуждаемся в чем-то более похожем на фиксирующий секундомер, который может быть обнулен. Наши эволюционные часы должны быть выставлены на ноль в некоторый момент, так, чтобы мы могли вычислить время, прошедшее после начальной точки, чтобы дать нам, например, абсолютный возраст некоторого объекта, такого как горная порода. Радиоактивные часы для датировки магматических (вулканических) пород удобно обнуляются в момент затведевания расплавленной лавы.
К счастью, доступен ряд обнуляемых естественных часов. Это разнообразие – хорошая вещь, потому что мы можем использовать одни часы, чтобы проверить точность других часов. Еще более удачно, что они чутко покрывают удивительно широкий диапазон временных масштабов, и это нам нужно, потому что масштабы эволюционного времени охватывают семь или восемь порядков. Стоит разъяснить, что это означает. Порядок означает нечто совершенно конкретное. Изменение на один порядок – это одно умножение (или деление) на десять. Так как мы используем десятичную систему счисления, порядок числа – количество нулей, до или после десятичной запятой. Таким образом диапазон в восемь порядков составляет сто миллионов раз. Секундная стрелка часов вращается в 60 раз быстрее, чем минутная стрелка, и в 720 раз быстрее, чем часовая стрелка, так что эти три стрелки охватывают диапазон менее трех порядков. Он ничтожен по сравнению с восемью порядками, охватываемыми нашим набором геологических часов. Часы, построенные на радиоактивном распаде, доступны для коротких сроков, вплоть до долей секунды; но для эволюционных целей часы, которыми можно отмерять века или, возможно, десятилетия – это самое быстрое, из того, что нам необходимо. Этот быстрый конец спектра естественных часов – годичные кольца и углеродное датирование – полезен в археологических целях, и в датировании экземпляров на шкале времени, которая охватывает одомашнивание собаки или окультуривание капусты. В другом конце шкалы мы нуждаемся в естественных часах, которые бы отмеряли сотни миллионов или даже миллиарды лет. И, хвала природе, которая предоставила нам такой широкий ассортимент нужных часов. К тому же их диапазоны чувствительности перекрываются между собой таким образом, что мы можем использовать их для проверки друг друга.
ГОДИЧНЫЕ КОЛЬЦА ДЕРЕВЬЕВ
Часы годичных колец деревьев могут быть использованы для датирования куска дерева, скажем, бревна в доме времен Тюдоров, с удивительным точностью, в буквальном смысле до года. Вот как это работает. Во-первых, как многие знают, можно определить возраст недавно срубленного дерева путем подсчета колец в его стволе, предполагая, что внешнее кольцо представляет настоящее время. Кольца отражают различия роста в разные сезоны года – зимой или летом, сухой сезон и сезон дождей, и они особенно ярко выражены в высоких широтах, где существует сильная разница между сезонами. К счастью, вам не требуется на самом деле срубать дерево, чтобы определить его возраст. Вы можете взглянуть на его кольца, не убивая его, а лишь высверлив отверстие до середины дерева извлекая образец ядра. Но просто подсчет колец не скажет вам, в каком веке бревно вашего дома или мачта вашей галеры викингов было живо. Если вы хотите, датировать давно мертвую древесину, вам придется быть более изощренными. Не просто считайте кольца, а посмотрите на узор из толстых и тонких колец.
Так же, как наличие колец означает сезонные циклы интенсивного и слабого роста, так и некоторые года бывают лучше, чем другие, так как погода меняется из года в год: засуха замедлит процесс роста, а дождливый год ускорит его; есть холодные и теплые годы, и даже годы Эль-Ниньо или катастрофы Кракатау. Хорошие годы, с точки зрения дерева, производят более широкие кольца чем, плохие годы. И узор из широких и узких колец в любом одном регионе, созданный конкретной последовательностью хороших и плохих лет, является достаточно характерным «отпечатком пальца», который точно маркирует годы образования этих колец – чтобы быть распознаваемыми от дерева к дереву.
Дендрохронологи измеряют кольца на свежих деревьях, у которых точная дата каждого кольца определяется путем отсчета назад от года, в котором дерево, как известно, было срублено. На этих измерениях они строят справочную коллекцию узоров колец, с которыми вы можете сравнить узоры колец археологического образца бревна, дату которого вы хотите узнать. Таким образом, вы можете получить заключение: «Эта тюдоровская балка содержит последовательность годовых колец, которая соответствует последовательности из справочной литературы, которая, как известно, сформировалась в годы с 1541 по 1547. Следовательно, дом был построен после 1547 года нашей эры.
Все это очень хорошо, но немногие из сегодняшних деревьев были живы в тюдоровские времена, уже не говоря о каменном веке или ранее. Существуют некоторые деревья – остистые сосны и некоторые гигантские секвойи – которые живут на протяжении тысячелетий, но большинство деревьев, идущих на древесину, вырубается, когда они моложе ста лет или около того. Как, тогда, мы создаем справочную коллекцию колец для более древних времен? Для времен столь отдаленных, что даже самая старая живая остистая сосна не захватывает их? Я думаю, что Вы уже додумались до ответа. Перекрытия. Прочный канат может быть длиной 100 метров, но каждое волокно в нем достигает лишь части этого размера. Чтобы использовать принцип перекрытия в дендрохронологии, вы берете справочные образцы узоров, дата которых известна по современным деревьям. Затем вы идентифицируете узор старых колец современных деревьев и ищете тот же самый узор среди молодых колец давно мертвых деревьев. Затем, вы изучаете узор старых колец этих самых давно мертвых деревьев, и ищете тот же узор в младших кольцах еще более старых деревьев. И так далее. Вы можете выстроить цепочку в прошлое, теоретически на миллионы лет, используя окаменелый лес, хотя на практике дендрохронология используется только в археологических сроках, в масштабах нескольких тысяч лет. И удивительная вещь о дендрохронологии состоит в том, что, по крайней мере теоретически, вы можете сохранять точность до года даже в отношении ископаемого леса, которому 100 миллионов лет. Вы буквально, можете сказать, что это кольцо в ископаемом дереве юрского периода образовалось на 257 лет позже, чем другое кольцо в другом дереве юрского периода! Если бы имелось достаточно окаменелого леса, чтобы построить непрерывную цепочку в прошлое из настоящего, вы бы смогли сказать, что это дерево не только конца юрского периода, но что оно было живо в 151 432 657 году до нашей эры! К сожалению, у нас нет такой непрерывной цепи, и дендрохронология на практике предоставляет нам всего около 11500 лет. Это, однако, – дразнящая мысль, что, если только мы могли бы найти достаточно много ископаемых лесов, мы могли бы датировать с точностью до года на промежутках в сотни миллионов лет.
Как работает дендрохронология
Годичные кольца – не единственная система, которая везде обещает полную точность до года. Осадочные слои, откладываются в ледниковых озерах. Как и годичные кольца, они меняются по сезонам и из года в год, таким образом, теоретически может быть использован тот же самый принцип, с той же степенью точности. У коралловых рифов также есть годичные кольца, точно так же как у деревьев. Удивительно, но они были использованы для установления даты древних землетрясений. Годичные кольца тоже, кстати, говорят нам о датах землетрясений. Большинство других систем датирования, которые доступны нам, включая все радиоактивные часы, которые мы фактически используем во временном масштабе десятков миллионов, сотен миллионов или миллиардов лет, точны только в пределах величины погрешности, которая примерно пропорциональна самому масштабу измеряемого времени.
РАДИОАКТИВНЫЕ ЧАСЫ
Теперь переходим к радиоактивным часам. Их существует довольно много, чтобы можно было выбирать, и, как я уже сказал, они успешно охватывают весь спектр от века до тысяч миллионов лет. У каждых из них есть его собственный предел погрешности, который обычно составляет около 1 процента. Так, если Вы хотите датировать породы, которым миллиард лет, вы должны довольствоваться ошибкой плюс или минус десяток миллионов лет. Если вы хотите датировать породы возрастом в сотню миллионов лет, вы должны удовлетвориться погрешностью порядка миллиона лет. При датировке пород, которым только десятки миллионов лет, вы должны допустить погрешность плюс или минус несколько сотен тысяч лет.
Чтобы понять, как работают радиоактивные часы, мы сначала должны понять, что подразумевается под радиоактивным изотопом. Вся материя состоит из элементов, которые обычно химически объединены с другими элементами. Существует около 100 элементов, несколько больше, если считать элементы, которые когда-либо были синтезированы в лаборатории, и, немного меньше, если считать только те элементы, которые встречаются в природе. Примерами элементов являются: углерод, железо, азот, алюминий, магний, фтор, аргон, хлор, натрий, уран, свинец, кислород, калий и олово. Атомная теория строения вещества, которую, я думаю, принимает каждый, даже креационисты, говорит нам, что каждый элемент имеет свой собственный характерный атом, являющийся наименьшей частицей, на которую вы можете разделить элемент, без чего он перестал бы быть этим элементом. На что похож атом, скажем атом свинца, или меди, или углерода? Ну, он, конечно, не выглядит как свинец или медь или углерод. Он ни на что не похож, потому что является слишком маленьким, чтобы сформировать какое-либо изображение на вашей сетчатке, даже с помощью ультрамощного микроскопа. Мы можем использовать аналогии или модели, чтобы помочь визуализировать атом. Самая известная модель была предложена великим датским физиком Нильсом Бором. Модель Бора, которая сейчас уже является устаревшей, представляет солнечную систему в миниатюре. Роль солнца играет ядро, а вокруг него обращаются электроны, которые играют роль планет. Как и в солнечной системе, почти вся масса атома содержится в ядре («солнце»), и почти весь объем заключен в пустом пространстве, которое отделяет электроны («планеты») от ядра. Каждый из электронов крошечный по сравнению с ядром, и пространство между ними и ядром также огромно по сравнению с размерами и того и другого. Любимая аналогия изображает ядро как муху в середине спортивного стадиона. Ближайшее соседнее ядро является другой мухой в середине примыкающего стадиона. Электроны каждого атома носятся по орбите вокруг своих соответствующих мух, будучи меньшими, чем самые крошечные мошки, слишком маленькие, чтобы быть заметными в том же масштабе, что и мухи. Когда мы смотрим на твердую глыбу железа или скалы, мы «реально» смотрим на то, что представляет собой почти полностью пустое пространство. Оно выглядит и ощущается сплошным и непрозрачным, потому что нашим сенсорным системам и мозгу удобно воспринимать его сплошным и непрозрачным. Для мозга удобно представить камень как сплошное тело, потому что мы не можем пройти через него. «Сплошной» это наш способ воспринимать вещи, через которые мы не можем пройти или провалиться из-за электромагнитных сил между атомами. «Непрозрачный» – это наше ощущение, которое мы получаем, когда свет отражается от поверхности объекта и совсем не проходит через него.
Три вида частиц входят в состав атома, по крайней мере, как это представляется моделью Бора. Электроны мы уже встречали. Другие две частицы, значительно большие, чем электроны, но все же крошечные по сравнению с чем-либо, что мы можем представить или ощутить нашими чувствами, названы протонами и нейтронами, и они находятся в ядре. Они почти одинакового размера. Число протонов постоянно для любого конкретного элемента и равно числу электронов. Это число называется атомным номером. Это уникальная характеристика элемента, и нет никаких пробелов в списке атомных номеров – знаменитой периодической системы [Менделеева]. Каждому номеру в последовательности соответствует ровно один и только один элемент. Элемент с атомным номером 1 – водород, 2 – гелий, 3 – литий, 4 – бериллий, 5 – бор, 6 – углерод, 7 – азот, 8 – кислород, и так далее до таких больших чисел как 92, которое является атомным номером урана.
Протоны и электроны несут электрический заряд противоположного знака – мы называем один из них положительным, а другой отрицательным, в соответствии с произвольным соглашением. Эти электрические заряды важны, когда элементы формируют химические соединения друг с другом, главным образом посредством электронов. Нейтроны в атоме связаны в ядре с протонами. В отличие от протонов, они не несут заряда, и они не играют никакой роли в химических реакциях. Протоны, нейтроны и электроны в любом элементе точно такие же, как и в любом другом элементе. Нет такого понятия как протон золота, или электрон меди, или нейтрон калия. Протон – он везде протон, а то, что делает атом меди медью – то, что в нем ровно 29 протонов (и ровно 29 электронов). То, о чем мы обычно думаем как о природе меди, является вопросом химии. Химия – танец электронов. Она вся заключается во взаимодействии атомов через посредство своих электронов. Химические связи легко разрушаются и заново создаются, потому что только электроны отделяются или обмениваются в химических реакциях. Силы притяжения внутри атомных ядер гораздо труднее разорвать. Вот почему «расщепление атома» звучит так угрожающе, но это может происходить в «ядерных», в противоположность химическим, реакциях, и радиоактивные часы зависят от них.