355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Докинз » Величайшее Шоу на Земле: свидетельства эволюции. » Текст книги (страница 21)
Величайшее Шоу на Земле: свидетельства эволюции.
  • Текст добавлен: 9 октября 2016, 03:26

Текст книги "Величайшее Шоу на Земле: свидетельства эволюции."


Автор книги: Ричард Докинз


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 21 (всего у книги 27 страниц)

Фамильное дерево для 11 разновидностей Пенни

Если молекулярная генетическая технология продолжит расширяться с ее нынешней экспоненциальной скоростью, то году к 2050 получить полную последовательность генома животного будет дешево и быстро, едва ли не труднее, чем измерить его температуру или его кровяное давление. Почему я говорю, что генетическая технология развивается по экспоненте? Может мы даже могли бы ее измерить? Есть аналог с компьютерной технологией, названный Законом Мура. Названный в честь Гордона Мура, одного из основателей компании компьютерных микросхем Intel, он может быть выражен различными способами, потому что несколько показателей компьютерной мощности связаны друг с другом. Один вариант закона утверждает, что количество модулей, которые могут быть упакованы в интегральную схему заданного размера, удваивается за срок от восемнадцати месяцев до двух лет или около того. Это – эмпирический закон, что означает, что он не выводится из некоторой теории, а просто оказывается действительным, когда Вы оцениваете данные. Он справедлив уже в течение приблизительно пятидесяти лет, и многие эксперты думают, что так будет в течение по крайней мере еще нескольких десятилетий. Другие экспоненциальные тенденции с подобным удвоением во времени, которые могут быть расценены как версии Закона Мура, включают увеличение скорости вычислений и размера памяти в расчете на единицу стоимости. Экспоненциальные тенденции всегда приводят к потрясающим результатам, как продемонстрировал Дарвин, когда при помощи своего сына, математика Джорджа, он взял слона как пример медленно размножающегося животного и показал, что лишь через несколько столетий неограниченного экспоненциального роста потомки всего одной пары слонов покрыли бы землю. Само собой разумеется, рост популяции слонов на практике не экспоненциален. Он ограничен конкуренцией за пищу и пространство, болезнями и многим другим. Это действительно было самым главным для Дарвина, поскольку здесь вступает естественный отбор.

Но Закон Мура действительно остается в силе, по крайней мере приблизительно, уже в течение пятидесяти лет. Хотя ни у кого нет особо четкого представления почему, различные показатели компьютерной мощности на практике фактически увеличивались по экспоненте, тогда как тенденция слона Дарвина экспоненциальна только теоретически. Мне пришло на ум, что может существовать подобный закон в отношении генетической технологии и секвенирования ДНК. Я подсказал это Джонатану Ходжкину, оксфордскому профессору генетики (который когда-то был моим студентом-воспитанником). К моему восхищению оказалось, что он уже думал об этом – и измерил это при подготовке к лекции в своей старой школе. Он оценил стоимость секвенирования ДНК стандартной длины для четырех дат в истории, 1965, 1975, 1995 и 2000 года. Я перевел его числа в «отдачу от вложенных средств», или в то, «сколько ДНК можно секвенировать за 1 000 Ј?» Я подготовил иллюстрации в логарифмическом масштабе, выбранном, потому что экспоненциальная тенденция всегда выявляется как прямая линия, когда она построена в логарифмическом масштабе. Достаточно уверенно четыре точки Ходжкина довольно хорошо ложатся на прямую линию. Я построил линию по этим точкам (по технике линейной регрессии, см. примечание на стр. 112), а затем взял на себя смелость спроецировать ее на будущее. Позже, как раз когда эта книга собиралась в печать, я показал этот раздел профессору Ходжкину, и он сообщил мне новые данные, которые он знал: геном утконоса, который был секвенирован в 2008 году (утконос – хорошая кандидатура из-за своего стратегического положения на дереве живого: его общий с нами предок, жил 180 миллионов лет назад, что почти в три раза раньше вымирания динозавров). Я нарисовал точку утконоса как звездочку на графике, и можно видеть, что она вполне точно ложится рядом с намеченной линией, которая была вычислена на основании более ранних данных.

Наклон линии для того, что я теперь называю (без разрешения) Законом Ходжкина, только немного меньше, чем для Закона Мура. Время удвоения немного больше, чем два года, тогда как время удвоения в Законе Мура немного меньше двух лет. Технология ДНК сильно зависит от компьютеров, таким образом будет хорошим предположением, что Закон Ходжкина, по крайней мере частично, зависит от Закона Мура. Стрелки справа указывают размеры генома различных существ. Если следовать за стрелкой влево, пока она не достигнет наклонной линии Закона Ходжкина, можно прочесть оценку, когда будет возможно секвенировать геном такого же размера как у рассматриваемого существа всего за 1 000 Ј (по сегодняшним деньгам). Для генома размером с геном дрожжей мы должны ожидать всего лишь приблизительно до 2020 года. Для нового генома млекопитающего (насколько можно судить по таким примерным вычислениям, все млекопитающие требуют одинаковых затрат), предполагаемая дата – чуть ранее 2040 года. Это волнующая перспектива: массивная база данных последовательностей ДНК, полученная дешево и легко из всех уголков животного и растительного царств. Подробное сравнение ДНК заполнит все пробелы в нашем знании о фактическом эволюционном родстве каждого вида с любым другим: мы узнаем с полной уверенностью все генеалогическое дерево всех живых существ. Кто знает, как мы его начертим; оно не впишется ни в какой лист бумаги практичного размера.

Закон 'Ходгкина'

Наиболее масштабная попытка в этом направлении до настоящего времени была сделана группой, связанной с Дэвидом Хиллисом, братом Дэнни Хиллиса, который был основателем одного из первых суперкомпьютеров. Схема Хиллиса делает диаграмму дерева более компактной, оборачивая ее по кругу. Вы не увидите промежутка, где два конца почти встречаются, но он находится между «бактериями» и «археями». Чтобы понять, как работает эта круговая диаграмма, посмотрите на очень упрощенную версию, татуированную на спине доктора Клэр Д» алберто из университета Мельбурна, зоологический энтузиазм которой далеко не поверхностен. Клэр любезно позволила мне воспроизвести фотографию в этой книге (см. цветную страницу 25). Ее татуировка включает маленькую выборку из восьмидесяти шести видов (число конечных ветвей). Вы можете видеть промежуток в круглой диаграмме, и представить себе круг развернутым. Меньшее число рисунков вокруг края стратегически выбрано из бактерий, протозоев, растений, грибов, и четырех типов животных. Позвоночные животные представлены справа лиственным морским драконом, удивительной рыбой, защищаемой своим сходством с морскими водорослями. Круглая диаграмма Хиллиса такая же, за исключением того, что в ней три тысячи видов. Их названия, представленные вокруг внешнего края круга выше, слишком маленькие, чтобы прочесть – хотя Homo sapiens услужливо отмечен «Вы здесь». Вы можете составить представление, насколько разрежена выборка дерева даже в этой огромной диаграмме, если я скажу Вам, что самые близкие родственники людей, которые могли быть вписаны в круг, это крысы и мыши. Млекопитающие должны бы были быть существенно прорежены, чтобы соответствовать степени охвата во всех других ветвях дерева. Только представьте себе попытки начертить подобное дерево с десятью миллионами видов вместо этих трех тысяч, охваченных здесь. И десять миллионов – не самая радикальная оценка количества существующих видов. Стоит скачать дерево Хиллиса с его вебсайта (см. сноски), а затем напечатать его в виде настенного плаката на листе бумаги, который, как они рекомендуют, должен быть по крайней мере 54 дюйма шириной (хорошо бы еще больше).

График Хиллиса

МОЛЕКУЛЯРНЫЕ ЧАСЫ

Теперь, когда мы заговорили о молекулах, у нас осталось незавершенное дело из главы про эволюционные часы. Там мы рассмотрели годичные кольца и различные виды радиоактивных часов, но мы отсрочили рассмотрение так называемых молекулярных часов, пока не узнаем о некоторых других аспектах молекулярной генетики. Время пришло. Думайте об этом разделе как о приложении к главе про часы.

Молекулярные часы исходят из того, что эволюция истинна, и что она продолжается с довольно постоянной скоростью в течение геологического времени, чтобы использоваться сама по себе как часы, при условии, что она может быть откалибрована, используя окаменелости, которые в свою очередь калиброваны радиоактивными часами. Так же, как свечные часы предполагают, что свечи сгорают с постоянной и известной скоростью, а водяные часы предполагают, что вода вытекает из ведра со скоростью, которая может быть откалибрована, а высокие напольные часы с маятником предполагают, что маятник качается с постоянной скоростью, так же молекулярные часы предполагают, что существуют определенные аспекты самой эволюции, которые происходят с постоянной скоростью. Эта постоянная скорость может быть откалибрована по тем частям эволюционной летописи, которая хорошо задокументирована (доступными датированию по радиоактивности) ископаемыми. После калибровки молекулярные часы могут использоваться для других частей эволюции, которые не задокументированы ископаемыми. Например, они могут использоваться для животных, которые не имеют твердых скелетов и редко фоссилизируются.

Хорошая идея, но что дает нам право надеяться, что мы найдем эволюционные процессы, которые бы шли с постоянной скоростью? Действительно, многие свидетельства предполагают, что скорости эволюции очень различаются. Задолго до современной эры молекулярной биологии Дж. Б.С.Холдейн предложил «дарвин» в качестве меры эволюционной скорости. Предположим, что за эволюционное время некоторая измеряемая черта животного изменяется в устойчивом направлении. Например, предположим, что средняя длина ног увеличивается. Если в течение миллиона лет длина ног увеличивается в e раз (2.718…, число, выбранное по причинам математического удобства, во что нам вникать не нужно), то говорят, что скорость эволюционного изменения равна одному дарвину. Сам Холдейн оценил скорость эволюции лошади приблизительно в 40 милидарвинов, в то время как эволюция домашних животных при искусственном отборе предположительно измеряется килодарвинами. Скорость эволюции гуппи, пересаженных в ручей без хищников, как описано в Главе 5, была оценена в 45 килодарвинов. Эволюция «живых ископаемых», таких как Lingula (страница 140), должна, вероятно, измеряться в микродарвинах. Вы поняли: скорости эволюции того, что можно увидеть и измерить, вроде ног и клювов, весьма изменчивы.

Если скорости эволюции настолько изменчивы, каким образом мы можем надеяться использовать их в качестве часов? Здесь приходит на помощь молекулярная генетика. На первый взгляд не ясно, как такое может быть. Когда измеряемые черты, такие как длина ноги, эволюционируют, то, что мы видим, является внешним и явным проявлением лежащего в их основе генетического изменения. Как тогда может быть, что скорости изменений на молекулярном уровне обеспечивают хорошие часы, в то время как скорость эволюции ноги или крыла – нет? Если ноги и клювы подвергаются изменению со скоростью в пределах от микродарвинов до килодарвинов, почему молекулы должны быть более надежными в качестве часов? Ответ в том, что генетические изменения, проявляющиеся во внешней и видимой эволюции – такие как ноги и руки – являются очень маленькой верхушкой айсберга, и они – верхушка, подверженная существенному влиянию переменчивого естественного отбора. Большинство генетических изменений на молекулярном уровне нейтрально и, можно поэтому ожидать, происходит со скоростью, не зависящей от полезности, и может даже быть приблизительно постоянной в пределах отдельно взятого гена. Нейтральное генетическое изменение не оказывает никакого воздействия на выживание животного, а это – полезная верительная грамота для часов. Ведь гены, которые влияют на выживание, положительно или отрицательно, как ожидается, эволюционируют с измененной скоростью, отражающей это.

Когда нейтральная теория молекулярной эволюции была впервые предложена, среди прочих, великим японским генетиком Моту Кимурой, она была спорной. Один ее вариант теперь получил широкое признание и, не вдаваясь здесь в подробные доказательства, я собираюсь принять его в этой книге. Поскольку я имею репутацию архи-«адаптациониста» (предположительно помешанного на естественном отборе как главной или даже единственной движущей силой эволюции), Вы можете быть уверены, что, если даже я поддерживаю нейтральную теорию, маловероятно, что многие другие биологи выступят против нее!

Нейтральная мутация – мутация, которая, хотя и легко измерима молекулярно-генетическими методами, не подлежит естественному отбору, ни положительному, ни отрицательному. «Псевдогены» нейтральны по одной причине. Они являются генами, которые когда-то делали что-то полезное, но теперь отодвинуты в сторону и никогда не транскрибируются или не транслируются. Для благополучия животного их с таким же успехом могло бы не существовать вообще. Но с точки зрения ученых, они очень даже существуют, и они – именно то, что нам нужно для эволюционных часов. Псевдогены – только один класс тех генов, которые никогда не транслируются в эмбриологии. Существуют и другие классы, которым ученые отдают предпочтение для молекулярных часов, но я не буду вдаваться в подробности. Для чего полезны псевдогены – так это чтобы ставить в неловкое положение креационистов. Они испытывают даже их креативную изобретательность, чтобы придумать убедительную причину, почему разумный проектировщик должен был создать псевдоген – ген, который абсолютно ничего не делает и всячески создает видимость того, что он – устаревшая версия гена, который некогда что-то делал – разве что, если только он нарочно не задался целью нас одурачить.

Оставляя в стороне псевдогены, существует замечательный факт, что с тем же успехом можно было бы обойтись без большей части генома (95 процентов в случае людей). Нейтральная теория применима даже ко многим из генов из оставшихся 5 процентов – генам, которые читаются и используются. Она применима даже к генам, жизненно важным для выживания. Здесь я должен выразиться яснее. Мы не говорим, что ген, к которому применима нейтральная теория, не оказывает никакого эффекта на тело. Мы лишь говорим, что мутантная версия гена имеет точно такой же эффект, как и немутировавшая версия. Независимо от того, насколько важным или неважным будет сам ген, мутировавшая версия имеет такой же эффект, как немутировавшая версия. В отличие от псевдогенов, где сам ген может должным образом быть описан как нейтральный, мы сейчас говорим о случаях, когда только мутации (то есть изменения в генах) могут строго быть описаны как нейтральные, но не сами гены.

Мутации могут быть нейтральными по различным причинам. Код ДНК – «вырожденный код». Это технический термин, означающий, что некоторые кодовые «слова» являются точными синонимами друг друга. Когда ген мутирует в один из его синонимов, Вы можете с тем же успехом не утруждаться называть это мутацией вообще. Действительно, это не мутация, насколько это касается последствий для тела. И по той же причине это не мутация вообще, насколько это касается естественного отбора. Но это является мутацией, насколько это касается молекулярных генетиков, так как они могут увидеть ее, используя свои методы. Это как если бы я должен был изменить шрифт, в котором я пишу слово, скажем, кенгуру на кенгуру. Вы все еще можете прочитать слово, и оно все еще означает то же самое австралийское прыгающее животное. Изменение шрифта с Minion на Helvetica обнаружимо, но не связано со значением.

Не все нейтральные мутации столь же нейтральны как эта. Иногда новый ген транслирует другой белок, но «активный центр» (вспомните точные формы «впадин», которые мы встретили в Главе 8) нового белка остается тем же, что и у старого. Следовательно, нет буквально никакого эффекта на эмбриональное развитие тела. Немутировавшая и мутировавшая форма гена все еще являются синонимами, насколько это касается их эффектов на тела. Также возможно (хотя такие «ультрадарвинисты» как я склонны противиться этой идее), что некоторые мутации действительно изменяют тело, но таким образом, что это так или иначе не оказывает никакого эффекта на выживание.

Итак, подводя итог нейтральной теории, сказать, что ген или мутация «нейтральны», не обязательно означает, что сам ген бесполезен. Он может быть жизненно важным для выживания животного. Это лишь означает, что мутантная форма гена, который может быть, а может и не быть важным для выживания, не отличается от исходной формы по производимым ею эффектам (которые могут быть очень важными) на выживание. Ситуация такова, что, вероятно, не будет неправдой сказать, что большинство мутаций нейтральны. Они необнаружимы естественным отбором, но обнаружимы молекулярными генетиками; и это – идеальное сочетание для эволюционных часов.

Ничто из этого не должно принижать крайне важной верхушки айсберга – меньшинство мутаций, которые не нейтральны. Именно они отбираются, положительно или отрицательно, в эволюции усовершенствования. Это те мутации, эффекты которых мы фактически видим – и естественный отбор их «видит» тоже. Это те мутации, отбор которых придает живым существам их поразительную иллюзию дизайна. Но, когда мы говорим о молекулярных часах, нас интересует остальная часть айсберга – нейтральные мутации, которых большинство.

С течением геологического времени геном подвергается ливню износа в форме мутаций. В той небольшой части генома, где мутации действительно имеют значение для выживания, естественный отбор скоро избавляется от плохих и благоприятствует хорошим. С другой стороны, нейтральные мутации просто накапливаются, безнаказанно и незаметно для всех, кроме молекулярных генетиков. И теперь мы нуждаемся в новом техническом термине: закрепление [или фиксация]. У новой мутации, если она по-настоящему новая, будет низкая частота в генофонде. Если вы вновь вернетесь к генофонду миллион лет спустя, возможно, что мутация увеличится в частоте до 100 процентов или близко к этому. Если это происходит, мутация, как говорят, «закрепилась». Мы больше не будем думать ней как о мутации. Она стала нормой. Очевидный путь для мутации, чтобы закрепиться – чтобы естественный отбор ей благоприятствовал. Но есть и другой способ. Она может закрепиться случайно. Так же, как, как благородная фамилия может однажды угаснуть из-за отсутствия наследников, так же и альтернативные варианты той мутации, о которой мы говорим, могут просто случайно исчезнуть из генофонда. Сама мутация может стать частой в генофонде благодаря той же самой удаче, которая заставила Смит стать самой распространенной фамилией в Англии. Конечно, намного более интересно, если ген закрепляется по серьезной причине – а именно благодаря естественному отбору – но это может также произойти и случайно, на достаточно большом числе поколений. И геологического времени вполне достаточно для нейтральных мутаций, чтобы закрепляться с предсказуемой скоростью. Скорость, с которой они это делают, варьируется, но она характерна для конкретных генов, и при условии, что большинство мутаций нейтрально, это именно то, что делает возможными молекулярные часы.

Закрепление имеет значение для молекулярных часов, потому что «закрепившиеся» гены – это гены, на которые мы смотрим, когда сравниваем двух современных животных, чтобы попытаться оценить, когда произошел раскол между их предками. Закрепившиеся гены – это гены, характеризующие вид. Это гены, которые едва ли не универсальны в генофонде. И мы можем сравнить гены, закрепившиеся у одного вида, с генами, закрепившимися у другого, чтобы оценить, насколько недавно разделились два вида. Есть осложнения, в которые я не буду вдаваться, потому что мы с Иеном Вонгом в полной мере обсуждали их в эпилоге к «Рассказу Бархатного Червя». С оговорками и с различными важными корректирующими факторами, молекулярные часы работают.

Так же, как радиоактивные часы тикают с весьма различными скоростями, с периодами полураспада в пределах от долей секунды до десятков миллиардов лет, так же различные гены обеспечивают удивительный диапазон молекулярных часов, подходящих для определения времени эволюционных изменений в масштабах от миллиона до миллиарда лет и всех промежуточных периодов. Так же, как у каждого радиоактивного изотопа есть свой характерный период полураспада, так же у каждого гена есть характерная скорость обновления – скорость, с которой новые мутации обычно фиксируются благодаря случайности.

Для генов гистонов характерно обновление со скоростью одной мутации в миллиард лет. Для генов фибринопептида в тысячу раз быстрее, со скоростью обновления в одну новую мутацию, закрепляющуюся за миллион лет. Цитохром-C и набор генов гемоглобина имеют промежуточные скорости обновления, со временем фиксации, измеряемой в пределах от миллионов до десятков миллионов лет.

Ни радиоактивные, ни молекулярные часы не тикают размеренно, как маятниковые или ручные часы. Если бы Вы могли слышать их тиканье, они бы звучали как счетчик Гейгера, собственно для радиоактивных часов счетчик Гейгера – именно то, что Вы бы использовали, чтобы их услышать. Счетчик Гейгера не тикает размеренно, как часы; он тикает беспорядочно, странными, запинающимися порывами. Так звучали бы мутации и фиксации, если мы могли бы услышать их в очень большом геологическом масштабе времени. Но независимо от того, запинается ли он как счетчик Гейгера или тикает метрономом как часы, важная особенность хранителя времени в том, что он должен тикать с известной средней скоростью. Так действуют радиоактивные часы, и так действуют молекулярные часы. Я представил молекулярные часы, сказав, что они исходят из факта эволюции и поэтому не могут использоваться в качестве ее доказательства. Но теперь, поняв, как работают эти часы, мы можем видеть, что я был слишком пессимистичным. Само существование псевдогенов – бесполезных, нетранскрибируемых генов, которые имеют заметное сходство с используемыми генами – является прекрасным примером способа, которым животные и растения носят в себе свою историю, написанную повсюду в них. Но это – тема, которая должна подождать до следующей главы.


    Ваша оценка произведения:

Популярные книги за неделю