355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Олег Фейгин » Никола Тесла — повелитель молний. Научное расследование удивительных фактов » Текст книги (страница 5)
Никола Тесла — повелитель молний. Научное расследование удивительных фактов
  • Текст добавлен: 14 сентября 2016, 23:52

Текст книги "Никола Тесла — повелитель молний. Научное расследование удивительных фактов"


Автор книги: Олег Фейгин



сообщить о нарушении

Текущая страница: 5 (всего у книги 13 страниц) [доступный отрывок для чтения: 5 страниц]

Хотя в настоящее время квантовые эффекты пренебрежимо малы, они играли важнейшую роль на начальных стадиях Большого взрыва. Ими же определяются процессы, протекающие в черных дырах. Поскольку гравитация связана с искривлением пространства-времени, квантовая теория гравитации будет теорией квантового пространства-времени. Она поможет физикам понять, из чего состоит пространственно-временная пена, упомянутая ранее.

Многообещающий подход к квантовой теории гравитации – теория струн, которую физики-теоретики разрабатывают с 1970-х годов. С ее помощью удается устранить некоторые препятствия, мешающие построить логически последовательную квантовую теорию гравитации. Однако теория струн все еще в стадии разработки: физикам пока неизвестны ни ее точные уравнения, ни фундаментальные принципы, определяющие их форму. Кроме того, есть целый ряд физических величин, значения которых невозможно вывести из имеющихся уравнений».

Признаться, когда я впервые прочитал этот «манифест “струнной теории”» в очередном номере «SCIENTIFIC AMERICAN», мне показалось, что молодые теоретики наконец-то осознали тщетность построения иллюзорного мира, принципиально непредставимого в нашей действительности. Однако похоже, что увлеченность струнными построениями еще не отошла на второй план в современной теорфизике. Вот как говорит об этом сам Малдасена:

«Представьте две копии кинофильма: одна на рулонах 70-миллиметровой пленки, другая – на DVD. В первом случае имеем дело с целлулоидной кинолентой, каждый кадр которой можно без особого труда соотнести с тем или иным эпизодом фильма. Во втором случае перед нами жесткий двумерный диск с кольцами точек, которые по-разному отражают свет лазера и образуют последовательность нулей и единиц, которую мы вообще не в состоянии воспринять. Тем не менее оба носителя “описывают” один и тот же кинофильм.

Точно так же две теории, на первый взгляд совершенно отличные по содержанию, описывают одну и ту же вселенную. DVD напоминает радужно блестящий металлический диск, а теория частиц на границе “напоминает” теорию частиц в отсутствие гравитации. Кадры фильма, записанного на DVD, появляются на экране только после соответствующей обработки битов. Квантовая гравитация и дополнительное измерение появляются из теории частиц на границе лишь тогда, когда ее уравнения правильно проанализированы».

Не правда ли, несколько странный взгляд на окружающее нас мироздание? Получается, что дополнительные физические образы проявляются инструментом матанализа, а не возникают естественным путем, как те же кванты Планка, в объективной реальности процессов излучения энергии. Тут еще надо твердо понимать, что метод аналогий аргентинского физика не является доказательным, а всего лишь иллюстрирует некоторые из его весьма неоднозначных мыслей. Впрочем, здесь есть и продолжение: «Что же означает эквивалентность двух теорий? Во-первых, для каждого объекта в одной теории должен существовать аналог в другой. Описания объектов могут быть совершенно разными: определенной частице внутри пространства может соответствовать целая совокупность частиц на его границе, рассматриваемая как единая сущность. Во-вторых, предсказания для соответствующих объектов должны быть идентичными. Например, если две частицы внутри пространства сталкиваются с вероятностью 40 %, то соответствующие им совокупности частиц на его границе также должны сталкиваться с вероятностью 40 %.

Рассмотрим эквивалентность более подробно. Взаимодействия частиц, существующих на границе, очень похожи на взаимодействия кварков и глюонов (из кварков состоят протоны и нейтроны, а глюоны создают сильное ядерное взаимодействие, связывающее кварки). Кварки обладают своего рода зарядом; его виды называют цветами, а законы их взаимодействия – хромодинамикой. В отличие от обычных кварков и глюонов частицы на границе имеют не три, а гораздо большее количество цветов.

Таким образом, голографическое соответствие – не просто новая возможность создания квантовой теории гравитации. Оно фундаментальным образом объединяет теорию струн как наиболее изученный подход к квантовой гравитации с теорией кварков и глюонов, которая является краеугольным камнем физики элементарных частиц. Более того, голографическая теория, по-видимому, позволяет составить какое-то представление о точных уравнениях теории струн. Она была придумана в конце 1960-х годов для описания сильных взаимодействий, но ее забросили, когда на сирене появилась теория хромодинамики. Соответствие между теорией струн и хромодинамикой подразумевает, что прежние усилия не пропали даром: оба описания являются различными сторонами одной и той же монеты».

Не знаю, насколько подобные призывы молодых теоретиков соответствуют действительности, но старшему поколению они более напоминают некую изощренную форму своеобразных «физико-математических заклинаний». Такую позицию полностью разделяет и Смолин, который отмечал в вышеупомянутой книге:

«Мы стоим перед парадоксом. Те теории струн, которые мы знаем, как изучать, известны как ошибочные. Те же, которые мы не можем изучить, мыслятся существующими в таких гигантских количествах, что ни один мыслимый эксперимент никогда не сможет их все опровергнуть.

Это не единственная проблема. Теория струн покоится на нескольких ключевых предположениях, для которых имеются некоторые основания, но нет доказательств. Даже хуже, после всех научных усилий, потраченных на ее изучение, мы все еще не знаем, имеется ли полная и последовательная теория, которая как раз и могла бы определяться как теория струн. Фактически, то, что мы имеем, это совсем не теория, а лишь большая коллекция приблизительна: расчетов вместе с сетью догадок, которые, если они верны, указывают на существование теории. Мы незнаем, каковы ее фундаментальные принципы. Мы не знаем, на каком математическом языке она должна быть выражена; возможно, в будущем должен быть изобретен новый язык, чтобы описать ее. В отсутствие обоих фундаментальных принципов (подтверждаемость, фальсифицируемость) и математической формулировки мы не можем сказать, что мы знаем, о чем говорит теория струн».

Существует легенда, которую я еще студентом слышал от академика Александра Ильича Ахиезера. Она гласит, что незадолго до своей кончины величайшему физику Альберту Эйнштейну удалось-таки собрать воедино в несколько формул все известные силы в окружающем нас мире. Все свои выкладки и математические выражения гениальный ученыйзаписал в простую школьную тетрадку, которая и получила название «Завещание Эйнштейна». Великий исследователь законов природы долго размышлял над тем, стоит ли передавать современникам свое величайшее открытие, и, в конце концов, решил, что это преждевременно. Наверное, Эйнштейн вспомнил свое участие в Манхэттенском проекте, завершившемся созданием атомной бомбы, унесшей сотни тысяч жизней при бомбардировке японских городов Хиросима и Нагасаки… А может быть, его нежелание передать свои знания связано и с крахом филадельфийского эксперимента…

Завещание Эйнштейна искали очень долго, и есть вероятность, что оно до сих пор лежит в пыльных архивах какого-нибудь научно-исследовательского центра или библиотеки. Но подавляющее большинство историков считает, что если завещание Эйнштейна и существовало, то, согласно последней воле гения, оно было сожжено и развеяно вместе с его прахом над просторами Атлантики.

Киви Берд так подводит итоги «новой физики» филадельфийского эксперимента:

«Годы шли, вокруг ФЭ накапливалось все больше и больше небылиц без каких-либо реальных доказательств, однако в то же время происходили и события воистину странные. Так, физикой филадельфийского эксперимента, которая обсуждается “доктором Райнхартом” в книге Мура и Берлица, заинтересовался частный детектив Маршалл Барнс, имеющий техническое образование и значительный опыт “общественных расследований” всякого рода труднообъяснимых событий. В ходе изысканий Барнсу удалось обнаружить нечто весьма примечательное, и свои находки он представил в 1996 году на научном коллоквиуме, спонсорами которого стали биологический и физический факультеты колледжа Колумбус в Огайо.

Барнс решил выбрать в качестве главного свидетеля ФЭ не Карлоса Ачьенде с его эксцентричными и невнятными рассуждениями о НЛО, а “доктора Райнхарта”, поскольку в интервью последнего достаточно конкретно говорилось о создании оптических миражей с помощью интенсивного электромагнитного поля, которое вблизи поверхности воды вызывает диэлектрический пробой и мощные эффекты преломления света. Барнс обнаружил, что именно этот эффект весьма ярко проиллюстрирован на фотографии обложки американского учебника “Физика, том 2", где показан ускоритель частиц РВFА II исследовательского центра Sandia Labs, расположенный под водой и порождающий диэлектрический пробой воздуха над поверхностью воды. Голубовато-зеленоватое мерцание, возникающее при этом, похоже на то, что видели свидетели ФЭ при первом включении генераторов на корабле. В этом же учебнике Барнс нашел описание процессов, сопровождающих работу установки: закипание воды, ионизация воздуха, возникновение оптических феноменов (“полярное сияние”). И если допустить, что система генераторов на “Элдридже” вызвала вращение магнитного поля вокруг корабля, то окружающая морская вода предоставила неисчерпаемый резервуар для поставки электрически заряженных частиц (ионов), которые подкачивались во вращающееся поле. При таком развитии процесса и гигантском накоплении заряда диэлектрический пробой становится более чем вероятен. Как сообщается все в том же учебнике,в э кспериментах физики высоких энергий вода иногда используется в качестве диэлектрика, когда требуется за короткий промежуток времени запасти большое количество энергии. Этот способ именуется “ионное решение”, и именно он применен в Sandia National Labs, где ускоритель синтеза PBFA II помешен в резервуар с соленой водой.

На воспроизведение подобных физических опытов у Барнса, конечно, не было ни средств, ни возможностей, однако он отыскал другое, значительно более дешевое доказательство принципиальной возможности установки “защитных оптических миражей”. Исследователь решил поискать материал, который преломлял бы свет вокруг предмета таким образом, чтобы создавалась иллюзия его прозрачности. К своему удивлению, Барнс достаточно быстро такой материал нашел – это промышленно изготовляемая пластмасса, именуемая «дифракционной пленкой». Когда через эту пленку смотришь на предмет с близкого расстояния, он выгладит полупрозрачным, если же расстояние увеличивать, то постепенно предмет размывается и исчезает практически совсем.

После публичной демонстрации результатов своих изыскании Маршалл Барнс обрел репутацию авторитетного эксперта по ФЭ и стал получать приглашения от разного рода телепередач "о непознанном и аномальном". По иронии судьбы именно эти телепередачи убедили Барнса в том, насколько нечестно в вопросе о ФЭ ведут себя власти. Сначала в небольшом сюжете на канале Sci-Fi Channel тeлecemu Fox, a затем в большой передаче цикла «The Unexplained” („Необъяснимое“) телекомпании А&Е Channel повторилась одна и та же по сути история. Каждый раз Барнс объяснял перед камерами свою позицию “беспристрастного искателя истины», после чего демонстрировал обнаруженные свидетельства. И каждый раз на телеэкраны попадали лишь скептические оценки исследователя, а все самое важное и существенное из программы вырезалось. В недоумении Барнс пытался добиться у создателей передачи объяснений столь вопиющим купюрам, однако в ответ слышал лишь совершенно абсурдные доводы, что эпизоды с демонстрацией пришлось убрать, поскольку, мол, “нет никаких свидетелей, подтверждающих. что филадельфийский эксперимент имел место”…

Абсурд подобных доводов состоит хотя бы в том, что Барнс ради объективности вовсе и не утверждает, что намерен доказать реальность ФЭ. Он лишь заявляет и наглядно демонстрирует своими находками, что реальная ситуация в физике и экспериментах с оптическими миражами совершенно не соответствует официальному заявлению ONR о фантастичности подобных историй. Пользуясь своими детективными навыками, Барнс даже установил, что после его демонстраций в телестудии компания Towers Productions (владелец А&Е Channel) тоже закупила дифракционную плету для экспериментов – и самостоятельно воспроизвела опыты с “исчезновением". Поскольку же вместо “сенсационного разоблачения” нечестных властей последовало полное изъятие сюжета из передачи, Барнс пришел к выводу, что на американском телевидении действует мощная государственная цензура».

Глава четвертая
Чудеса янтарной субстанции

Рассказ начинается задолго до начала нашей эры, в те времена, когда Фалес, Теофраст и Плиний говорили о чудесных свойствах «электрона» (янтаря) – этого удивительного вещества, возникшего из слез Гелиад, сестер несчастного юноши Фаэтона, который пытался овладеть колесницей Феба и едва не сжег всю Землю.

Никола Тесла. Сказка об электричестве

На ранних этапах человеческой истории такие явления, как гроза, приписывались действию богов. У восточных славян богом грома и молнии был Перун.

По воззрениям древних славян Перун приносил весной тепло и дождь и был олицетворением оплодотворяющего и карающего божества. После крещения Руси роль бога грома и молнии перешла к пророку Илье. Боги грома и молнии известны в религиозных представлениях и других народов. Например, у многих первобытных племен существовало представление о грозе как об огромной птице, создававшей гром хлопаньем крыльев и молнии сверканием глаз.

Развитие науки привело к первым представлениям о сущности грозы (рис. 32). Греческие ученые Анаксимен и Анаксагор рассматривали явление грозы как результат сгущения воздуха в облаках. Сократ видел основную причину возникновения гроз в столкновении облаков, Демокрит – в их соединении. Эти представления были обобщены и развиты далее Аристотелем, считавшим, что молния и гром образуются благодаря воспламенению в облаках разнообразных горючих испарений и завихрению их между облаками. В эпоху средневековья представления о природе грозовых процессов не получили существенного развития.


Рис. 32. Молнии


Грозой называется процесс развития в атмосфере мощных электрических разрядов – молний, обычно сопровождаемых громом и связанных в большинстве случаев с укрупнением облаков и ливнеобразным выпадением осадков. Прохождение грозы над местностью как правило, сопровождается довольно значительными изменениями метеорологических параметров приземного слоя воздуха (падение температуры и повышение влажности воздуха, резкое изменение атмосферного давления, силы и направления ветра).

 Первые попытки ученых объяснить грозу как процесс электрического разряда относятся к началу XVIII века. Одну из научных теорий грозы, в основных чертах соответствующую природе явления, дал на основании ряда экспериментальных исследований великий русский ученый М. В. Ломоносов. Согласно его представлениям электризация облаков происходит за счет «трения мерзлых паров о воздух», при этом под «мерзлыми парами» Ломоносов имел в виду лед, а «воздух» понимался им как смесь воздуха, водяного пара и мельчайших водяных капелек. Ломоносов особо подчеркивал, что разделение электрических зарядов и образование сильного электрического поля происходит только при интенсивных вертикальных восходящих и нисходящих течениях (рис. 33).


Рис. 33. Грозовые облака


В настоящее время не решен окончательно вопрос, за счет чего получают заряд капельки воды и кристаллики льда в грозовых облаках. Одна группа ученых считает, что они захватывают заряд из воздуха, другая – что они заряжаются за счет обмена зарядом при контакте между собой. В результате экспериментальных исследований установлено, что от нижней кромки грозового облака и до слоя с температурой 0 °C простирается водная часть облака. В области с температурой от 0 °C до -15 °C сосуществуют вода и лед, и при температуре ниже -15 °C облако обычно состоит только из ледяных кристаллов. Капельная часть облака в основном имеет отрицательный заряд, ледяная – положительный. В средних широтах центр отрицательного заряда грозового облака располагается на высоте около трех километров, а центр положительного – на высоте примерно 6 км.

 Молния – это природный разряд больших скоплений электрического заряда в нижних слоях атмосферы. Одним из первых это установил знаменитый американский государственный деятель и ученый Бенджамин Франклин. В 1752 году он провел опыт с бумажным змеем, к шнуру которого был прикреплен металлический ключ, и получил от ключа искры во время грозы. С тех пор молния интенсивно изучалась как интересное явление природы. Кроме того, ее изучали, чтобы предотвратить серьезные повреждения линий электропередач, домов и других строений, вызываемые прямым ударом молнии или наведенным ею напряжением.

Грозовой процесс невозможен без разделения зарядов в облаке путем конвекции (переноса зарядов воздушными потоками). Поле конвекции в облаках распадается на несколько своеобразных ячеек (рис. 34).


Рис. 34. Грозовой фронт


При прохождении гроз через острые выступы скал и остроконечные детали сооружений на земной поверхности в воздух стекает преимущественно положительный заряд. Потеря земной поверхностью положительного заряда превышает потерю отрицательного в несколько раз. В высокогорных условиях вследствие разреженности воздуха разряд с острий значительно интенсивнее, чем в равнинной местности.

Каждая конвективная ячейка проходит стадию зарождения, зрелости и затухания. В стадии зарождения во всей конвективной ячейке преобладают восходящие течения. Зрелая конвективная ячейка характеризуется развитием восходящих и нисходящих потоков, электрической активностью, выраженной в разрядах молний и выпадением осадков. Такая ячейка имеет горизонтальный диаметр в несколько километров и простирается в высоту до уровня с температурой -40 °C.

В стадии затухания во всей конвективной ячейке преобладают слабые нисходящие течения с уменьшением электрической активности и количества выпадающих в единицу времени осадков. Полный цикл жизни конвективной ячейки составляет около часа, длительность стадии зрелости равна 15–30 минутам, стадии затухания – около 30 минут. Гроза, продолжающаяся несколько часов, является результатом деятельности нескольких конвективных ячеек.

Большинство молний приносит к Земле отрицательный заряд, но иногда встречаются разряды и противоположной полярности. В первом случае грозы значительно богаче молниями, чем во втором. Отношение количества молний отрицательной полярности к молниям положительной полярности для зон умеренного климата составляет примерно 4:1, для тропиков – 17:1. Отношение отрицательных разрядов к положительным для молний, поражающих высокие здания, больше, чем для разрядов в равнинной местности.

Установлено, что во время многих гроз, особенно осенью и зимой, электрическое поле атмосферы приобретает необычное строение. Большинство молний, возникающих на «переднем крае» бури (по направлению ветра), обладают положительным зарядом, то есть ток течет с облака к поверхности Земли. Однако всего в 100 километрах, в «тылу» грозы, большинство молний несут к Земле отрицательный заряд (рис. 35).


Рис. 35. Многократные молнии

Такое биполярное строение грозы было обнаружено, когда несколько локальных сетей, измеряющих атмосферное электричество, объединили в единую систему. В качестве предполагаемой причины биполярности гроз называют горизонтальные ветры. Обычно грозовое облако имеет вертикальное строение: верхняя часть несет положительный заряд, а нижняя – отрицательный. Однако наблюдения показывают, что при горизонтальном ветре на уровне верхней части облака оно начинает клониться к Земле – и положительный заряд смещается в направлении ветра. Со временем такое смещение приводит к появлению в «передней» части грозы центра с положительным зарядом (рис. 36).


Рис. 36. Положительный молниевый разряд


Чаще всего молния представляет собой многократный разряд.

Многократные молнии – обычное явление, они могут насчитывать до нескольких десятков электрических разрядов. Паузы между отдельными разрядами составляют несколько секунд. Средняя длительность полного разряда молнии измеряется десятыми долями секунды, отклонения от среднего значения в обе стороны возможны на порядок величины.

Обычно разряд развивается лавинообразно, сначала в виде ионизованного канала, получившего название лидера молнии, который ступенчато продвигается от облака к земле: Скорость ступенчатого движения лидера к земле равна приблизительно 50x10 6м/с, причем интервал между ступенями составляет около 100 мкс. Длина каждой ступени лидера составляет около 45 м, так что полное время движения до земли может достигать 0,02 с. Затем по этому ионизированному каналу от земли к облаку движется основной разряд со скоростью около 10x10 7м/с. Он обычно глубоко проникает вглубь облака, образуя множество разветвленных каналов. Свечение этого яркого разряда, обусловленное рекомбинацией. ионизованных атомов может продолжаться более секунды.

Противники подобного объяснения отмечают, что горизонтальные ветры обычно слишком слабы, чтобы перенести такой заряд в район грозового фронта. Для решения проблемы необходимо сопоставление спутниковых и радарных данных с данными наземных наблюдений атмосферного электричества.

В зонах умеренного климата разряды молний направляются по преимуществу к Земле, в тропиках же большинство разрядов происходит между облаками или внутри облака.

Разряды молний могут происходить между соседними наэлектризованными облаками или между наэлектризованным облаком и землей. Разряду предшествует возникновение значительной разности электрических потенциалов между соседними облаками или между облаком и землей вследствие разделения и накопления атмосферного электричества в результате таких природных процессов, как дождь, снегопад и т. д. Возникшая таким образом разность потенциалов может достигать миллиарда вольт, а последующий разряд накопленной электрической энергии через атмосферу может создавать кратковременные токи от 3 до 200 кА. Для объяснения электризации грозовых облаков было разработано множество теорий, например модель дробления дождевых капель потоками воздуха. В результате дробления падающие более крупные капли заряжаются положительно, а остающиеся в верхней части облака более мелкие – отрицательно.

Существует также конкурирующая индукционная теория. Она строится на предположении о том, что электрические заряды разделяются электрическим полем Земли, имеющим отрицательный знак. В основе данного механизма лежит явление электростатической индукции, заключающееся в появлении противоположного заряда вблизи заряженной поверхности. Воздушные массы, насыщенные атмосферным электричеством, в целом электронейтральны, но нижняя кромка тучи получает положительный заряд, а верхняя – отрицательный. Горизонтальные молнии происходят между противоположными зарядами самого облака, а вертикальные – между его нижней частью и земной поверхностью.

В теории свободной ионизации предполагается, что электризация возникает как результат избирательного накопления ионов находящимися в атмосфере капельками разных размеров. Возможно, что электризация грозовых облаков осуществляется совместным действием всех этих механизмов, а основным из них является падение достаточно крупных частиц, электризуемых трением об атмосферный воздух.

Площадь земной поверхности, на которой проявляются связанные с отдельной грозой электрические явления, простирается на десятки квадратных километров. Благодаря проводимости воздуха к земной поверхности на этой площади от облака поступает ток силой около 1 А.

Учитывая, что на Земле ежесекундно наблюдается в среднем около 100 разрядов линейной молнии, можно подсчитать среднюю мощность, которая затрачивается в масштабе всей Земли на образование гроз; она равняется 10 18эрг/с. В связи с этим следует отметить, что энергия конденсации, выделяющаяся в грозовом облаке средних размеров с площадью основания около 30 км 2при дожде средней интенсивности, составляет около 10 21эрг. Таким образом, энергия, выделяющаяся при выпадении осадков из грозового облака, значительно превышает его электрическую энергию.

При разряде молнии на всем протяжении ее извилистого пути происходит очень быстрое нагревание столба воздуха до нескольких десятков тысяч градусов. И основной канал молнии, и все его многочисленные разветвления становятся источниками ударных волн (рис. 37). Резкий фронт ударной волны по мере удаления от места разряда все более сглаживается, и на некотором расстоянии от источника ударная волна превращается в акустическую (звуковую) волну небольшой амплитуды. В ходе этого превращения происходит постепенное уменьшение скорости распространения ударной волны вплоть до скорости звука в конечном итоге.


Рис. 37. Древовидный канал разряда


Канал молнии определяется электрическим полем на конце движущегося лидера и локальной ионизацией. Вблизи земля его движение определяется земными стримерами или коронным разрядом, возникающим над заостренными проводящими предметами, выступающими над поверхностью земли. Молния с большой вероятностью повторно ударяет в ту же самую точку, если только объект не разрушен предыдущим ударом. Диаметр ядра светящегося разряда – от 1 до 2 см, а наэлектризованная зона вокруг ядра составляет, по-видимому, несколько метров в диаметре. Разветвленность разряда молнии между облаками обусловлена ступенчатым характером движения лидера, направление каждого шага которого определяется локальными условиями ионизации и потому носит в значительной мере случайный характер.

Звуки, следующие после главного удара грома, создают впечатление удаляющегося от места наблюдения и постепенно затухающего рокочущего шума. Это раскаты грома. Они наблюдаются в местности с любым рельефом и образуются ветвящимся и удаляющимся от места наблюдения разрядом молнии (рис. 38). Длительность раскатов грома определяется особенностями развития молнии. В среднем раскаты длятся половину минуты, а крайние отклонения от среднего значения составляют около 50 %. Характер звучания грома является существенной особенностью уже начавшейся грозы. Народные приметы утверждают, что длительные раскаты грома являются признаком приближения протяженного массива грозовых облаков. Глухой продолжительный и умножающийся со временем гром с медленными раскатами характерен для длительной грозы, в то время как короткие и резкие удары с возрастающими по времени промежутками между ними характеризуют кратковременную грозу.


Рис. 38. Схема развития наземной молнии: а, б – две ступени лидера; 1 – облако; 2 – стримеры; 3 – канал ступенчатого лидера; 4 – корона канала; 5 – импульсная корона на головке канала; в – образование главного канала молнии (К)

Средняя дальность слышимости грома для летних гроз на континенте составляет полтора десятка километров. Разница во времени между вспышками молнии и восприятием грома может достигать полутора минут. Гром от близкого разряда молнии производит такое же действие на слух, как выстрел зенитного орудия в нескольких метрах от наблюдателя.

Глобальная карта активности молний показывает, что Центральная Африка, Гималаи и часть Южной Америки оказались наиболее подверженными огненным вспышкам точками планеты: в среднем 81 молния приходится в год на каждый километр территории, расположенной вокруг Конго, а реже всего эти явления природы были замечены над морем и полюсами Земли.

С давних времен в процессе познания грозы человек стремился подчинить ее своей власти. Об этом говорит, например, легенда о Прометее. Овладение грозами было предметом мечтаний ученых и философов Средневековья. В последние годы были сделаны попытки «засева» грозовых облаков кристаллами таких веществ, как йодистое серебро, йодистый свинец и твердая углекислота. Предполагается, что каждое из этих веществ может способствовать затуханию и даже полному прекращению грозового процесса за счет резкого усиления конденсации водяного пара. Опыты в этом направлении уже позволили накопить обширный экспериментальный материал, позволяющий сделать множество практических выводов. На их основе были разработаны методики, позволяющие эффективно бороться с локальными очагами непогоды при важных спортивных и государственных мероприятиях на открытом воздухе.

Другой вариант основан на вычислении точной структуры и силы подогрева атмосферы, необходимого для снижения интенсивности урагана и изменения его курса. Несомненно, практическая реализация такого проекта потребует огромного количества энергии, но ее можно получить с помощью орбитальных солнечных электростанций. Вырабатывающие энергию спутники следует оснастить гигантскими зеркалами, фокусирующими солнечное излучение на элементах солнечной батареи. Собранную энергию затем можно будет переправить на микроволновые приемники на Земле. Современные конструкции космических солнечных станций способны распространять микроволны, не нагревающие атмосферу и поэтому не теряющие энергию. Для управления погодой важно направить из космоса микроволны тех частот, при которых они лучше поглощаются водяным паром. Различные слои атмосферы можно будет нагреть согласно заранее продуманному плану, а области внутри урагана и ниже дождевых облаков будут защищены от нагрева, так как дождевые капли хорошо поглощают СВЧ-излучение.

Существует замечательное художественное произведение знаменитого писателя Даниила Гранина «Иду на грозу». В нем рассказывается о самоотверженных исследованиях молодых ученых, которые проводили опасную авиаразведку бушующих гроз с борта плохо приспособленного транспортного самолета с целью найти критические параметры для управления погодой. В романе подобные попытки заканчиваются трагически, но сама идея воздействия на грозовые процессы непосредственно с борта летательного аппарата, находящегося в центре («глазе») урагана, была очень популярна во второй половине прошлого века. Дальнейшее развитие идея управления штормами и ураганами получила в увлекательнейшем научно-фантастическом романе «Властелины погоды» известного американского популяризатора научно-технических достижений Бен Бова.

В романе удивительно точно с научной точки зрения представлены картины формирования погоды:

«Солнце поднялось над Западным полушарием, согревая своим теплом моря, континенты и покрывающий их словно мантией беспокойный, давящий своей тяжестью на земную поверхность воздушный океан. Атмосфера, получающая энергию от Солнца, закрученная вращением Земли, двигалась словно живое теплокровное существо. В ней пульсировали ветры. Гигантские столбы воздуха вздымались вверх, впитывали влагу и вновь обрушивались вниз, освобождаясь от нее; они собирали тепло тропиков и несли его к полюсам – а вместе с теплом несли жизнь. Над этим не знающим покоя взвихренным слоем атмосферы воздушный океан становился спокойнее, и в нем лишь продолжали стремительно мчаться струйные течения. А еще выше, в потемневшем небе, где вспыхивали метеоры и разреженный воздух становился совершенно непригодным для дыхания, но все же прикрывал Землю от жесткой, мощной солнечной радиации, – в атмосфере зарождались электрические заряды. Постоянно колеблемый солнечными и лунными приливами и отливами, терзаемый магнитными бурями и невидимым межпланетным ветром, воздушный океан исчезает в темных глубинах космоса…


    Ваша оценка произведения:

Популярные книги за неделю