355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Олег Бойцев » Защити свой компьютер на 100% от вирусов и хакеров » Текст книги (страница 7)
Защити свой компьютер на 100% от вирусов и хакеров
  • Текст добавлен: 10 октября 2016, 06:30

Текст книги "Защити свой компьютер на 100% от вирусов и хакеров"


Автор книги: Олег Бойцев



сообщить о нарушении

Текущая страница: 7 (всего у книги 20 страниц) [доступный отрывок для чтения: 8 страниц]

Асимметричное шифрование

В отличие от алгоритмов симметричного шифрования, где используется один и тот же ключ как для расшифровки, так и для зашифровки, алгоритмы асимметричного шифрования используют открытый (для зашифровки) и закрытый, или секретный (для расшифровки), ключи.

На практике один ключ называют секретным, а другой – открытым. Секретный ключ содержится в тайне владельцем пары ключей. Открытый ключ передается публично в открытом виде. Следует отметить тот факт, что если у абонента имеется один из пары ключей, то другой ключ вычислить невозможно.

Открытый ключ вычисляется из секретного: kl = f(k2). Асимметричные алгоритмы шифрования основаны на применении однонаправленных функций. Согласно определению функция y = f(x) является однонаправленной, если ее можно легко вычислить для всех возможных вариантов x, а для большинства возможных значений y достаточно сложно вычислить такое значение x, при котором y = f(x) .

Примером однонаправленной функции может служить умножение двух больших чисел: N = S х G. Само по себе, с точки зрения математики, такое умножение представляет собой простую операцию. Однако обратная операция (разложение N на два больших множителя), называемая также факторизацией, по современным временным оценкам представляет собой достаточно сложную математическую задачу.

Ну что ж, рассмотрим некоторые из алгоритмов асимметричного шифрования.

Алгоритм Диффи—Хеллмана. В 1976 году Уитфилд Диффи (Whitfield Diffie) и Мартин Хеллман (Martin Hellman) разработали свою систему шифрования с открытым ключом. Система Диффи—Хеллмана разрабатывалась для решения проблемы распространения ключей при использовании систем шифрования с секретными ключами. Идея заключалась в том, чтобы применять безопасный метод согласования секретного ключа без передачи ключа каким-либо другим способом. Следовательно, необходимо было найти безопасный способ получения секретного ключа с помощью того же метода связи, для которого разрабатывалась защита. Суть алгоритма Диффи—Хеллмана заключается в следующем. Предположим, что двум точкам (S1 и S2) требуется установить между собой безопасное соединение, для которого необходимо согласовать ключ шифрования.

♦ S1 и S2 принимают к использованию два больших целых числа a и b, причем 1 < a < b.

♦ S1 выбирает случайное число i и вычисляет I = ai × mod b. S1 передает I абоненту S2.

♦ S2 выбирает случайное число j и вычисляет J = aj × mod b. S2 передает J абоненту S1 .

♦ S1 вычисляет k1 = Ji × mod b.

♦ S2 вычисляет k2 = Ij × mod b.

Имеем k1 = k2 = ai × j х mod b, следовательно, k1 и k2 являются секретными ключами, предназначенными для использования при передаче других данных.

Даже если допустить, что злоумышленнику каким-то образом удастся прослушать передаваемый трафик, то ему будут известны a, b, I и J. Тем не менее остаются в секрете i и j. Уровень безопасности системы зависит от сложности нахождения i при известном I = ai × mod b. Эта задача называется задачей дискретного логарифмирования и считается очень сложной (то есть с помощью современного вычислительного оборудования ее решить практически невозможно), если числа очень велики. Следовательно, a и b необходимо выбирать очень тщательно. Например, оба числа b и (b – 1)/2 должны быть простыми и иметь длину не менее 512 бит. Рекомендуемая длина чисел составляет 1024 бита.

Алгоритм RSA был разработан в 1978 году тремя соавторами и получил свое название по первым буквам фамилий разработчиков (Rivest, Shamir, Adleman). В основе стойкости алгоритма стоит сложность факторизации больших чисел и вычисления дискретных логарифмов. Основной параметр алгоритма RSA – модуль системы N, по которому проводятся все вычисления в системе, а N = R х S (R и S – секретные случайные простые большие числа, обычно одинаковой размерности).

Секретный ключ k2 выбирается случайным образом и должен соответствовать следующим условиям: 1 < k2 < F(N) и НОД (k2, F(N))= 1, где НОД – наибольший общий делитель. Иными словами, k1 должен быть взаимно простым со значением функции Эйлера F(N) , причем последнее равно количеству положительных целых чисел в диапазоне от 1 до N, взаимно простых с N, и вычисляется как F(N) = (R – 1) × (S – 1) .

Открытый ключ kl вычисляется из соотношения (k2 х kl) = 1 × mod F(N). Для этого используется обобщенный алгоритм Евклида (алгоритм вычисления наибольшего общего делителя). Зашифровка блока данных M по алгоритму RSA выполняется следующим образом: C = Mkl × mod N. Поскольку в реальной криптосистеме с использованием RSA число k1 весьма велико (в настоящее время его размерность может доходить до 2048 бит), прямое вычисление Mk1 нереально. Для его получения применяется комбинация многократного возведения M в квадрат с перемножением результатов. Обращение данной функции при больших размерностях неосуществимо; иными словами, невозможно найти M по известным C, N и kl. Однако, имея секретный ключ k2, при помощи несложных преобразований можно вычислить M = Ck2 ×  mod N. Очевидно, что, помимо собственно секретного ключа, необходимо обеспечивать секретность параметров R и S. Если злоумышленник добудет их значения, то сможет вычислить и секретный ключ k2.

В настоящее время криптосистема RSA применяется в самых различных продуктах, на различных платформах и во многих отраслях. Достаточно вспомнить ее использование в операционных системах Microsoft, Apple, Sun и Novell, чтобы представить всю "грандиозность" RSA. В аппаратной составляющей алгоритм RSA широко используется в защищенных телефонах, на сетевых платах Ethernet, на смарт-картах, в криптографическом оборудовании Zaxus (Racal). Ко всему прочему, алгоритм входит в состав всех основных протоколов для защищенных коммуникаций Интернет, в том числе S/MIME, SSL и S/WAN, а также используется во многих правительственных учреждениях, государственных лабораториях и университетах. На осень 2000 года технологии с применением алгоритма RSA были лицензированы более чем 700 компаниями.

Алгоритм Эль-Гамаля. Эль-Гамаль (Taher Elgamal) разработал вариант системы Диффи—Хеллмана. Он усовершенствовал этот алгоритм и получил один алгоритм для шифрования и один для обеспечения аутентификации. Алгоритм Эль-Гамаля не был запатентован (в отличие от RSA) и таким образом стал более дешевой альтернативой, так как не требовалась уплата лицензионных взносов. Поскольку этот алгоритм базируется на системе Диффи—Хеллмана, то его стойкость обеспечивается сложностью решения все той же задачи дискретного логарифмирования.

Алгоритм цифровой подписи (Digital Signature Algorithm). Алгоритм DSA был разработан правительством США как стандартный алгоритм для цифровых подписей (см. разд. 2.3). Данный алгоритм базируется на системе Эль-Гамаля, но позволяет осуществлять только аутентификацию. Конфиденциальность этим алгоритмом не обеспечивается.

Шифрование с использованием эллиптических кривых. Эллиптические кривые были предложены для использования в системах шифрования в 1985 году. Системы шифрования с использованием эллиптических кривых (ECC) основываются на отличной от факторизации или дискретного логарифмирования математической задаче. Данная задача заключается в следующем: имея две точки A и B на эллиптической кривой, такие что A = kB, очень трудно определить целое число k. Несмотря на некоторую «экзотичность», использование ECC перед алгоритмом RSA или Диффи—Хеллмана в ряде случаев дает существенное преимущество. Самым большим из таких преимуществ является то, что ключи могут иметь существенно меньшую длину (по причине сложности задачи). И это без потери стойкости! Как результат, вычисления производятся быстрее с сохранением того же уровня безопасности. Так, безопасность, обеспечиваемая 160-битным ключом ECC, может быть приравнена к 1024-битному ключу RSA.

Достоинства и недостатки симметричного и асимметричного методов шифрования

На сегодняшний день в сфере ИБ широко представлены системы как с симметричным шифрованием, так и с асимметричным. Каждый из алгоритмов имеет свои преимущества и недостатки, о которых нельзя не сказать.

Основной недостаток симметричного шифрования заключается в необходимости публичной передачи ключей – "из рук в руки". На этот недостаток нельзя не обратить внимание, так как при такой системе становится практически невозможным использование симметричного шифрования с неограниченным количеством участников. В остальном же алгоритм симметричного шифрования можно считать достаточно проработанным и эффективным, с минимальным количеством недостатков, особенно на фоне асимметричного шифрования. Недостатки последнего не столь значительны, чтобы говорить о том, что алгоритм чем-то плох, но тем не менее.

Первый недостаток ассиметричного шифрования заключается в низкой скорости выполнения операций зашифровки и расшифровки, что обусловлено необходимостью обработки ресурсоемких операций. Как следствие, требования к аппаратной составляющей такой системы часто бывают неприемлемы.

Другой недостаток – уже чисто теоретический, и заключается он в том, что математически криптостойкость алгоритмов асимметричного шифрования пока еще не доказана.

Дополнительные проблемы возникают и при защите открытых ключей от подмены, ведь достаточно просто подменить открытый ключ легального пользователя, чтобы впоследствии легко расшифровать его своим секретным ключом.

Какими бы недостатками и преимуществами ни обладало ассиметричное и симметричное шифрование, необходимо отметить лишь то, что наиболее совершенные решения– это те, которые удачно сочетают в себе алгоритмы обоих видов шифрования.

2.2. Электронная цифровая подпись

Благодаря бурному развитию сферы информационных технологий в нашу жизнь вошли и стали привычными технологии, без которых современный мир уже трудно себе и представить. Одной из таких технологий, которая, между прочим, стоит на страже безопасности совершаемых в сети операций, является электронная цифровая подпись (ЭЦП). Ее применение в качестве средства для идентификации и подтверждения юридической значимости документов становится стандартом цифрового мира.

Электронная цифровая подпись (ЭЦП) – реквизит электронного документа, предназначенный для удостоверения источника данных и защиты данного электронного документа от подделки. Электронная цифровая подпись представляет собой последовательность символов, полученную в результате криптографического преобразования электронных данных. ЭЦП добавляется к блоку данных, позволяет получателю блока проверить источник и целостность данных и защититься от подделки. ЭЦП используется в качестве аналога собственноручной подписи.

Благодаря цифровым подписям многие документы – паспорта, избирательные бюллетени, завещания, договора аренды – теперь могут существовать в электронной форме, а любая бумажная версия будет в этом случае только копией электронного оригинала.

Основные термины, применяемые при работе с ЭЦП

Закрытый ключ – это некоторая информация длиной 256 бит, которая хранится в недоступном другим лицам месте на дискете, смарт-карте, touch memory. Работает закрытый ключ только в паре с открытым ключом.

Открытый (public) ключ используется для проверки ЭЦП получаемых документов-файлов; технически это некоторая информация длиной 1024 бита. Открытый ключ работает только в паре с закрытым ключом.

Код аутентификации – код фиксированной длины, вырабатываемый из данных с использованием секретного ключа и добавляемый к данным с целью обнаружения факта изменений хранимых или передаваемых по каналу связи данных.

Средства электронно-цифровой подписи – аппаратные и/или программные средства, обеспечивающие:

♦ создание электронной цифровой подписи в электронном документе с использованием закрытого ключа электронной цифровой подписи;

♦ подтверждение с использованием открытого ключа электронной цифровой подписи подлинности ЭЦП в электронном документе;

♦ создание закрытых и открытых ключей электронных цифровых подписей.

ЭЦП – это просто

Начнем с того, что ЭЦП – это вовсе не «зверь», и никаких специальных знаний, навыков и умений для ее использования не потребуется.

Каждому пользователю ЭЦП, участвующему в обмене электронными документами, генерируются уникальные открытый и закрытый (секретный) криптографические ключи.

Ключевым элементом является секретный ключ, с помощью которого производится шифрование электронных документов и формируется электронно-цифровая подпись. Секретный ключ остается у пользователя и выдается ему на отдельном носителе: это может быть дискета, смарт-карта или другой носитель. Хранить его нужно в секрете от других пользователей сети.

В Удостоверяющем Центре (третья сторона, или так называемый "арбитр") находится дубликат открытого ключа, создана библиотека сертификатов открытых ключей. Удостоверяющий Центр обеспечивает регистрацию и надежное хранение открытых ключей во избежание внесения искажений или попыток подделки.

Когда пользователь устанавливает под электронным документом свою электронную цифровую подпись, на основе секретного ключа ЭЦП и содержимого документа путем криптографического преобразования вырабатывается некоторое большое число, которое и является электронно-цифровой подписью данного пользователя под данным конкретным документом. Это число добавляется в конец электронного документа или сохраняется в отдельном файле. В подпись заносится следующая информация:

♦ имя файла открытого ключа подписи;

♦ информация о лице, сформировавшем подпись;

♦ дата формирования подписи.

Пользователь, получивший подписанный документ и имеющий открытый ключ ЭЦП отправителя, на их основании выполняет обратное криптографическое преобразование, обеспечивающее проверку электронной цифровой подписи отправителя. Если ЭЦП под документом верна, то это значит, что документ действительно подписан отправителем и в текст документа не внесено никаких изменений. В противном случае будет выдаваться сообщение, что сертификат отправителя не является действительным.

Управление ключами

Важной проблемой всей криптографии с открытым ключом, в том числе и систем ЭЦП, является управление открытыми ключами. Необходимо обеспечить доступ любого пользователя к подлинному открытому ключу любого другого пользователя, защитить эти ключи от подмены злоумышленником, а также организовать отзыв ключа в случае его компрометации.

Задача защиты ключей от подмены решается с помощью сертификатов. Сертификат позволяет удостоверить заключенные в нем данные о владельце и его открытый ключ подписью какого-либо доверенного лица. В централизованных системах сертификатов (например, PKI – Public Key Infrastructure) используются центры сертификации, поддерживаемые доверенными организациями. В децентрализованных системах (например, PGP – Pretty Good Privacy) путем перекрестного подписания сертификатов знакомых и доверенных людей каждым пользователем строится сеть доверия.

Управлением ключами занимаются центры распространения сертификатов. Обратившись к такому центру, пользователь может получить сертификат какого-либо пользователя, а также проверить, не отозван ли еще тот или иной открытый ключ.

ЭЦП под микроскопом

Рассмотрим принцип работы ЭЦП подробнее. Схема электронной подписи обычно включает в себя следующие составляющие:

♦ алгоритм генерации ключевых пар пользователя;

♦ функцию вычисления подписи;

♦ функцию проверки подписи.

Функция вычисления подписи на основе документа и секретного ключа пользователя вычисляет собственно подпись. В зависимости от алгоритма функция вычисления подписи может быть детерминированной или вероятностной. Детерминированные функции всегда вычисляют одинаковую подпись по одинаковым входным данным. Вероятностные функции вносят в подпись элемент случайности, что усиливает криптостойкость алгоритмов ЭЦП. Однако для вероятностных схем необходим надежный источник случайности (либо аппаратный генератор шума, либо криптографически надежный генератор псевдослучайных бит), что усложняет реализацию.

В настоящее время детерминированные схемы практически не используются. Даже в изначально детерминированные алгоритмы сейчас внесены модификации, превращающие их в вероятностные (так, в алгоритм подписи RSA вторая версия стандарта PKCS#1 добавила предварительное преобразование данных (OAEP), включающее в себя, среди прочего, зашумление).

Функция проверки подписи проверяет, соответствует ли она данному документу и открытому ключу пользователя. Открытый ключ пользователя доступен всем, так что любой может проверить подпись под данным документом.

Поскольку подписываемые документы переменной (и достаточно большой) длины, в схемах ЭЦП зачастую подпись ставится не на сам документ, а на его хэш. Для вычисления хэша используются криптографические хэш-функции, что гарантирует выявление изменений документа при проверке подписи. Хэш-функции не являются частью алгоритма ЭЦП, поэтому в схеме может быть использована любая надежная хэш-функция. Что же такое хэш?

Хэширование представляет собой преобразование входного массива данных в короткое число фиксированной длины (которое называется хэшем или хэш-кодом), таким образом чтобы, с одной стороны, это число было значительно короче исходных данных, но, с другой стороны, с большой вероятностью однозначно им соответствовало.

Продолжим. Алгоритмы ЭЦП делятся на два больших класса:

♦ обычные цифровые подписи;

♦ цифровые подписи с восстановлением документа.

Обычные цифровые подписи необходимо пристыковывать к подписываемому документу. К этому классу относятся, например, алгоритмы, основанные на эллиптических кривых (ECDSA, ГОСТ Р34.10-2001, ДСТУ 4145-2002). Цифровые подписи с восстановлением документа содержат в себе подписываемый документ: в процессе проверки подписи автоматически вычисляется и тело документа. К этому классу относится один из самых популярных алгоритмов – RSA, который мы рассмотрим в конце раздела.

Следует различать электронную цифровую подпись и код аутентичности сообщения, несмотря на схожесть решаемых задач (обеспечение целостности документа и невозможности отказа от авторства). Алгоритмы ЭЦП относятся к классу асимметричных алгоритмов, в то время как коды аутентичности вычисляются по симметричным схемам.

Можно сказать, что цифровая подпись обеспечивает следующие виды защиты.

♦ Удостоверение источника документа. В зависимости от деталей определения документа могут быть подписаны такие поля, как "автор", "внесенные изменения", "метка времени" и т. д.

♦ Защита от изменений документа. При любом случайном или преднамеренном изменении документа (или подписи) изменится хэш, и, следовательно, подпись станет недействительной.

♦ Невозможность отказа от авторства. Поскольку создать корректную подпись можно, лишь зная закрытый ключ, а он известен только владельцу, то владелец не может отказаться от своей подписи под документом.

Совершенно очевидно, что ЭЦП вовсе не совершенна. Возможны следующие угрозы цифровой подписи, при которых злоумышленник может:

♦ подделать подпись для выбранного им документа;

♦ подобрать документ к данной подписи, чтобы подпись к нему подходила;

♦ подделать подпись для хоть какого-нибудь документа;

♦ подменить открытый ключ (см. подразд. "Управление ключами" разд. 2.2) на свой собственный, выдавая себя за владельца;

♦ обманом заставить владельца подписать какой-либо документ, например, используя протокол слепой подписи;

♦ подписать любой документ от имени владельца ключа, если закрытый ключ уже украден.

При использовании надежной хэш-функции вычислительно сложно создать поддельный документ с таким же хэшем, как и у подлинного. Однако эти угрозы могут реализоваться из-за слабостей конкретных алгоритмов хэширования, подписи или ошибок в их реализациях.

RSA как фундамент ЭЦП

Не секрет, что наибольшую популярность среди криптоалгоритмов цифровой подписи приобрела RSA (применяется при создании цифровых подписей с восстановлением документа).

На начало 2001 года криптосистема RSA являлась наиболее широко используемой асимметричной криптосистемой (криптосистемой открытого ключа) и зачастую называется стандартом де факто. Вне зависимости от официальных стандартов существование такого стандарта чрезвычайно важно для развития электронной коммерции и вообще экономики. Единая система открытого ключа допускает обмен документами с электронно-цифровыми подписями между пользователями различных государств, приминяющими различное программное обеспечение на различных платформах; такая возможность насущно необходима для развития электронной коммерции.

Распространение системы RSA дошло до такой степени, что ее учитывают при создании новых стандартов. Первым при разработке стандартов цифровых подписей в 1997 году был разработан стандарт ANSI X9.30, поддерживающий Digital Signature Standard (стандарт цифровой подписи). Годом позже был введен ANSI X9.31, в котором сделан акцент на цифровые подписи RSA, что отвечает фактически сложившейся ситуации, в частности для финансовых учреждений.

До недавнего времени главным препятствием для замены бумажного документооборота электронным были недостатки защищенной аутентификации (установления подлинности); почти везде контракты, чеки, официальные письма, юридические документы все еще выполняются на бумаге.

Появление цифровой подписи на основе RSA сделало осуществление электронных операций достаточно безопасным и надежным.

Алгоритм RSA предполагает, что посланное закодированное сообщение может быть прочитано адресатом и только им. Как было уже сказано выше, в этом алгоритме используется два ключа – открытый и секретный. Данный алгоритм привлекателен также в случае, когда большое количество субъектов (N) должно общаться по схеме "все-со-всеми". В случае симметричной схемы шифрования каждый из субъектов каким-то образом должен доставить свои ключи всем остальным участникам обмена, при этом суммарное количество используемых ключей будет достаточно велико при большом значении N. Применение асимметричного алгоритма требует лишь рассылки открытых ключей всеми участниками, суммарное количество ключей равно N.

Сообщение представляется в виде числа M. Шифрование осуществляется с помощью общедоступной функции f(M) , и только адресату известно, как выполнить операцию f-1. Адресат выбирает два больших простых (prime) числа p и q, которые делает секретными. Он объявляет n = pq и число d, c (d, p – 1) = (d, q – 1) = 1 (один из возможных способов выполнить это условие – выбрать d больше, чем p/2 и q/2). Шифрование производится по формуле: f(M) = Md х mod n, где M и f(M) оба < n – 1 . Оно может быть вычислено за разумное время, даже если M, d и n содержат весьма большое количество знаков. Адресат вычисляет M на основе Md, используя свое знание p и q. Если dc ≡ (p_1)1, тогда (Md)e ≡ p1.

Исходный текст M получается адресатом из зашифрованного F(M) путем преобразования: M = (F(M))e (mod pq). Здесь как исходный текст, так и зашифрованный рассматриваются как длинные двоичные числа.

Аналогично (Md)e ≡ qM, если dc ≡ (q_1)1. е удовлетворяет этим двум условиям, если cd ≡ (p_1)(q_1)1. Мы можем позволить е = x, когда x является решением уравнения dx + (p – 1)(q – 1)y = 1.

Так как (Md)eM делимо на p и q, оно делимо и на pq. Следовательно, мы можем определить M, зная Md, вычислив его значение в степени е и определив остаток от деления на pq. Для соблюдения секретности важно, чтобы, зная n, нельзя было вычислить p и q. Если n содержит 100 цифр, подбор шифра связан с перебором приблизительно 1050 комбинаций. Данная проблема изучается уже около 100 лет.

Теоретически можно предположить, что возможно выполнение операции f-l без вычисления p и q. Но в любом случае задача эта непроста, и разработчики считают ее трудно факторизуемой.

Предположим, что мы имеем зашифрованный текст f(M) и исходный текст M и хотим найти значения p и q. Нетрудно показать, что таких исходных данных для решения задачи недостаточно – надо знать все возможные значения Mi.

Проясним использование алгоритма RSA на конкретном примере. Выберем два простых числа p = 7; q = l7 (на практике эти числа во много раз длиннее). В этом случае n = pq будет равно ll9. Теперь необходимо выбрать е. Выберем е = 5. Следующий шаг связан с формированием числа d, так чтобы de = 1 х mod [(p – 1)(q – 1)]. d = 77 (использован расширенный алгоритм Евклида). d – секретный ключ, а е и n характеризуют открытый ключ. Пусть текст, который нам нужно зашифровать, представляется M = 19. С = Me х mod n. Получаем зашифрованный текст C = 66. Этот "текст" может быть послан соответствующему адресату. Получатель дешифрует полученное сообщение, используя М = Cd х mod n и C = 66. В результате получается M = 19.

На практике общедоступные ключи могут помещаться в специальную базу данных. При необходимости послать партнеру зашифрованное сообщение можно сделать сначала запрос его открытого ключа. Получив его, можно запустить программу шифрации, а результат ее работы послать адресату.


    Ваша оценка произведения:

Популярные книги за неделю