355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Николай Крупенио » Радиоисследования планет с космических аппаратов » Текст книги (страница 1)
Радиоисследования планет с космических аппаратов
  • Текст добавлен: 10 октября 2016, 01:36

Текст книги "Радиоисследования планет с космических аппаратов"


Автор книги: Николай Крупенио



сообщить о нарушении

Текущая страница: 1 (всего у книги 4 страниц)

Н. Н. КРУПЕНИО,
кандидат физико-математических наук
РАДИОИССЛЕДОВАНИЯ ПЛАНЕТ С КОСМИЧЕСКИХ АППАРАТОВ

ВВЕДЕНИЕ

Полет советской станции «Луна-1» к нашему естественному спутнику в январе 1959 г. ознаменовал собой начало нового этапа исследования Луны и планет Солнечной системы. Впервые ученым представилась возможность изучения Луны со столь близкого расстояния и стала очевидной реальность исследований планет Солнечной системы в непосредственной близости от этих небесных тел.

За прошедшие двадцать лет космической эры было разработано и осуществлено много космических экспериментов по изучению Луны и планет с помощью автоматических межпланетных станций (АМС). Научная аппаратура АМС с успехом передавала на Землю данные из ближайших окрестностей Луны, Марса, Венеры, Юпитера и Меркурия. Научные приборы доставлялись и успешно работали на поверхности Луны, Венеры и Марса. Большой комплекс научных задач был решен с помощью искусственных спутников Луны, Марса и Венеры.

Огромную роль в исследовании Луны и планет с применением аппаратуры АМС играют радиофизические методы. Они позволяют получить информацию о высотной зависимости температуры и давления в атмосфере, о концентрации электронов в ионосфере планеты, данные о рельефе поверхности (с разным пространственным разрешением), о диэлектрической проницаемости, плотности и тепловом режиме грунта. Причем такие параметры, как высотные зависимости давления в атмосфере и концентраций электронов в ионосфере, а также данные о рельефе поверхности с разрешением до нескольких метров и информация о диэлектрической проницаемости и тепловом режиме поверхностного слоя, можно определить только с помощью радиофизических методов.

Для проведения радиофизических измерений используется как служебная радиотехническая аппаратура АМС, так и специально разработанная для подобных экспериментов.

Впервые радиофизический метод исследования был применен во время пролета американской АМС «Маринер-2» вблизи Венеры в 1962 г. Интересно, что полученные тогда данные о радиоизлучении планеты удалось «расшифровать» лишь спустя 14 лет, когда стали известны параметры атмосферы Венеры, включая ее химический состав.

В июле 1965 г. во время пролета около Марса американской АМС «Маринер-4» с использованием радиофизических методов были определены высотные распределения температуры и давления в атмосфере этой планеты.

Значительный прогресс в использовании радиофизических методов исследования был достигнут при получении возможности проводить измерения с помощью АМС, находящихся вблизи и непосредственно на поверхности другого небесного тела. Это стало возможным, когда советская станция «Луна-9» впервые в мире осуществила мягкую посадку на поверхности Луны, в районе Океана Бурь. В числе научных экспериментов, входивших в программу этой АМС, был и радиофизический.

Автоматическая станция «Луна-9» была создана большим коллективом инженеров и конструкторов, который возглавлял член-корреспондент АН СССР Г. Н. Бабакин. Под руководством этого замечательного конструктора были впоследствии разработаны многие станции серии «Луна», «Венера» и «Марс», в частности первые искусственные спутники Луны, станции, доставившие на поверхность нашего естественного спутника самоходные аппараты «Луноход», а также обеспечившие возвращение на Землю контейнеров с образцами лунного грунта. При непосредственном участии Г. Н. Бабакина составлялась и научная программа исследований Луны и планет с помощью космических аппаратов. Он во многом способствовал развитию радиофизических методов исследований Луны и планет с космических аппаратов, был инициатором использования штатной радиоаппаратуры АМС для проведения научных измерений.

После первых успешных космических экспериментов по радиофизическому исследованию небесных тел осуществлен ряд других, позволивших получить ценную информацию о Луне, Марсе, Венере, Юпитере, Меркурии, включая данные о температуре и плотности поверхностного слоя, о рельефе поверхности, температурном режиме подоблачной атмосферы планет и т. д.

В данной брошюре будет рассказано о методах, применяемых при проведении космических радиофизических измерений, о полученных результатах исследований Луны и планет Солнечной системы с помощью радиофизических приборов, установленных на космических аппаратах. Будет рассказано о дальнейших перспективах исследований Солнечной системы данными методами. При этом не будут затрагиваться проблемы радиофизических исследований Земли и Солнца. Поскольку Солнце как небесное тело имеет особую специфику проявления радиофизических характеристик, а дистанционные исследования из космоса Земли настолько обширны, что требуют отдельного рассмотрения (хотя методы дистанционного изучения Земли и планет имеют много общего).

ОСНОВНАЯ МЕТОДОЛОГИЯ РАДИОФИЗИЧЕСКИХ ИЗМЕРЕНИЙ

Радиофизические исследования Луны и планет[1]1
  При дальнейшем изложении, если это не будет соответственно оговорено, мы будем Луну также считать планетой.


[Закрыть]
с помощью приборов, устанавливаемых на космических аппаратах, могут быть пассивными и активными. Пассивные (или радиоастрономические) методы исследования (рис. 1) связаны с изучением характеристик собственного излучения данного объекта. Это излучение может быть по своему происхождению тепловым, и тогда его интенсивность будет определенным образом зависеть от температуры источника (точнее, от разности температур планеты и окружающей среды). В остальных случаях излучение является нетепловым, и его интенсивность определяется либо величиной магнитного поля и интенсивностью потоков заряженных частиц, создающих это излучение, либо другими физическими величинами, характерными для данного механизма излучения. Нетепловое излучение, например, вызывается хорошо всем известным явлением молнии. Она является не только источником мощной вспышки в оптическом диапазоне, но интенсивно излучает в радиодиапазоне, создавая помехи радиовещательного приемника.

Обычно при анализе теплового радиоизлучения определяют такие его характеристики, как интенсивность, степень поляризации, частотный спектр, зависимость интенсивности излучения от времени местных суток и года на данной планете. Данные об этих параметрах вместе с известной длиной волны, используемой в экспериментах, позволяют получить важную информацию о физических характеристиках атмосферы и поверхностного слоя планеты.

Рис. 1. Схема пассивных радиоисследований планет: 1 – КА; 2 – антенна; 3 – диаграмма направленности антенны; 4 – плоскость поляризации; 5 – направление наблюдений; 6 – плоскость наблюдения; 7 – подспутниковая точка; 8 – точка наблюдений; 9 – поверхность планеты; 10 – зона принимаемого излучения; N – нормаль; γ – угол поляризации антенны

Активные методы исследования связаны с изучением характеристик поглощения, отражения, рассеяния и преломления радиоволн физической средой: межпланетной средой, атмосферой, поверхностным слоем планеты. При этом используется система передачи – приема определенных радиосигналов.

В зависимости от места нахождения приемника и передатчика радиофизические исследования, использующие активный метод, подразделяются на однопозиционные и многопозиционные. При однопозиционных (или моностатических) исследованиях вся измерительная радиоаппаратура находится в одной точке пространства, а при многопозиционных – приемник и передатчик разнесены в пространстве. Двухпозиционные исследования иногда называют бистатическими.

Вообще говоря, все пассивные исследования являются однопозиционными. Однако при определении угловых размеров исследуемого источника в настоящее время часто используется радиоинтерферометр – система разнесенных друг от друга приемников радиоизлучения.[2]2
  См.: Л. И. Матвеенко. Радиоинтерферометры (серия «Космонавтика, астрономия», 3). М., «Знание», 1974.


[Закрыть]
Подобный метод, например, был применен в 1971 г. во время советско-французского эксперимента «Стерео», в ходе которого определялась локализация областей радиоизлучения Солнца с использованием двух приемников: одного – на Земле, другого – на борту станции «Марс-3». Анализ характера биений, образующихся в общем сигнале из-за наложения сигналов друг на друга с обоих приемников, позволил получить (высокое угловое разрешение исследуемых областей излучения.

Все активные методы радиофизических измерений в зависимости от расположения приемника и передатчика в пространстве можно разделить на следующие:

1. Моностатическая радиолокация. Приемник и передатчик находятся в одной точке пространства (при этом часто для приема и передачи радиосигналов используется одна общая антенна).

2. Бистатическая радиолокация. Приемник и передатчик радиолокационных сигналов, предназначенные для исследования поверхности планеты, разнесены друг от друга.

3. Радиорефракционные измерения (радиопросвечивание). Радиосигнал с передатчика прежде чем попасть на вход приемника проходит сквозь исследуемую среду (атмосферу планеты).

При радиофизических исследованиях планет активные методы (особенно радиолокационные) в принципе являются более информативными. Так, при радиолокационных измерениях можно получить лучшее пространственное разрешение, чем при пассивных измерениях (при одинаковых антеннах и используемых длинах волн).

Рассмотрим теперь более подробно некоторые разновидности радиофизических измерений, используемых при космических исследованиях.

Пассивные измерения

В последние годы радиотелескопы заняли прочное место на борту космических аппаратов, особенно на борту искусственных спутников Земли различного назначения (рис. 2).

Радиотелескоп, как известно, состоит из антенны и приемника, называемого радиометром, который не только усиливает радиоизлучение исследуемого объекта, но и позволяет получить характеристики этого излучения: интенсивность, спектр, иногда поляризацию. При измерении интенсивности часто производится так называемая калибровка, которая заключается в том, что одновременно с сигналом радиоизлучения исследуемого объекта на вход приемника подается эталонный сигнал с известной интенсивностью. После сопоставления известной интенсивности калибровочного сигнала (на выходе приемника) с интенсивностью полезного сигнала (радиоизлучения объекта) с учетом известных характеристик антенной системы определяется интенсивность радиоизлучения самого объекта.

В радиоастрономии интенсивность излучения характеризуется либо величиной спектральной плотности потока, определяемой мощностью потока излучения, падающего на единичную площадку в единичной полосе частот (длин волн), либо «радиояркостной температурой». Величина спектральной плотности потока радио– излучения, в свою очередь, измеряется в янских:[3]3
  В честь американского инженера К. Янского, обнаружившего в 1932 г. радиоизлучение Галактики.


[Закрыть]
1 Ян = 10–26 Вт · (м2 · Гц)–1.

Прежде чем перейти к понятию «радиояркостной температуры», отметим, что «яркость» радиоизлучения есть (как и в оптическом диапазоне) энергия излучения, проходящая через единичную площадку за единицу времени при изменении энергии в единичной полосе частот. Таким образом, для «яркости» радиоизлучения абсолютно черного тела справедлив закон Релея—Джинса, связывающего интенсивность излучения I с температурой источника T: I = kT2, где k = 1,38 · 10–23 Дж/К – постоянная Больцмана, λ – длина волны, на которой производится измерение.

Рис 2. Схема радиоизмерений с борта искусственного спутника Земли: 1 – орбита; 2 – трасса наблюдений; 3 – трасса подспутниковой точки; 4 – экватор

С помощью радиотелескопа измеряется «яркость» радиоизлучающего тела, которое, вообще говоря, не является абсолютно черным, т. е. оно не только поглощает падающую на него энергию, но и частично отражает ее. Однако при формальном использовании в этом случае закона Релея—Джинса можно также получить величину «температуры», которую и называют «радиояркостной температурой». Эта величина зависит от действительной температуры исследуемого источника радиоизлучения, если, конечно, оно является тепловым. На практике часто используется отношение радиояркостной температуры к реальной температуре – так называемый коэффициент излучения данного тела.

При изучении радиоизлучения планет, как уже отмечалось, исследуется степень поляризации, частотный спектр радиоизлучения, а также зависимость интенсивности от времени суток и сезона. Все эти данные позволяют получить важную информацию о физических параметрах атмосферы и поверхностного слоя изучаемой планеты. В частности, определяются такие характеристики, как диэлектрическая проницаемость и электропроводность вещества верхнего покрова планеты, температура грунта и соответствующие распределения этих параметров с глубиной (при измерениях на различных радиочастотах) и с высотой (при определенном выборе используемой радиочастоты), когда исследуется температурный режим атмосферы планеты.

Степень поляризации радиоизлучения, в свою очередь, зависит от рельефа и температуры грунта, а также от диэлектрической проницаемости и электропроводности. Если исследуемый грунт имеет лишь незначительную электропроводность, то, при одновременном исследовании радиоизлучения в двух различных плоскостях вектора поляризации (но на одной и той же радиочастоте), удается определить сразу и диэлектрическую проницаемость и температуру грунта. При использовании более сложной методологии измеряется и электропроводность грунта.

Метод приема радиоизлучения одновременно на нескольких частотах очень продуктивен при изучении атмосфер планет. В этом случае радиочастоты выбираются таким образом, чтобы они (по крайней мере некоторые из них) находились вблизи так называемых резонансных частот собственных колебаний молекулярных газов. Такие резонансные частоты характерны для радиоизлучения молекул водяного пара, кислорода, формальдегида и т. д. Дело в том, что вблизи резонансных частот общее радиоизлучение планеты ослабляется, и по степени этого ослабления можно определить содержание данного газа в атмосфере планеты. Кроме того, спектр радиоизлучения в «нерезонансной» области радиочастот дает сведения о температуре атмосферы (для различных высот), а также о наличии влаги в облачном покрове. Например, исследуя радиоизлучение Венеры в области длин волн около 1,35 см, ученые смогут определить содержание водяного пара в атмосфере этой планеты, а делая измерения одновременно на трех-пяти радиочастотах (длинах волн) в миллиметровом и сантиметровом диапазонах, получат распределение температуры подоблачной атмосферы с высотой.

При проведении подобных измерений используются широкодиапазонные приемники радиоизлучения, в которых с помощью системы частотных фильтров весь исследуемый диапазон разбивается на ряд участков – каналов. В этих частотных каналах затем проводится усиление принимаемого излучения и определяется его интенсивность. Такие приемники называют спектральными радиометрами.

Качество измерений с помощью радиометров, установленных на борту космических аппаратов, в сильной степени зависит от соответствующих характеристик используемой антенны. Для получения высокого разрешения исследуемого участка на поверхности планеты (т. е. размера участка, усредненные характеристики которого еще возможно определить при использовании данного радиотелескопа) необходимо применять антенны с узкой диаграммой направленности.

Диаграмма направленности представляет собой характерную зависимость коэффициента усиления от различных направлений наблюдения объекта. Часто этот коэффициент измеряют в относительных единицах (по отношению к максимальному значению коэффициента усиления).

Для дальнейшего изложения нам понадобятся следующие характеристики диаграммы направленности:

1. Ширина диаграммы направленности. Она определяется разностью углов наблюдения, при которых коэффициент усиления становится в два раза меньше своего максимального значения.

2. Уровень боковых лепестков и их пространственное распределение относительно главного лепестка. Помимо основного максимума, образуемого главным лепестком диаграммы направленности, существует ряд относительных максимумов, образующих так называемые боковые лепестки диаграммы.

3. Коэффициент рассеяния. Он определяется величиной отношения энергии, принимаемой антенной со всех направлений, кроме соответствующего максимальному усилению (в главном лепестке диаграммы направленности), к энергии, принимаемой в направлении этого главного максимума усиления.

Коэффициент рассеяния фактически определяет влияние, оказываемое на принимаемое излучение (от исследуемой области) излучением близлежащих к ней районов (в направлениях вне главного лепестка). Чем выше коэффициент рассеяния, тем больше бывает ошибка измерений, поскольку в этом случае на полученные результаты будут оказывать сильное воздействие боковые лепестки диаграммы направленности. Размеры области (зоны), излучение которой на входе приемника свободно от влияния боковых лепестков, зависят от ширины диаграммы направленности данной антенны и от расстояния приемника до наследуемой области. Поэтому очевидна необходимость использования антенн с более узкой диаграммой направленности. Однако это связано с увеличением размеров антенн, что не всегда возможно из-за пространственных и весовых ограничений, возникающих при использовании космических аппаратов.

Мы не будем здесь касаться конструкций и схем построения антенн, используемых на борту космических аппаратов. Отметим только, что антенны с шириной диаграммы направленности менее 10° обычно называют антеннами с узкой диаграммой направленности, с шириной более 10° – антеннами с широкой диаграммой направленности.

Советский радиоастроном В. С. Троицкий в свое время открыл поляризацию теплового радиоизлучения Луны, характеризуемую тем, что интенсивность принимаемого радиоизлучения оказалась зависящей от поляризационных свойств антенны и угла, под которым она направлена к исследуемой поверхности (угла визирования). В связи с этим изучение поляризации стало играть определенную роль в радиофизических измерениях теплового излучения планет.

Антенны космических аппаратов рассчитаны на прием радиосигналов либо с круговой, либо с линейной поляризацией. Если антенна рассчитана на прием радиоизлучения с линейной поляризацией, то интенсивность принимаемого ею сигнала будет зависеть от угла между плоскостью наблюдения и плоскостью поляризации (см. рис. 1). Полученная зависимость позволяет получить важную информацию об электрических свойствах исследуемого грунта.

Радиорефракционные измерения

В последние годы широкое применение в космических экспериментах нашел метод, изучающий радиорефракционные свойства тропосфер и ионосфер. Одним из преимуществ этого метода является то, что для его реализации на борт космического аппарата, как правило, не надо устанавливать специальной аппаратуры.

Результатом рефракционных измерений является определение высотной зависимости коэффициента преломления радиоволн тропосферой и ионосферой планеты. Направление и скорость распространения радиоволн в атмосфере зависят от метеорологических параметров (температуры и давления), а также от химического состава газов, образующих атмосферу. С увеличением плотности молекул газа, определяемой его температурой и давлением; возрастает коэффициент преломления и уменьшается скорость распространения радиоволн.

Коэффициент преломления обычно уменьшается с ростом высоты, так же как уменьшается и температура и давление. Однако все эти параметры изменяются по разным законам.

Из результатов радиорефракционных измерений после соответствующей обработки получают данные о температуре, давлении и плотности нижней части атмосферы (тропосферы). Однако для этого используют определенные предположения, т. е. выбирают модель состояния атмосферы, чтобы по одному параметру (отношению давления к температуре, определяемому непосредственно из рефракционных измерений) определить три взаимозависимых параметра: температуру, давление и плотность. Обычно принимаются следующие предположения: атмосферный газ полагают несжимаемым и находящимся в гидростатическом равновесии. Кроме того, считают, что он хорошо перемешан воздушными потоками.

Если произвести измерения коэффициента преломления на многих высотах, то по полученной зависимости этого параметра от высоты можно, с учетом вышеизложенных предположений, получить высотные зависимости (профили) основных метеопараметров атмосферы: температуры, давления и плотности.

Для изучения ионосфер планет используют радиорефракционные измерения на одной или одновременно на двух частотах. Ионосфера – ионизированная часть верхней атмосферы планет – исследуется также и прямыми методами с помощью электронных ловушек и электростатических анализаторов. Одночастотный радиорефракционный метод более грубый и менее чувствительный по сравнению с двухчастотным. С помощью одночастотного метода изучаются главным образом дневные (освещенные Солнцем) ионосферы планет. Двухчастотные методы используются для изучения ночных ионосфер планет, ионизированных более слабо. В освещенной Солнцем части ионосферы под воздействием фотохимических процессов и солнечного ветра (потока электронов, протонов и α-частиц) вблизи планеты возникает плазма – ионизированная оболочка. Ночью фотохимические процессы в верхней атмосфере значительно ослабляются. Обтекающий планету поток солнечного ветра над ночной стороной имеет значительно меньшую концентрацию, чем над дневной стороной. Все это приводит к изменению структуры ионосферы над ночной стороной планеты по сравнению с дневной.

Поэтому ночью в атмосфере значительно уменьшается концентрация электронов и изменяется распределение концентрации электронов с высотой. Ночью же ионосфера ближе прижимается к поверхности планеты и становится менее протяженной.

Наличие свободных электронов в ионосфере приводит к преломлению и ослаблению радиоволн. Уменьшение коэффициента преломления прямо пропорционально электронной концентрации и квадрату длины волны. Поэтому исследование рефракции радиоволн позволяет определять в ней концентрацию электронов. Следует отметить, что коэффициент преломления радиоволн в ионосфере меньше 1. Тогда как коэффициент преломления в нейтральном газе тропосферы больше 1.

B связи с тем, что концентрация электронов в ионосфере изменяется не монотонно с высотой, как это обычно имеет место для метеорологических параметров тропосферы (температуры, давления и др.), решение обратной задачи – получение высотной зависимости концентрации электронов в ионосфере по результатам радиорефракционных измерений – является более сложной процедурой, чем получение высотных профилей давления, температуры и плотности для тропосферы.

Радиорефракционные измерения проводятся по следующей схеме.

На борту космического аппарата (КА), пролетающего вблизи планеты, включается передатчик, который имеет стабильную частоту излучения. На наземном пункте принимается сигнал этого передатчика и фиксируются амплитуда, частота и фаза сигнала. Измерения начинаются за несколько десятков минут до захода космического аппарата за видимый с Земли диск планеты. После выхода космического аппарата из тени планеты измерения продолжаются в течение еще нескольких десятков минут.

По мере захода космического аппарата за край видимого с Земли диска планеты (лимба) трасса распространения радиоволн между КА и наземным пунктом проходит через все более низкие слои атмосферы планеты. При этом непрерывно меняется отклонение направления распространения радиолуча от прямолинейного вследствие возрастания концентрации молекул газа на трассе распространения радиоволн. Это изменение направления распространения радиоволн (рефракция) вызывает на наземном пункте дополнительное изменение частоты принимаемого сигнала (из-за эффекта Доплера) по сравнению с изменением частоты, определяемой для данного момента времени только движением космического аппарата.

Обработка разницы изменения частоты принятого на Земле сигнала между измеренной и рассчитанной по траекторным данным позволяет с учетом высоты прохождения радиолуча в атмосфере определить коэффициент преломления радиоволн для данной высоты прохождения радиолуча над поверхностью планеты. Следует отметить, что радиолуч при заходе КА за лимб планеты вначале пронизывает верхнюю атмосферу, а затем нижнюю. Если измерения происходят в дневной атмосфере, то по времени вначале будет определен коэффициент преломления радиоволн ионосферой, а затем уже – нижней атмосферой. При выходе КА из-за лимба планеты измерения проводятся в обратном порядке: вначале исследуются более низкие слои атмосферы, а затем более высокие. Если измерения проводятся ночью, то из-за незначительности эффекта преломления радиоволн в ионосфере (при одночастотном методе радиопросвечивания) ионосфера обычно не обнаруживается.

Из-за относительно небольших эффектов преломления радиоволн при измерении рефракции в атмосфере планет система радиорефракционных измерений должна обладать высокой точностью и стабильностью. Для получения достаточно точных исходных данных, необходимых для расчета коэффициента преломления, нужно осуществлять измерение частоты принятого радиосигнала на наземном пункте с ошибкой всего в несколько сотых долей герца. Для исследования тропосфер и дневных ионосфер планет используют одночастотные методы. Для исследования же ночных ионосфер применяют в основном двухчастотные методы радиопросвечивания, при использовании которых удается зарегистрировать меньшие величины коэффициента преломления радиоволн вблизи планеты.

В двухчастотном методе бортовой передатчик КА излучает одновременно два сигнала, которые между собой синхронизированы. Между частотами этих сигналов установлено жесткое соответствие (обычно второй сигнал получается путем увеличения частоты первого сигнала в некоторое число раз – n, причем это число может быть и не кратным). На наземном пункте принимаются сигналы обеих частот. После соответствующего усиления обоих сигналов первый сигнал увеличивается по частоте в n раз и сравнивается со вторым сигналом. При отсутствии изменения частоты при распространении обоих сигналов разность частот между ними (приведенная частота) после преобразования в приемнике будет равна нулю. Сдвиг частоты за счет движения КА (благодаря эффекту Доплера) пропорционален отношению радиальной скорости КА к длине волны передатчика. При таком двойном преобразовании частот двух сигналов (на борту КА и на наземном пункте) никакого изменения приведенной частоты за счет эффекта Доплера (из-за движения КА) не будет. Значение приведенной частоты будет только зависеть от рефракции радиоволн для сигналов обеих частот бортовых передатчиков, так как рефракция зависит от квадрата длины волны (а не от первой степени).

Поэтому, измеряя значение приведенной частоты, можно получить информацию о коэффициенте преломления радиоволн. А проведя подобные измерения в течение всего времени захода или выхода космического аппарата из-за диска планеты, можно построить высотную зависимость коэффициента преломления, по которой можно получить высотный профиль концентрации электронов в ионосфере.


    Ваша оценка произведения:

Популярные книги за неделю