355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Никола Тесла » Статьи » Текст книги (страница 12)
Статьи
  • Текст добавлен: 12 октября 2016, 04:16

Текст книги "Статьи"


Автор книги: Никола Тесла



сообщить о нарушении

Текущая страница: 12 (всего у книги 39 страниц) [доступный отрывок для чтения: 14 страниц]

Когда к верхнему концу светящейся нити подносили палец или магнит, она могла менять свое положение в этом месте вследствие электростатического или магнитного воздействия. А когда объект возмущения очень быстро удалялся, получался результат аналогичный тому, когда вертикально подвешенный шнур быстро смещают в сторону и затем отпускают в точке, находящейся вблизи вертикали. При этом, когда в светящейся нити устанавливались колебания, образовывались два четко выделяющихся утолщения и нечеткое третье. Единожды установленные, колебания продолжались почти восемь минут, постепенно угасая. Скорость колебаний нередко меняется в ощутимых пределах, и было видно, что электростатическое притяжение стекла влияет на вибрирующую нить. Очевидно, что электростатическое действие не являлось причиной возникновения колебаний обычно неподвижной нити, которую всегда можно заставить вибрировать, если над верхней частью трубки быстро провести пальцем. Под действием магнита нить может разделяться на две вибрирующие части. Если поднести руку к нижнему покрытию трубки или к изолирующей пластине, то колебания ускоряются. Ускорение колебаний также происходит при увеличении напряжения, или частоты. Таким образом, либо увеличение частоты, либо прохождение более сильного разряда той же частоты, вызывают действие, соответствующее усилению натяжения шнура. Я не получил никаких экспериментальных доказательств истинности данной теории при использовании разрядов конденсатора. Светящаяся полоса, возникающая в лампе под действием повторяющихся разрядов лейденской банки, должна обладать прочностью, и если ее деформировать и резко отпустить, то она должна колебаться. Однако, количество вибрирующего вещества, возможно, настолько мало, несмотря на сверхвысокую скорость, инерция не может заметно проявить себя. Кроме того, вести наблюдение в таких случаях оказывается чрезвычайно трудным делом из-за присутствия основных колебаний.

Демонстрация того факта, который все еще нуждается в лучшем экспериментальном подтверждении, что колеблющееся газовое пламя обладает жесткостью, может очень сильно повлиять на научные взгляды ученых-теоретиков. Если учесть, что такие свойства могут быть замечены при низких частотах и незначительной разности потенциалов, то как же тогда должна вести себя газовая среда под воздействием сверхвысокого электростатического напряжения, которое может действовать в межзвездном пространстве, и которое может меняться с огромной скоростью? Существование такой электростатической, ритмически вибрирующей силы, – или вибрирующего электростатического поля, – может указать на возможный способ образования твердых тел из ульра-газообразной праматерии, и как поперечные и любые другие виды колебаний могут передаваться через газообразную среду, заполняющее все пространство. Далее, эфир и в самом деле может быть, лишенным твердости и состоянии покоя, он просто необходим как связующее звено, облегчающее взаимодействие. Что определяет твердость тела? Это должны быть скорость и масса движущейся материи. В газовой среде скорость может быть значительной, но плотность достаточно мала. В жидкости скорость также мала, хотя плотность может быть существенной. Но в обоих случаях инерционное сопротивление практически равно нулю. Но поместите газовую или жидкостную струю в интенсивное, быстро меняющееся электростатическое поле, придайте частицам колебания сверхвысокой скорости, и тогда инерционное сопротивление даст о себе знать. Тело сможет двигаться с большей или меньшей свободой через вибрирующую массу, но в целом оно будет твердым.

Есть предмет, который я должен упомянуть в связи с этим экспериментом. Это сильный вакуум. Это предмет, изучение которого не только интересно, но и полезно, так как это может привести к результатам большой практической важности. Заполнение промышленных электрических устройств, таких как лампы накаливания, работающие от обычных распределительных систем, более сильным вакуумом, не даст никаких преимуществ. В этом случае работа выполняется на нити накаливания и состояние газа не имеет большого значения, поэтому улучшение будет, но незначительное. Но когда мы начинаем использовать очень высокие частоты и потенциалы, роль газа становится очень важной, и степень разрежения существенно влияет на результат. До тех пор, пока использовались обычные, пусть даже очень большие, катушки, возможности изучения данного предмета были ограничены. Они не простирались далее точки, с которой начиналось самое интересное, останавливаясь по достижении "не-пробиваемого" вакуума. Но сегодня мы можем получить от маленькой катушки пробойнго разряда катушки такую высокую разность потенциалов, которую не смогла бы дать даже самая большая обычная катушка, и что более важно, мы можем сделать так, чтобы разность потенциалов изменялась с большой скоростью. Теперь оба этих фактора позволяют нам передавать светящийся разряд через любой доступный вакуум, и область наших исследований существенно расширяется. В настоящее время из всех возможных направлений разработок практических осветительных приборов, работа в направлении сильного вакуума представляется наиболее многообещающей. Но для получения очень сильного вакуума устройства необходимо сильно усовершенствовать. Но мы не сможем это сделать до тех пор, пока мы не откажемся от механической и не улучшим электрическую вакуумную помпу. Молекулы и атомы могут выбрасываться лампой под действием сверхвысокой разности потенциалов. Это будет лежать в основе принципа работы вакуумной помпы в будущем. Сегодня мы можем получить наилучшие результаты использую механические приспособления. В этом отношении я не могу не сказать несколько слов о методе и приборе для получения высокой степени разрежения, который в ходе моих исследований зарекомендовал себя весьма неплохо. Вполне возможно, что и другие экспериментаторы использовали схожие устройства. Поскольку вполне возможно, что в их описаниях найдется немало интересного для других ученых, позволю себе несколько замечаний в отношении данного предмета, дабы представить исследование в более законченном виде.

На Рис. 30 изображен прибор, где S– это помпа Спреигеля, которая была специально сконструирована для этой работы. Запорный кран, который обычно применяется, был удален, и вместо него в горловину резервуара Rвмонтирована пустотелая пробка S.В пробке сделано маленькое отверстие b, через которое опускается ртуть. Размер входного отверстия оопределяется в соответствии с сечением трубки t, которая припаяна к резервуару, вместо того, чтобы быть подсоединенной к нему обычным способом. В конструкции этого прибора устранены некоторые недостатки, позволяющие избежать сложностей, которые часто возникали при использовании запорного крана на резервуаре и соединения последнего с низводящей трубкой.

Помпа через U-образную трубку tподсоединена к очень большому резервуару Rj.При сборке особое внимание следует уделить шлифовке поверхностей пробок ри р j.Обе пробки и ртутные чашки над ними сделаны очень д л и н н ы м и. После того, как U-образную трубку смонтируют и установят на своем месте, ее нагревают, для того, чтобы смягчить и снять напряжение, которое может возникнуть в результате недостатков монтажа. U-образная трубку оснащена запорным краном и двумя отводами: gи gj.Один из отводов, подключаемый к маленькой лампе b, обычно заполняется каустической содой, а другой, подключаемый к приемному резервуару, содержит разреженный воздух.

Резервуар Rjпосредством резиновой трубки подключается к немного большему по размеру резервуару R2. Каждый из двух резервуаров снабжен запорными кранами С/ и С2,соответственно. Резервуар R2 можно поднимать и опускать при помощи колеса и штатива. Диапазон его движений определен так, что если он заполнен ртутью и запорный кран С2закрыт, то когда он поднят, в нем образуется Торричеллева пустота. Он может быть поднят так высоко, что ртуть в резервуаре Rjостанавливается немного выше запорного крана Сj,и когда этот запорный кран закрыт, а резервуар R2опущен так, что в резервуаре R1образуется Торричеллиева пустота, то ртуть может быть опускаться настолько, что полностью заполняет полость последнего. Ртуть заполняет резервуар R2до уровня расположенного немного выше запорного крана С 2.

Емкость помпы и соединений были сделаны настолько маленькими, насколько это было возможно относительно объема резервуара Rj,так как степень разрежения зависит от соотношения этих параметров.

Я объединил обычные средства, указанные в предыдущих экспериментах для получения очень сильного вакуума, с этим аппаратом. В большинстве экспериментов было удобно использовать едкое кали. Я осмелюсь высказать некоторые замечания в отношении его использования. Экономится много времени, и работа помпы улучшается, если в момент установки помпы, или непосредственно перед этим, расплавить и довести едкий кали до кипения. Если этот процесс не проделать, то клеи, которые обычно используются, очень медленно могут испускать небольшая влажность, при наличии которой помпа может работать в течение многих часов не создавая сильный вакуум. Едкое кали нагревается либо спиртовой горелкой, либо пропусканием через него разряда, либо пропуская ток по проходящему через него проводу. Преимущество последнего варианта в том, что нагревание можно повторять значительно быстрее.

Обычно процесс разрежения протекает следующим образом. В начале работы запорные краны С1и С2 открыты, а все другие соединения закрыты. Резервуар R2поднимается до тех пор, пока ртуть не заполнит резервуар R1,и часть U-образной трубки. Когда помпа начинает работать, ртуть должна быстро подниматься в трубке, и резервуар R2опускается, а экспериментатор поддерживает уровень ртути на том же уровне. Резервуар R2 уравновешивается длинной пружиной, которая облегчает действие, а силы трения частей обычно в целом достаточно для того, чтобы удерживать его практически в любом положении. Когда помпа Спренгеля заканчивает свою работу, резервуар R2 опускается еще ниже, ртуть опускается в резервуар R jи заполняет резервуар R2 над которым закрывается запорный кран С2.Воздух, налипший на стенки резервуара R1и абсорбированный ртутью, удаляется, и ртуть освобождается от всего воздуха в резервуаре R2, который он набрал за время долгой работы, перемещаясь вверх и вниз. Во время этого процесса некоторое количество воздуха, которое должно было собираться ниже запорного крана С2,удаляется из резервуара R2 в результате опускания его вниз и открывания крана, который позже перед подъемом резервуара закрывается. Когда весь воздух из ртути удален и он больше не собирается в резервуаре R2 при его опускании, прибегают к действию каустического поташа. Теперь резервуар R2 вновь поднимается до тех пор, пока ртуть в резервуаре Rjне поднимется выше запорного крана С].Каустический поташ расплавлен и находится в состоянии кипения. При этом влага частично удаляется помпой, а частично реабсорбируется. Этот процесс нагревания и охлаждения повторяется много раз, и каждый для абсорбирования и удаления влаги требуется все больше подъемов и опусканий резервуара R2. Таким образом, вся влага удаляется из ртути и оба резервуара приводят в состояние, пригодное для использования. Затем, резервуар R2 вновь поднимают в самое верхнее положение, а помпу оставляют в рабом режиме на длительный период времени. После получения максимально возможного вакуума при помощи помпы, лампу с поташем обычно заворачивают в хлопок, смоченный эфиром для того, чтобы сохранить низкую температуру поташа. Затем резервуар R2 опускают, а на опустошенный резервуар R jнадевают приемный резервуар r, и быстро запаивают.

Когда приносят новую лампу, ртуть всегда должна быть выше запорного крана С],который закрыт для того, чтобы всегда сохранять ртуть и оба резервуара в наилучшем состоянии и ртуть никогда не выливается из резервуара Rj,за исключением случаев, когда помпа достигает наивысшей степени разрежения. Это правило необходимо соблюдать, если Вы желаете успешно пользоваться этим аппаратом.

Используя эти приспособления, я мог совершать процесс очень быстро, и когда прибор был в идеальном состоянии, то было возможно достичь стадии фосфоресценции в маленькой лампе менее чем за 15 минут. Это время определенно является очень быстрым для маленькой лабораторной установки, требующей всего около 100 фунтов ртути.

В обычной маленькой лампе соотношение емкости помпы, приемного резервуара и соединений к резервуару Rсоставляет где-то 1 к 20. Степень достигаемого разрежения получается очень высокой, хотя я и не могу дать точное определение насколько оно велико.

Что больше всего производит впечатление на исследователя при проведении этих опытов, так это поведение газов, которые подвергаются воздействию очень быстро изменяющемуся электростатическому напряжению. Но исследователя не должно покидать сомнение: в наблюдаемых эффектах принимают участие только молекулы и атомы газа, которые нам хорошо известны по результатам химического анализа, или же в них принимает участие еще и другая газообразная среда, включающая в себя атомы и молекулы жидкости, заполняющей пространство. Такая среда, несомненно, должна существовать, и я убежден что, например, даже при отсутствии воздуха и непосредственно прилегающее к нему пространство, должны нагреваться из-за быстро меняющейся разности потенциалов тела. Но такое нагревание не может происходить, если все свободные атомы удалены и остались только атомы однородных, несжимающихся и упругих жидкостей, например, таких как эфир, которые не допускают никаких взаимодействий и столкновений. В этом случае, могут происходить только фрикционные потери и только в той степени, в которой это позволяет само тело.

Поразительно то, что с увеличением частоты импульсов, разряд проходит через газ все легче и легче. В этом плане его поведение прямо противоположно тому, что происходит в металлическом проводнике. В последнем случае полное сопротивление – импеданс – наступает при увеличении частоты. Но газ должен проявлять себя как несколько последовательно включенных конденсаторов: легкость, с которой проходит разряд, возможно, зависит от скорости изменения разности потенциалов. Если это так, тогда в вакуумной трубке даже очень большой длины и вне зависимости от силы тока, не могла бы возникнуть сколь-нибудь существенная самоиндукция. Таким образом, мы с Вами сейчас можем воочию убедиться, что через проводник в газовой среде могут проходить импульсы такой частоты, какую мы только; сможем получить. Если бы мы смогли увеличить частоту до необходимой величины, то смогли бы создать систему распределения электрической энергии, которой заинтересовались бы и газовые компании: металлические трубы, заполненные газом – где металл выступает как изолятор, а газ – как проводник, снабжающий энергией фосфоресцентные лампы и, возможно, устройства, которые еще не изобретены. Нет сомнений в том, что вполне возможно, взять полый медный стержень, создать в нем разрежение газа, и при помощи импульсов достаточно высокой частоты, проходящих по цепям вокруг него, довести газ внутри стержня до высокой степени накаливания. Но поскольку мы еще мало знаем о природе этих сил, то возникают сомнения: а будет ли с такими импульсами медный стержень вести себя как статичный экран? С такими парадоксами и причинами, обуславливающими явную невозможность осуществления тех, или иных проектов, мы сталкиваемся на каждом шагу этого направления работы, а в этом в основном и заключается обаяние исследовательской работы.

А сейчас, я беру короткую и широкую трубку, внутри которой имеется газ с высокой! степенью разреженности, и которая имеет прочное бронзовое покрытие, едва позволяющее свету проходить через него. Металлическая застежка, с крюком для подвешивания трубки, закреплена вокруг средней части последней. Зажим находится в контакте с бронзовым покрытием. Теперь я хочу, чтобы газ внутри трубки стал излучать свет, когда я подвешу трубку на провод, подсоединенный к катушке. Любому, кто захочет провести этот эксперимент в первый раз, не имея никакого предварительного опыта, следует позаботиться о том, чтобы в этот момент никого из посторонних в комнате не было. В противном случае, он может стать объектом насмешек со стороны своих помощников. Однако, несмотря на наличие металлического покрытия, лампа засветилась, и свет отчетливо проступает сквозь нее. Длинная трубка, покрытая алюминиевой бронзой, излучает яркий свет, когда я удерживаю ее в одной руке, а другой рукой касаюсь клеммы катушки. Можно было бы возразить, что покрытия обладают недостаточной степенью электропроводности, а поскольку они обладают высоким сопротивлением, то должны экранировать газ. Они, несомненно, служат хорошим экраном в состоянии покоя, но когда на покрытие воздействует разряд, то экранирующая способность существенно ослабевает. Однако внутри трубки, несмотря на наличие экрана, именно из-за наличия газа, происходит большая потеря.

Если бы мы взяли большую полую металлическую сферу и заполнили ее самым совершенным, несжимаемым жидким диэлектриком, даже несмотря на быстрое изменение потенциалов, внутри сферы у нас не было бы потерь энергии, и, следовательно, сферу можно было бы рассматривать как полностью экранированную. Если бы мы заполнили сферу маслом, то потери энергии были бы значительно меньше, нежели тогда, когда вместо жидкости используется газ, поскольку в последнем случае, возникает сила, вызывающая перемещения, то есть взаимодействия и столкновения частиц внутри сферы.

Давление газа внутри сферы не имеет большого значения. Этот фактор приобретает значение при нагревании проводника, когда электрическая плотность становится огромной, а частота очень высокой. Таким образом, при нагревании проводников при помощи светящихся разрядов, воздух становится элементом исключительной важности. Этот факт можно рассматривать как совершенно точный, почти так, как если бы он был подтвержден экспериментально. Я могу проиллюстрировать действие воздуха в следующем эксперименте: я беру короткую трубку, заполненную вакуумом средней степени, и платиновую проволоку, протянутую через середину трубки от одного конца к другому. Затем пропускаю через проволоку постоянный или низкочастотный ток, и она равномерно нагревается по всей длине. Нагревание здесь произошло вследствие проводимости или фрикционных потерь, и газ вокруг проволоки, как мы можем убедиться воочию, не играет никакой роли. А теперь я пропускаю через проволоку резкие разряды, или ток высокой частоты. Проволока опять нагревается, но сильнее на концах и меньше в средней части, а если частота импульсов, или скорость изменения потенциалов достаточно высоки, то проволока может оборваться в середине, а может и не оборваться, поскольку практически все нагревание происходит благодаря разреженному газу. Здесь газ может выступать только как проводник с нулевым сопротивлением, по которому течет ток от провода, так как сопротивление последнего взросло до огромного значения, вследствие нагрева концов провода, произошедшего из-за сопротивления проходящему по ним разряду. Но совершенно нет необходимости в том, чтобы газ в трубке был электропроводным. Он может быть очень низкого давления, и тогда концы проволоки будут нагреваться. При этом, как было установлено экспериментально, эти концы могут и не иметь электрического контакта через газовую среду. Что теперь происходит с частотами и разностью потенциалов в разреженной трубке, подверженной воздействию светящихся разрядов при обычном давлении? Мы должны помнить один из фактов, полученных в результате данных исследований, а именно: по отношению к импульсам очень высокой частоты газ, находящийся под обычным давлением, ведет себя почти так же, как и газ, находящийся под умеренно низким давлением. Я думаю, что при частых разрядах, проволока или электропроводные объекты часто улетучиваются только потому, что вокруг них присутствует воздух. А вот если бы проводник был погружен в изолирующую жидкость, то остался бы цел, поскольку в этом случае энергии пришлось бы найти себе иной выход. Из поведения газа при скачкообразных импульсах высокого напряжения я сделал вывод, что не может быть никакого другого верного способа направить светящийся разряд, кроме как позволить ему пройти через некий объем газа, если подобное можно осуществить на практике.

Есть еще две особенности, связанные с этим экспериментом, на которых, я думаю, необходимо остановиться подробнее – это "лучистое состояние" и "не зажигающий вакуум".

Любой, кто изучал работы Крукса, должен прийти к выводу, что "лучистое состояние" является свойством газа, находящего в состоянии сверхвысокого разрежения. Но следует помнить, что явления, наблюдаемые в сосуде с разреженным газом, ограничены свойствами и возможностями используемого аппарата. Я думаю, что в лампе движение молекулы или атома происходит по прямой линии не потому, что он не встречает на своем пути преград, а потому, что скорость, приданная ему, достаточно высока для того, чтобы его движение происходило по прямой линии. Свободный для движения путь – это одно, а скорость, то есть энергия, связанная с движущимся телом, – это другое, и я думаю, что при обычных условиях она относится к разности потенциалов, или к скорости. При большой разности потенциалов и при сравнительно низкой степени разрежения газа, катушка пробойного разряда вызывает свечение и проецирует тени. В светящемся разряде, при обычном давлении, частицы движутся по прямым линиям тогда, когда усредненный свободный путь по протяженности очень мал, и часто изображение проволоки, или других металлических предметов, производятся частицами, направленными по прямым линиям.

Я подготовил лампу, чтобы экспериментально показать правильность этих утверждений. В шаре L(рис. 31) я поместил над нитью накаливания fкусочек извести l. Нить накаливания соединена с проволокой, которая идет внутрь лампы, конструкция которой приведена на Рис. 19 и описана выше. Лампа подвешена на проволоке, подсоединенной к клемме катушки. Когда катушка приводится в действие, то выступающую часть нити накаливания с кусочком извести подвергают бомбардировке. Степень разрежения в лампе такова, что напряжение катушки может вызвать свечение стекла, но при ослаблении вакуума оно исчезает. Известь содержит влагу, а при нагревании влага выделяется, поэтому свечение продолжается всего лишь несколько мгновений. Когда известь достаточно сильно нагревается, значительное количество выделившейся влаги существенно ухудшает качество вакуума в лампе. При бомбардировке одна часть куска извести нагревается больше, чем остальные, в конце концов, практически все разряды проходят через эту, интенсивно нагреваемую часть, и белый поток частиц извести (Рис. 31) вырывается вперед из этой точки. Этот поток состоит из «лучистого» вещества, хотя степень разрежения низкая. Но частицы движутся по прямым линиям, так как скорость, приданная частицам велика. Высокая скорость частиц обусловлена тремя причинами: высокой электрической плотностью, высокой температурой в малой области воздействия и тем фактом, что частицы извести легко отделяются и испускаются, гораздо легче, чем частицы углерода. При работе с частотами, которые мы способны получить, частицы целиком испускаются и выбрасываются на значительное расстояние, но при более высоких частотах этого не происходит. В этом случае только напряжение или колебания могут распространяться через лампу. Если бы атомы двигались со скоростью света, то мы никогда бы не смогли получить такую частоту. Я полагаю, что это невозможно, так как для этого требуется огромная разность потенциалов. С той разностью потенциалов, которую мы способны получить даже при помощи катушки пробойного разряда, скорость атомов должна быть совершенно незначительной.

Что касается "не зажигающего вакуума", то было замечено, что он может возникать только при низкочастотных импульсах. Это обусловлено невозможностью испускания достаточного количества энергии такими импульсами при сильном вакууме, так как некоторые атомы, находящиеся вокруг клеммы взаимодействуют с теми, которые отталкиваются и удерживаются на расстоянии сравнительно долгий период времени. При этом выполняется недостаточно работы для того, чтобы вызвать эффект, воспринимаемый глазом. Если разность потенциалов между клеммами увеличивается, то диэлектрик разрушается. Но при импульсах очень высокой частоты разрушения диэлектрика может и не быть, так как некоторое количество выполняется непрерывным возбуждением атомов в разреженном сосуде, при условии, что частота достаточно велика. Даже при частоте, получаемой от генератора переменного тока, использованного в данном эксперименте, можно легко достичь состояния, при котором разряд не проходит между двумя электродами в узкой трубке, где каждый из электродов подсоединен к одной из клемм катушки. Однако достичь состояния, при котором вокруг электродов светящийся разряд не мог бы возникать, совсем не просто.

При этом в отношении тока высокой частоты возникает совершенно естественная мысль: а почему бы не использовать его как мощное средство электродинамического воздействия для производства световых эффектов в запаянном стеклянном сосуде. Наличие внутреннего провода является одним из недостатков существующих ламп накаливания. И если никаких других усовершенствований не будет привнесено в конструкцию ламп, то уж по крайней мере этот недостаток можно устранить. Следуя этой мысли, я продолжил эксперименты в различных направлениях, некоторые из которых изложил в моей предыдущей работе. А сейчас я бы хотел остановиться на двух других направлениях проводимых экспериментов.

На Рис. 32 представлены конструкции ламп, изготовленных в большом количестве. На Рис. 32 широкая трубка Тприпаяна к маленькой W-образной трубке Uиз фосфоресцирующего стекла. В трубку Тпомещена катушка С из алюминиевой проволоки, на концах которой имеются небольшие алюминиевые сферы tи tj,входящие внутрь трубки U.Трубка Твставлена в гнездо, содержащее первичную катушку, через которую обычно проходит разряд из лейденских банок. Под воздействием тока высокого напряжения, вызванного в катушке С, разреженный газ в маленькой трубке Uизлучает мощный свет. Когда для индуцирования тока в катушке Сиспользуется разряд лейденской банки, то необходимо плотно набить трубку Тизолирующим порошком, так как часто возникает разряд между витками катушки, особенно тогда, когда первичная катушка толстая, а воздушный зазор, через который происходит разряд банок – большой. Если принять эти меры, то никаких подобных осложнений в дальнейшем не возникнет.

На Рис. 33 представлена другая конструкция лампы. В этом случае трубка Тприпаяна к шару L.Трубка содержит катушку С,концы которой проходят через две маленьких стеклянные трубки tи tj,которые припаяны к трубке Т.Два тугоплавких электрода m и m 1размещены на нитях накаливания лампы, которые подсоединены к концам проводов, проходящих через стеклянные трубки t и t j.

Обычно в лампе, сделанной по этой, схеме шар Lсообщается с трубкой Т.Для этого концы маленьких трубок t u t1слегка нагреваются в пламени горелки, а затем просто прикладываются к проволоке, но так, чтобы не повредить соединение. Сначала подготавливается трубка Тс маленькими трубками, проводами внутри них и тугоплавкими электродами mи m 1,а затем припаивается к шару L,над которым устанавливается и подключается катушка С.Затем трубка Тзаполняется изолирующим порошком, который утрамбовывается как можно плотнее, и закрывается. В трубке оставляется только маленькое отверстие, через которое досыпаются остатки порошка, и в конце концов трубка запаивается совсем. Обычно в конструкциях ламп, изображенных на Рис. 33, алюминиевая трубка акрепится на верхней части Sкаждой из трубок tи t j.Это нужно для того, чтобы не допустить нагревания верхней части трубки. Электроды m и m1 можно доводить до любой степени накала, при помощи разрядов лейденской банки, проходящих через катушку С. В таких лампах с двумя электродами возникает очень красивый эффект, связанный с образованием теней от каждого из электродов.

Целью другого направления экспериментов, являлось индуцирование тока, или светящегося разряда в вакуумной трубке при помощи электродинамической индукции. Этот предмет настолько широко исследован и описан в трудах профессора Дж. Дж. Томсона, что я если мог бы что-либо добавить, то очень немногое, даже если бы это было отдельной темой данной лекции. Но поскольку эксперименты в этом направлении дали определенные результаты и сформировали у меня определенные взгляды, мне представляется необходимым сказать об этом несколько слов.

Не вызывает сомнения факт, и результаты многочисленных опытов это подтверждают, что по мере увеличения длины трубки (т. е в каждой последующей единице ее длины), постепенно уменьшается электродвижущая сила, необходимая для прохождения разряда. Поэтому, в разреженной трубке достаточной длины, можно получить светящийся разряд даже при низкой частоте, если замкнуть трубку на себя. Такую трубку можно разместить вокруг комнаты или на потолке, в результате получится простое устройство, способное дать значительное освещение. Но это устройство было бы сложным в производстве и совершенно нерегулируемым. Сделать трубку маленькой длины – тоже не самый лучший выход, поскольку при обычных частотах возникали бы большие потери энергии на покрытиях. Помимо этого, при использовании покрытий, лучше подавать ток непосредственно на трубку, подключая покрытия к трансформатору. Но, даже если устранить все подобное недостатки, то, как я уже отмечал ранее, на низких частотах преобразование света как таковое все же будет неэффективным. При использовании сверхвысоких частот длина вторичной обмотки или, другими словами, размер сосуда, может быть уменьшен до желаемой величины, а эффективность преобразования света возрастет, разумеется, при условии, что будут созданы средства для получения таких высоких частот. Таким образом, принимая во внимание как теоретически, так и практические данные, мы сможем использовать ток высокой частоты, а это означает, что мы получим мощную электродвижущую силу при слабом токе в первичной обмотке. Когда Томсон работал с зарядом конденсатора, а это единственное на сегодняшний день известное средство для получения тока высокой частоты, то он смог получить электродвижущую силу, мощностью в несколько тысяч вольт на каждый виток первичной обмотки. Однако Он не смог усилить эффект электродинамической индуктивности увеличением числа витков первичной обмотки и сделал вывод, что лучше всего работать с одним витком, хотя он и должен был иногда отступать от этого правила – он должен был справляться с тем индуктивным эффектом, который мог получить от одного витка. Но еще до начала экспериментов с токами высокой частоты, необходимыми для получения в маленькой лампе электродвижущей силы в несколько тысяч вольт, он создал несколько очень важных электростатических эффектов. С увеличением частоты увеличивается значение этих эффектов по отношению к электродинамическим.


    Ваша оценка произведения:

Популярные книги за неделю