Текст книги "Вам, земляне
(Издание второе, переработанное)"
Автор книги: Автор Неизвестен
Жанры:
История
,сообщить о нарушении
Текущая страница: 8 (всего у книги 14 страниц)
Расширяется ли Земля?
Совершенно фантастическая с первого взгляда гипотеза расширяющейся Земли впервые была высказана в 1933 г. немецким геофизиком Отто Хильгенбергом. По мнению В. В. Белоусова, с точки зрения взаимоотношений между корой и верхней мантией, гипотеза расширяющейся Земли обладает преимуществом перед гипотезой дрейфа. Ведь эта гипотеза предполагает, что Земля первоначально была столь мала, что современные материки, объединенные в один блок, покрывали ее всю. Расширение глубоких зон Земли разорвало этот единый материк и отодвинуло его куски далеко друг от друга. Можно думать, что связь коры с верхней мантией сохранилась под каждым обломком прежнего единого материка, а пространства между материковыми обломками заполнились материалом, поступившим из глубины.
Сам В. В. Белоусов и подавляющее большинство геологов считают, что гипотеза расширяющейся Земли вряд ли соответствует действительности. Однако у этой гипотезы есть и защитники в лице таких видных современных физиков, как П. Дирак, Д. Иордан, Д. Д. Иваненко. Все они полагают, что гравитационная постоянная на самом деле не постоянна, а уменьшается со временем. Если это так, то планеты, звезды и другие объекты Вселенной должны постепенно «разуплотняться», увеличиваясь при этом в объеме. По подсчетам Д. Иордана (1952 г.), постоянная тяготения за время существования Земли должна была уменьшиться в 2–3 раза.
Кстати, венгерский геофизик Эдьед еще в 1956 г. высказал предположение, что ядро Земли, начиная с глубины 5000 км, представляет собой остаток сверхплотного звездного вещества. Насыщенное энергией и стремящееся расшириться, это «звездное ядро» Земли и служит главной причиной расширения нашей планеты. Здесь геология явно перекликается с астрофизикой – не напоминает ли расширяющаяся Земля расширяющиеся звездные ассоциации и другие активные процессы в звездном мире? Может быть, и в самом деле Земля – «осколок» Солнца?
Как известно, в пределах материков верхний этаж земной коры состоит в основном из гранитов, нижний, возможно, из базальтов (при общей толщине около 40 км). Дно океанов за осадочными породами скрывает, по-видимому, лишь 5-километровый слой базальта. Если Земля сформировалась из твердых частиц протопланетного облака, то как объяснить такое резкое различие материковой и океанической коры? Кроме того, наиболее радиоактивны кислые породы, сосредоточенные в гранитной, материковой части земной коры. Значит, материки должны нагреваться сильнее океанического дна. На самом деле тепловой поток, идущий из недр Земли, всюду одинаков.
Советский исследователь И. В. Кириллов построил любопытную модель «материковой» Земли. После многих попыток ему удалось «сомкнуть» все материки земного шара, но не современного, а по поперечнику вдвое меньшего. Иначе говоря, была реконструирована вегенеровская Пангея, сплошь покрывающая вдвое уменьшенный земной шар. Работа оказалась нелегкой, так как приходилось учитывать изменение кривизны земной поверхности и многое другое. Но результат (смыкание сложнейших береговых линий на протяжении десятков тысяч километров) вряд ли можно считать случайным. Похоже на то, что когда-то Земля была вдвое меньше и ее покрывала кора «материкового» типа. Океанов и морей в современном смысле слова тогда не было – сплошная «глобальная» суша лишь в некоторых местах имела неглубокие водоемы. При расширении Земли разорвалась покрывающая ее кора. Между осколками – материками образовались глубокие трещины. Они постепенно расширились, заполнились водой, превратились в современные моря и океаны. Но расширение Земли продолжается, и растягивающееся дно океанов служит ареной бурных геологических процессов.
Молодость океанического дна, его непрерывное расширение – факты, добытые при океанографических исследованиях последних лет и не вызывающие сомнений. Обращает на себя внимание Срединный хребет дна Атлантического океана. Его изгибы повторяют очертания и восточных и западных берегов Атлантики. Срединные хребты есть во всех океанах. Они (по крайней мере внешне) похожи на трещины, возникшие в земной коре при начавшемся примерно 200 млн. лет назад расширении Земли. Из трещин обильно изливалась лава, которая их «зарубцевала», образовав срединные океанические хребты.
С позиции гипотезы расширяющейся Земли можно достаточно естественно объяснить и образование гор, и другие важнейшие геологические процессы. Правда, с количественной стороны тут не все благополучно. Если изменялся радиус Земли, то неодинаковой была и продолжительность земных суток. Однако по расчетам Ранкорна, основанным на кольцах роста ископаемых кораллов, в девонский период сутки по продолжительности практически не отличались от современных. К таким же выводам приводят и результаты определения размеров Земли в прошлом по палеоширотам (т. е. по данным о геомагнитном поле в девонском периоде и других периодах далекого прошлого). Неясна и причина, побуждающая Землю расширяться.
Подводя итоги современным дискуссиям о расширении Земли, М. Ботт[16]16
Ботт М. Внутреннее строение Земли. М., «Мир», 1974, с. 327.
[Закрыть] пишет, что быстрое расширение Земли (со скоростью примерно 0,05 см в год) «…противоречит фактам, которыми мы располагаем, но расширение с меньшей скоростью (порядка 0,002 см в год – Ф. 3. ) пока нельзя опровергнуть. Однако расширение Земли не может служить управляющим механизмом разрастания дна океанов, дрейфа материков или связанной с ними тектонической деятельности. По-видимому, гипотеза расширяющейся Земли не имеет очевидной связи с происхождением основных структур поверхности Земли».
Геологические ритмы
Бесспорно одно – развитие Земли происходило не монотонно, а циклично. Следы циклов различной продолжительности прослеживаются в геологических отложениях всех эпох, включая древнейшие. Они видны в осадочных породах и остатках древней жизни. Их можно заметить в стратиграфическом размещении полезных ископаемых[17]17
См. сб. «Проблемы космической биологии». Т. XVIII (М., «Наука», 1973, с. 7—25).
[Закрыть]. Это относится, как показали исследования Ю. М. Малиновского, к солям и углям, к горючим сланцам и нефти. «Цикличность» залежей в значительной мере отражает цикличность тектонических процессов – поднятий и опусканий земной коры, появлений суши на месте моря и, наоборот, наступления моря на сушу (трансгрессий). Эти процессы, естественно, влияли на продуктивность биосферы Земли, что нашло отражение и в органогенных следах давних эпох.
Характерная черта геологических циклов – их многоритмичность. В геологической истории Земли действует сразу, одновременно целая иерархия циклов самой различной продолжительности – от десятков лет до сотен миллионов лет.
«Естественно, возникает вопрос, – пишет акад. В. Д. Наливкин[18]18
Наливкин В. Д. О цикличности геологической истории. – Географический сборник. Т. XV. М., «Наука», 1962, с. 196.
[Закрыть], – каковы же причины цикличности истории развития Земли и где они находятся? Точного ответа на него еще нельзя дать, но можно предположить, что причины мелкой цикличности… находятся в самом земном шаре, поскольку наблюдается изменение продолжительности этих циклов. Причины же крупных циклов скорее всего астрономические, так как продолжительность их остается постоянной. Дело будущих исследований решить эти вопросы, уточнить системы цикличности, и тогда они, без сомнения, явятся основными вехами геологической истории».
Некоторые исследователи (например, Г. Ф. Лунгерсгаузен) пытались объяснить наиболее крупные из геологических циклов (продолжительностью порядка 200 млн. лет) влиянием ядра нашей звездной системы Галактики на земные процессы. С одной стороны, они предполагали, что при максимальном сближении Солнечной системы с галактическим ядром его гравитационное воздействие на Землю становится наибольшим, что якобы стимулирует тектоническую и вулканическую активность. С другой стороны, считали, что Солнечная система может периодически проходить через плотные облака космической пыли, а это порождает ледниковые периоды и эпохи.
Все это выглядит, однако, крайне неубедительно. Галактическая орбита Земли близка к окружности, поэтому колебания приливных сил со стороны галактического ядра ничтожны. Кроме того, все известные астрономам пылевые туманности очень разрежены и не могут оказать влияния на световой и тепловой режим Земли, попади в любую из них Солнце вместе с планетами. Наконец, если бы даже гипотезы о влиянии галактического ядра оказались верными, то этим бы объяснялся лишь один 200-миллионолетний цикл, а остальная иерархия циклов осталась бы необъяснимой.
Гораздо правдоподобнее гипотеза известного советского астронома М. С. Эйгенсона, предполагавшего, что цикличность геологической истории есть отражение цикличности солнечной активности[19]19
Эйгенсон М. С. Очерки физико-географических проявлений солнечной активности. Львов, изд. Львовского гос. ун-та, 1957.
[Закрыть]. В чем же суть идей М. С. Эйгенсона? Исполинский ядерный реактор, именуемый нами Солнцем, существует и действует по меньшей мере 5 млрд. лет. За этот промежуток времени его излучение отличалось завидным постоянством – об этом свидетельствует прежде всего геологическая летопись Земли и возраст земной биосферы, составляющий вряд ли менее 3 млрд. лет. В постоянстве солнечного излучения убеждает нас и повседневный опыт: сегодня Солнце на небе выглядит совсем таким же, как вчера, и мы убеждены что внешность его не изменится и через месяц, и через годы, и через сотни лет.
Между тем это постоянство кажущееся. Солнце можно считать постоянным излучателем лишь в первом, самом грубом приближена самом деле непрерывно изменяются и электромагнитное, корпускулярное излучение Солнца, причем все это уверенно фиксируется современными астрофизическими приборами. Широко вошедший в научный обиход термин «солнечная активность» в сущности означает физическую изменчивость Солнца вообще.
Приметы этой изменчивости разнообразны. Наиболее ярко она выражается в численности солнечных пятен, факелов, протуберанцев и других активных образований, а также в колебаниях нетеплового радиоизлучения Солнца. Самое мощное проявление солнечной активности – хромосферные или солнечные вспышки, энерговыделение при которых равноценно одновременному взрыву десятков тысяч мегатонных ядерных бомб.
Когда Солнце переживает очередной «приступ» активности, резко усиливаются его коротковолновое и длинноволновое излучения, бомбардировка Земли солнечными корпускулами (в основном протонами, альфа-частицами и электронами) становится более интенсивной, и каждый поток корпускул не только будоражит земную атмосферу, но и несет с собой слабое «вмороженное» магнитное поле (напряженностью порядка 0,8·10-3 А/м), которое порождает магнитную бурю. Солнечная корона простирается за орбиту Земли, и неудивительно, что, находясь постоянно внутри Солнца, весь земной мир, все живое и неживое на нашей планете очень чутко реагирует на колебания солнечной активности[20]20
См. сб. «Влияние солнечной активности на атмосферу и биосферу Земли» (М., «Наука», 1971),
[Закрыть].
Самая главная черта солнечной активности – многоритмичность. Знаменитый 11-летний цикл – лишь самый известный и самый заметный из солнечных ритмов. Его отражения в геологических отложениях и биосфере столь многочисленны, что даже для простого их перечисления потребовалось бы слишком много места. Подчеркнем главное – в геологических отложениях этот цикл прослеживается до границ архея. Это означает, что ритмика солнечной активности – явление очень древнее, сравнимое с возрастом Солнца.
Механизм связи солнечной активности и стратификации геологических отложений вполне понятен. Работами чл. – корр. АН СССР Э. Р. Мустеля и других советских ученых доказано, что вторжение солнечных корпускулярных потоков в земную атмосферу усиливает меридиональную атмосферную циркуляцию, а это в свою очередь приводит к образованию устойчивых циклонов и антициклонов (наглядная иллюстрация – капризы погоды летом 1972 г.). Солнечная активность – повышает циркуляцию в атмосфере и гидросфере, сглаживает температурные градиенты и в целом смягчает климатическую обстановку на земном шаре. Подобно активному Солнцу поступаем и мы, когда в остывший чай подливаем горячую воду, а затем помешиваем чай ложкой, добиваясь тем самым потепления всего напитка.
В периоды слабой активности Солнца меридиональный воздухообмен ослабевает, температурные контрасты растут, сильно остывшие полярные зоны распространяют холод в умеренные широты, и климат на Земле в целом становится холодным.
Так как всякие колебания погоды и климата прежде всего выражаются в количестве осадков, то естественно, что солнечные ритмы должны быть зафиксированы в геологических отложениях разных эпох. И тут, изучая геологическую летопись, мы открываем множество циклов разной продолжительности, отраженных как и 11-летний цикл, в толщине, составе и размещении осадочных пород. Многоритмичная цикличность осадкообразования – вот что привлекает внимание современного геолога и требует объяснения.
Некоторые из геологических циклов отражены в наблюдаемых явлениях солнечной активности (например, 33-летний брикнеров цикл, или «вековой» цикл, близкий к 80 годам), 600-летний цикл проявляется в количестве открываемых комет – ведь чем активнее Солнце, тем ярче светятся кометы (под действием солнечных корпускул), а значит, большая вероятность того, что их заметят с Земли.
Однако есть очень длительные циклы, ярко выраженные в геологических отложениях, но ни в чем «астрономическом» не замеченные. Эти циклы отражены в следах эпох оледенений, которые сменялись сравнительно теплыми эпохами разной продолжительности. Таковы циклы в 1800 лет и более продолжительные, вплоть до 200-миллионолетнего[21]21
Подробнее см. в сборнике «Земля во Вселенной» (М., «Мысль», 1964).
[Закрыть]. Впрочем, отсутствие астрономических подтверждений подобных циклов легко объяснимо – ведь тщательное изучение солнечной активности началось лишь в прошлом веке. Это, конечно, ни в коей мере не ставит под сомнение главное: в истории Земли много раз чередовались теплые и ледниковые периоды самой разной продолжительности. Здесь действовала иерархия циклов от самых коротких, 11-летних, до наиболее продолжительных, измеряемых миллионами и десятками миллионов лет.
Если искать образное сравнение, то каждый цикл – это как бы рябь на волне следующего, более продолжительного цикла. И еще одна важная деталь: чем длительнее цикл, тем более радикальные колебания земного климата ему соответствуют. Эти сложные явления имели место на протяжении всей истории развития Земли. Как можно объяснить все это? Какой природный механизм обусловливает климатические ритмы Земли?
Вспомните, как колеблется струна. Ее колебание в целом порождает основной тон. Но одновременно колеблются и половинки струны, издавая более высокий звук (первый обертон). Четверти струны создают второй обертон и так далее, теоретически – до бесконечности. Каждый звук, рожденный струной, – это иерархия звуков разной силы и частоты. Все вместе они создают качество звучания, называемое тембром.
По М. С. Эйгенсону, Солнце подобно струне, но не в механическом, а в энергетическом смысле. Когда-то, миллиарды лет назад на Солнце начал действовать протон – протонный цикл ядерных реакций. Скорее всего это сопровождалось внутренней перестройкой Солнца и не прошло гладко, т. е. выделение энергии не сразу стало строго равномерным. Известно, что ядерные реакции чрезвычайно чувствительны к колебаниям температуры. Но тогда в Солнце мог легко возникнуть автоколебательный процесс, продолжающийся и в наше время.
«Усиление выхода энергии из ядерного котла, – пишет М. С. Эйгенсон, – приводит вследствие расширения внутренних слоев к известному и вообще небольшому падению центральной температуры. А это влечет за собой гораздо более значительное по масштабу ослабление выхода энергии. В результате весьма быстро прекращается процесс расширения внутренних областей Солнца. Таким образом, первоначальная ситуация более или менее полностью воспроизводится, что и обеспечивает, возможно, цикличность этой сложной системы внутренних преобразований».
Если это так, то объяснение имеют и циклы Солнца, и порожденные ими циклы Земли. Основной «тон» Солнца – это энергетическое колебание, растянувшееся примерно на 200 млн. лет. Все остальные, меньшие циклы – солнечные «обертоны», из которых 11-летний, по-видимому, самый короткий[22]22
Возможно, существует 5—6-летний солнечный цикл,
[Закрыть] (27-дневный солнечный цикл связан с осевым вращением Солнца, а не с его энергетическими колебаниями).
На все эти циклы чутко реагирует Земля. Наблюдаемое потепление Арктики, очевидно, результат роста солнечной активности в «вековом» цикле. Периодические усыхания и увлажнения Сахары – следы 1800-летнего цикла. Наконец, в многократно повторяющихся ледниковых периодах и эпохах опять замешена «рука Солнца», колебания его активности. А механизм во всех случаях по существу один – усиление или ослабление меридионального воздухообмена между полюсами и экватором. Разница лишь в длительности, амплитуде, а следовательно, в масштабах земных событий.
Но это не все. Образование или таяние ледников изменяет нагрузки материковых плит, усиливая или ослабляя тектоническую и вулканическую деятельность. Хорошо известно, что периоды эволюции органического мира Земли характеризуются прежде всего климатическими особенностями (например, суровый пермский период или мягкий и теплый карбон). Создается впечатление, что Солнце на протяжении всей истории развития Земли «дирижировало» ходом эволюции биосферы. Оно постоянно вмешивается в жизнь обитателей Земли и сегодня: солнечные ритмы четко отражены в жизни и поведении растений, животных, человека.
Эволюция биосферы
При изучении истории развития Земли немыслимо игнорировать весь тот многообразный мир живых организмов, который образует ее биосферу. В геологии существует даже такой образный термин, как руководящие ископаемые. Так именуют остатки животных и растений, которые типичны для той или иной эпохи и по которым определяется возраст горных пород. Нередко удается найти лишь косвенные следы древних обитателей Земли, т. е. их отпечатки. Но и они могут красноречиво рассказать о том организме, который оставил такой отпечаток.
Сами ископаемые организмы обычно встречаются в форме окаменелостей. Именно по ним в основном и была составлена летопись земной жизни, совершившей поступательную прогрессивную эволюцию от простейших микроорганизмов до человека. Жизнь в историю Земли вошла незаметно. Это событие, случившееся около 3,5 млрд, лет назад, не оставило никаких следов. Скорее всего жизнь зародилась не в одном каком-либо районе Земли, а почти одновременно во многих местах планеты[23]23
Подробнее см. в книге М. Руттена «Происхождение жизни» (М., «Мир», 1973).
[Закрыть]. Но «пионеры» жизни, эти первичные и, несомненно, простейшие микроорганизмы, погибли бесследно, так как первоначально их было мало. Однако за короткий срок (и в этом одно из характерных свойств жизни) они дали многочисленное потомство, которое заметно проявило себя уже в масштабе всей планеты.
Родившись из неживого, жизнь первоначально как бы сохранила в себе отблеск молекулярной множественности. В этом была и слабость, и сила древнейших форм жизни. Слабость – в примитивизме организмов, сила – в их великом множестве.
Как уже отмечалось, пока не существует единой общепризнанной геохронологической шкалы. Различна и терминология. Так, в последнее время весь ранний период эволюции Земли, предшествовавший кембрийскому периоду, называют докембрием и определяют (правда, очень неуверенно) его продолжительность примерно в 3 млрд. лет. Что касается палеозоя, мезозоя и кайнозоя, то эти три эры иногда объединяют под общим названием фанерозой. Так как наша задача состоит в том, чтобы представить себе в самых общих чертах эволюцию биосферы, мы будем в дальнейшем придерживаться терминологии устоявшейся и вошедшей в учебники.
Уже в древнейшую, архейскую эру, длившуюся около 1 млрд, лет, существовали бактерии, одноклеточные сине-зеленые и многоклеточные водоросли. Свойства этих древнейших организмов определялись условиями внешней среды, в частности составом земной атмосферы. Есть основания полагать, что первичная атмосфера Земли, кроме водорода, метана, аммиака и водяных паров, содержала в изобилии инертные газы, прежде всего гелий и неон. Но они диссипировали, т. е. улетучились в мировое пространство, и к моменту появления жизни «вторичная» атмосфера Земли содержала, кроме того, углекислый газ и сероводород, выделившиеся из земных недр. Первичные микроорганизмы постепенно сокращали исходные запасы водорода, аммиака, метана, сероводорода. Так, серные бактерии окислили сероводород вулканического происхождения, а водородные бактерии – молекулярный атмосферный водород. Пурпурные и зеленые бактерии, а затем сине-зеленые водоросли, усваивая из атмосферы углекислый газ, обогащали ее выделяемым ими кислородом.
В слоях земной коры архейского возраста находят породы органического происхождения – известняки, мрамор, углекислые вещества. Они образовались в ходе жизнедеятельности древнейших обитателей Земли. Таково же происхождение древнейших залежей серы и железных руд.
В конце архея начались размножение живых организмов и фотосинтез. Новый способ образования потомства был закреплен естественным отбором и ныне стал господствующим в органическом мире. Что же касается фотосинтеза, то он не только радикально изменил атмосферу Земли, наполнив ее кислородом, но и положил начало разделению единого ствола жизни на две ветви – растения и животные.
Как известно, процесс фотосинтеза выражается уравнением 6СO2+6Н2O = С6Н12O6+6O2. Он стимулируется солнечной энергией, которая преобразуется в энергию химических связей. Благодаря фотосинтезу бедные энергией вещества (СO2 и Н2O) переходят в углеводы – сложные и весьма богатые энергией органические вещества.
Первые живые организмы Земли были автотрофными, т. е. поддерживали свою жизнедеятельность ресурсами внешней неорганической среды. Позже появились организмы гетеротрофные, питающиеся в основном живым или жившим, т. е. другими организмами или их остатками. Связь с неорганической природой, естественно, сохранилась: подавляющая часть растений автотрофны. Но для животных, этих гетеротрофов, такая связь опосредствована – они не могут жить, не употребляя в пищу живое или жившее.
Палеонтологические исследования «корней» земной жизни показывают, что уже в архейскую эру появились многоклеточные организмы. Это в дальнейшем привело к дифференциации тканей, органов и их функций. Родоначальниками простейших растений и животных считаются жгутиковые – древнейшие одноклеточные организмы. Однако уже в архее существовали организмы типа медуз или гидроидных полипов.
Первичная жизнь, активно используя запасы сложных органических соединений, этих полуфабрикатов жизни, в конце концов истощила их запасы настолько, что в последующие эпохи зарождения жизни, по-видимому, не происходило. Этому мешало, конечно, и обилие живых существ, готовых употреблять в пищу любой органический комочек, в котором вдруг затеплилась жизнь.
В течение протерозойской эры, длившейся около 2 млрд, лет, бактерии и водоросли господствовали повсеместно. Великое множество мельчайших существ проявили себя прежде всего как «образователи» пород и руд. Их деятельность приобрела поистине планетарный характер, и следы ее остались в виде железных и марганцевых руд, осадочных сульфидных минералов, кремнистых сланцев и т. п. Именно в эту отдаленную от нас эпоху сформировались залежи железных руд в Криворожье, под Курском, в Воронежской области и Прибалтике. В пределах современных континентов водоросли протерозойской эры отложили карбонатные породы мощностью более 1000 м.
Остатки животных в отложениях протерозоя встречаются редко. И все же по этим следам давным-давно угасшей жизни видно, что в протерозое уже существовали радиолярии, кремневые губки, простейшие черви. Найдены отпечатки медуз и членистоногого животного «ксенусиона» – прародителя будущих трилобитов.
В палеозойскую эру, которая началась примерно 570 млн. лет назад и продолжалась около 330 млн. лет, на арену жизни вышли новые группы организмов. Масса «живого вещества» планеты продолжала расти, усложняясь и разнообразясь в своей структуре, В морях появились и быстро размножились археоциаты – беспозвоночные животные с известковым, подчас весьма причудливым скелетом. Они сильно потеснили водоросли и на мелководье занялись строительством рифов. Почти одновременно с археоциатами на дне палеозойских морей возникли древнейшие членистоногие – трилобиты, внешне отдаленно напоминающие современных раков. Трилобиты просуществовали на дне морей всю палеозойскую эру и вымерли лишь к ее концу.
С самого начала палеозойской эры растения решительно стали «пробиваться» на сушу. Их выход на сушу совершался в прибрежных бассейнах, и первые «десанты» выбросили сине-зеленые водоросли. За ними последовали красные и зеленые водоросли, обладавшие корневой системой и специализацией клеточных тканей. Агрессия растений оказалась столь успешной, что уже во второй половине палеозойской эры (в каменноугольный период) папоротниковые леса обильно покрыли огромные пространства суши. Отдельные папоротниковые деревья достигали в высоту 30–40 м и в толщину более 2 м. Пышная растительность насытила атмосферу кислородом, коренным образом изменив ее состав. Жизнь в новой обстановке выработала у растений новые качества, облегчившие приспособление к окружающей среде. Растения научились защищаться от безводья, у них усовершенствовались ткани, появился бесполый способ размножения. От этой эпохи массового развития растений остались многочисленные следы в форме залежей каменного угля.
Животный мир в палеозойскую эру был очень богат. В морских отложениях найдено около 15 000 видов морских животных – иглокожих, плеченогих, кораллов, головоногих моллюсков и других. По дну морей ползали ракоскорпионы, достигавшие в длину 3 м. К середине палеозойской эры, в силурийский период появились первые бесчелюстные позвоночные. Это были неуклюжие существа с хрящевым скелетом и костными щитами, покрывавшими головную и переднюю часть туловища. Остальная его часть и хвост были защищены чешуей. Эти «панцирники» больше ползали по дну, чем плавали. Во многом они уступали акулоподобным рыбам, крупнейшим в ту пору морским животным, достигавшим в длину нескольких метров.
Вслед за растениями вышли на сушу и животные. По-видимому, первыми «десантниками» были потомки кистеперой рыбы (цела– канта), обладавшей двойным дыханием (в воздухе и в воде). Ее плавники по строению напоминали конечности наземных позвоночных. Любопытно, что сравнительно недавно несколько экземпляров целаканта было выловлено у берегов Африки.
Потомки кистеперых рыб еще в палеозойскую эру дали начало наземным позвоночным животным. Их плавательный пузырь выполнял функции примитивного легкого, а плавники годились для ползания. Естественный отбор постепенно превратил этих «двойственных» животных в земноводных, живших по берегам водоемов.
К концу палеозойской эры часть земноводных оказалась способной к дальнейшему завоеванию суши. У них образовался роговой кожный покров, предохраняющий от высыхания. Постепенно земноводные дали начало первым пресмыкающимся. Одни из них были травоядными, другие хищными. Особенно любопытны зверозубые пресмыкающиеся, внешне несколько напоминающие современных хищников и имеющие тот же набор зубов, что и млекопитающие.
В палеозойскую эру жизнь захватила не только море и сушу, но и воздух. Еще в каменноугольный период появились летающие насекомые, размах крыльев у которых иногда достигал 1 м. Жизнь прорвалась в атмосферу.
Примерно 240 млн. лет назад началась мезозойская эра, которая продолжалась около 165 млн. лет. Она характерна прежде всего безраздельным господством пресмыкающихся. Какие только причудливые формы они ни принимали! Жутко было бы очутиться в обществе этих подчас исполинских чудовищ, отлично описанных в научно-фантастической литературе и живо воспроизведенных средствами кино. Пресмыкающиеся завладели всеми тремя средами – сушей, морем, воздухом. Первоптицы (археоптериксы) внешне напоминали не только птиц – это была переходная форма от пресмыкающихся к современным птицам.
В растительном мире произошли существенные перемены. Резко сократилось количество папоротниковых и голосеменных растений. Им на смену пришли широколиственные покрытосеменные растения. Одновременно развились высшие формы насекомых-опылителей: бабочек, шмелей, пчел, мух.
Но самое главное событие мезозойской эры – появление первых млекопитающих. Поначалу трудно было увидеть великое будущее в этих мелких хищных зверьках, внешне напоминающих современных крыс или ежей. Вероятно, их прародителями следует считать зверозубых пресмыкающихся. Млекопитающие были теплокровными животными с четырехкамерным сердцем, обеспечивающим усиленный обмен веществ и энергии. В отличие от пресмыкающихся они и в холодное время могли вести активную жизнь, а их зародыши развивались внутри тела матери и после рождения вскармливались ее молоком. К концу мезозойской эры млекопитающие быстро расселились по Земле, сосуществуя со все еще господствующими пресмыкающимися.
Эра, в которую мы живем, называется кайнозойской. Началась она около 70 млн. лет назад, и начало ее было отмечено прежде всего окончательным вымиранием крупных пресмыкающихся. Исчезли многие группы головоногих моллюсков. Органический мир Земли постепенно приобретал современный облик.
Членистоногие животные, особенно насекомые, достигли, по-видимому, вершины прогресса. Многообразие их видов (около миллиона!) поразительно. Эти маленькие существа с необычайно развитыми и сложными инстинктами на поверхности Земли встречаются почти повсеместно. Однако господствующее положение в животном мире все же занимают млекопитающие.
С бурным развитием цветковых растений млекопитающие и птицы получили прочную кормовую базу. Среди млекопитающих выделились группы, от которых пошли современные грызуны, китообразные, травоядные, хищные и другие животные. И самое главное, в кайнозойскую эру появились обезьяны, давшие ветви, которые в конечном счете породили первое мыслящее существо – человека.
Каковы же главные черты и особенности этого великого процесса органической эволюции? Прежде всего бросается в глаза прогрессивный характер эволюции. Несмотря на отдельные отступления и неудачи, развитие органического мира Земли идет в целом от низшего к высшему. Однажды появившись, жизнь оказывается необычайно стойкой. Непрерывно завоевывая себе все новые и новые области, живые организмы множатся и совершенствуются.
«Эволюция органического мира, – писал акад. И. И. Шмальгаузен, – в целом имеет прогрессивный характер: она неуклонно ведет к усложнению организации, к созданию все высших форм жизни. В эволюции позвоночных прогрессивное развитие центральной нервной системы начинает играть явно руководящую роль, и высшие их формы определяются уровнем развития полушарий головного мозга»[24]24
Шмальгаузен И. И. Проблемы дарвинизма. М., «Советская наука», 1946, с. 68.
[Закрыть].
«Древо эволюции» корнями уходит в неорганический мир. Его вершина отмечена приматами и человеком. Но какое многообразие ветвей! Перед нами действительно огромное «дерево», выросшее из ничтожного «семени». Возможно, что некоторые его ветви «тупиковые». Такова, например, ветвь насекомых, достигших, судя по всему, апофеоза в своем развитии.