Текст книги "Вам, земляне
(Издание второе, переработанное)"
Автор книги: Автор Неизвестен
Жанры:
История
,сообщить о нарушении
Текущая страница: 2 (всего у книги 14 страниц)
Фигуры вращающихся тел
Точно неизвестно, какой была первичная Земля. Однако в любом случае она не была абсолютно твердым телом, а значит, сохраняла способность к деформации, изменению формы под воздействием внутренних и внешних сил. Чтобы лучше представить себе, что тогда происходило, вместо реальной, очень сложной Земли вообразим ее идеализированную модель – исполинскую «каплю» однородной несжимаемой жидкости. Предположим, что внешние силы на эту «каплю» не действуют и ее форма обусловлена только игрой внутренних сил. Если бы «капля» не вращалась, то ее форма определялась бы только взаимным тяготением составляющих частиц, которые стремились бы подойти друг к другу как можно ближе. Это им удалось бы лишь при полной симметрии «капли». Иначе говоря, в этом случае идеализированная модель Земли имела бы форму шара.
В действительности первичная Земля вращалась вокруг своей оси, значит, как показал впервые Ньютон, под действием центробежных сил «капля» сплющилась и приняла форму сфероида. Расчеты Ньютона носили, правда, лишь предварительный, приближенный характер. Гораздо полнее исследования провел его соотечественник Маклорен (XVIII век). Он доказал, что в каждой точке «капли», имеющей форму сфероида, соблюдается равновесие двух противоборствующих сил – взаимного тяготения частиц жидкости и удаляющей их от оси вращения центробежной силы. При этом чем быстрее вращается «капля», тем более сжат сфероид, образуемый ее поверхностью. И шар, и сфероиды Маклорена были названы фигурами равновесия вращающейся однородной несжимаемой жидкости.
Поверхность фигуры равновесия иногда называют поверхностью уровня; она, разумеется, не совпадает с физической поверхностью тела. Для всех этих фигур выполняется одно важное условие: сила тяжести, т. е. равнодействующая силы притяжения и центробежной силы, должна быть во всех точках перпендикулярна к поверхности тела. Только в этом случае любая частица жидкости не будет стремиться двигаться вдоль поверхности тела, а ее давление на лежащие под ней частицы полностью уравновесится силой их противодействия. Именно в этом смысле и надо понимать равновесие сил, определяющих форму жидкой «капли».
В 1834 г. немецкий математик Якоби доказал, что, кроме сфероидов Маклорена, могут быть другие фигуры равновесия жидкой «капли». Оказывается, при достаточно большой угловой скорости вращения сфероиды Маклорена переходят в трехосные эллипсоиды Якоби. Экваториальное сечение эллипсоида (как и его меридиональные сечения) также представляет собой эллипс. Каждый эллипсоид Может быть охарактеризован не двумя (как сфероид), а тремя осями – а, b и с (рис. 5).
Рис. 5. Трехосный эллипсоид.
Как это ни удивительно, но такая сложная, дынеобразная поверхность, как эллипсоид, может быть устойчивой фигурой равновесия вращающейся однородной несжимаемой жидкости. Более того, как показали исследования Клеро и Стокса, даже для неоднородной жидкости эллипсоиды остаются фигурами равновесия.
Земля, вероятно, никогда не была целиком жидкой и однородной. Но рассмотренная нами идеализированная схема тем не менее к ней применима, так как наша планета никогда не была и абсолютно твердой. Это доказывают результаты геодезических и гравиметрических измерений.
Разные исследователи оценивали сжатие земного сфероида по– разному. И причиной этого были не только погрешности измерений, но и то, что реальная Земля отличная от сфероида и в третьем, более точном приближении к истине, может быть представлена трехосным эллипсоидом.
Разумеется, «дынеобразность» Земли крайне незначительна, и земной экватор мало отличается от окружности. Но все-таки разница есть: наибольший экваториальный диаметр Земли отличается от наименьшего на 140 м. Самый длинный диаметр экватора направлен в точки с долготой 20° к западу и 160° к востоку от начального Гринвичского меридиана, а самый короткий – в точки с долготой 70° к востоку и 110° к западу. Иначе говоря, мореплаватель, находящийся в экваториальных водах Индийского океана, может оказаться на десятки метров ближе к центру Земли, чем его коллега, путешествующий в экваториальной зоне Атлантического океана.
В масштабах всей Земли сплюснутость земного экватора может показаться несущественной деталью. Однако далеко не всегда ею можно пренебрегать при составлении точных карт и в космонавтике.
Итак, Земля – трехосный эллипсоид? Да, но только в третьем, далеко не последнем приближении к истине.
Слово о геоиде
Строго говоря, истинная форма поверхности Земли с ее неровностями и непрерывным изменением во времени бесконечно сложна. Определить ее для каждого момента времени практически невозможно, да и не нужно. Геодезисты ввели понятие «геоид» – воображаемая поверхность, достаточно точно отображающая реальную поверхность нашей планеты и в то же время доступная для практического изучения.
Буквально «геоид» – это «земноподобный». Это поверхность, которая приближенно совпадает со спокойной поверхностью Мирового океана и перпендикулярами к которой в каждой ее точке служат отвесные линии. Продолжив эту поверхность под материками так, чтобы во всех точках она оставалась уровенной, т. е. перпендикулярной к отвесной линии, получим полную поверхность геоида.
Для наглядности приведем пример, предложенный еще Ньютоном. Вообразим, что материки пересечены множеством каналов, соединяющихся с морями и океанами. Тогда поверхность воды в этих каналах будет совпадать с воображаемой поверхностью геоида. Можно доказать, что эта поверхность замкнута, всюду выпукла, не имеет складок или каких-либо выделяющихся неровностей. В то же время она (как и отвес) чутко «реагирует» не только на тяготение Земли и центробежную силу, но и на любые аномалии силы тяжести, вызванные, скажем, неоднородностью земной коры (в частности, залежами полезных ископаемых).
Изучение формы геоида составляет главную задачу высшей геодезии. Эта задача состоит из двух частей: определения параметров эллипсоида, наиболее близкого к геоиду (рис. 6), и положения отдельных точек геоида по отношению к эллипсоиду.
Рис. 6. Поверхности геоида и эллипсоида.
Естественно, что в решении этих задач принимают участие и гравиметристы. Правда, гравиметрические методы позволяют определять только форму, но не размеры геоида. Вот почему сочетание геодезических и гравиметрических методов при изучении фигуры Земли совершенно необходимо.
Теоретически форму геоида можно представить следующим образом. В каждой точке Земли существует так называемый потенциал силы тяжести – величина, характеризующая интенсивность, «напряженность» этой силы. Потенциал силы тяжести математически можно представить как сумму бесчисленного множества слагаемых, каждое из которых называется гармоникой. Чем больше слагаемых мы возьмем, тем точнее выразим потенциал силы тяжести, который и определяет форму геоида. Отметим роль лишь самых важных гармоник.
Вторая гармоника[1]1
Первая гармоника отражает шарообразность Земли.
[Закрыть] отражает сплюснутость Земли – факт, установленный еще Ньютоном. Зато в третьей гармонике есть нечто любопытное – Земля отдаленно напоминает грушу. Соответствует ли этот теоретический вывод действительности?
Как это ни удивительно, наша Земля на самом деле грушевидна, что отражается в движении ее искусственных спутников, вызывая изменение расстояния перигея их орбит от центра Земли. Судя по данным спутников, Северный полюс поднят относительно эллипсоида примерно на 10 м, а Южный полюс опущен под эллипсоид на 30 м. В общей сложности «грушевидность» Земли характеризуется 40 метрами – величиной, конечно, небольшой, но тем не менее вполне ощутимой.
Как уже говорилось, земной экватор представляет собой (во втором приближении) слабосжатый эллипс. На самом деле его форму также можно представить как сумму нескольких гармоник. Иначе говоря, если учесть, что гравитационный потенциал зависит не только от широты, но и от долготы точки, в которой он вычисляется, то форма геоида очень сложная, заметно отличающаяся от сфероида.
На рис. 7 показаны превышения геоида над сфероидом (со сжатием 1:298,3 и экваториальным радиусом 6378,165 км).
Рис. 7. Карта превышений (в метрах) геоида над сфероидом.
Заштрихованные участки – области понижений геоида.
Волнистость всхолмленного геоида здесь особенно наглядна. Обращают на себя внимание впадина глубиной 73 м в Южной Индии и возвышенность высотой 63 м вблизи Новой Гвинеи. Эта карта получена в 1965 г по 26 000 наблюдений искусственных спутников Земли – ведь именно эти наблюдения позволяют определять параметры различных гармоник. Аналогичные карты получены по другим наблюдениям спутников. Правда, они отличаются от рис. 7 в деталях. Карта геоида, несомненно, отражает неоднородности земных недр.
Спутниковая триангуляция
Мы уже не раз отмечали большую роль искусственных спутников Земли в выяснении формы ее физической поверхности. Уточним теперь, в чем заключается так называемая спутниковая триангуляция – метод, позволяющий говорить о космической геодезии как об одной из «космических» дисциплин.
Представим себе три наземные станции – А, В и С (рис. 8).
Рис. 8. Принцип спутниковой триангуляции.
Спутник S1 наблюдается (визуально или фотографически) со всех трех станций, спутник S2 – со станций А и Б, спутник S3 – со станций В и С. Кстати, метод применим и тогда, когда S1, S2 и S3 не три разных спутника, а три положения одного и того же спутника для разных моментов времени.
По наблюдениям спутника S1 со станций А и Б определяют направление прямых AS1 и BS1 относительно звезд и тем самым фиксируют положение плоскости ABS1. Аналогично по наблюдениям спутника S2 находят положение плоскости ABS2 в пространстве. Очевидно, эти плоскости пересекаются по прямой АВ. Положение ВС определяют из пересечения плоскостей BCS1 и BCS3. Прямые АВ и ВС фиксируют плоскость треугольника АВС, и их пересечение с ACS1 определяет отрезок АС. Следовательно, по данным спутников можно найти стороны и углы треугольника АВС, т. е. решить первый главный треугольник в триангуляционной сети. Если в этом треугольнике положения точек А и В (а значит, базис АВ) известны, то по спутникам находят положение третьей вершины – С. Примечательно, что при этом обязательно знать не точное положение спутников в пространстве, а направление к ним от наземных станций. Чтобы наблюдения с разных станций были синхронными, на «геодезических» спутниках устанавливают специальные импульсные лампы, дающие очень яркие вспышки. Эти вспышки фиксируют фотокамеры всех станций, занимающихся спутниковой триангуляцией.
При наземной триангуляции стороны треугольников, как правило, равны 20–30 км. В «космической» триангуляционной сети треугольники в десятки и сотни раз крупнее, что резко сокращает промежуточные этапы измерений. Прежний метод годился только для суши. Для спутниковой триангуляции даже океаны не являются непреодолимым препятствием – спутник может одновременно наблюдаться с разных континентов, например из Европы и из Америки.
Спутниковая триангуляция возникла совсем недавно – в 1963 г. Но это «дитя» космонавтики подает большие надежды. Дело не только в уточнении формы Земли, в составлении все более и более точных карт, что, конечно, очень важно для практической, производственной деятельности человека. С помощью спутников можно узнать, как изменяется наша планета во времени, как движутся материки, как медленно перераспределяются массы в твердом теле Земли, – словом, как «дышит» и «живет» наша планета. И часть этих задач успешно решается уже сегодня.
Многогранная Земля
После всего, что говорилось об относительной гладкости Земли, о большом сходстве ее с шаром, сфероидом, трехосным эллипсоидом и, наконец, геоидом, – фигурами гладкими, хотя, конечно, идеализированными, разговор об угловатости Земли может показаться странным.
Между тем, как и всякая верная идея, мысль о многогранности Земли высказывалась уже давно, еще Пифагором, Платоном и другими древними философами. Во Вьетнаме и других местах Земли найдены странные предметы, созданные за несколько веков до нашей эры. Они представляют собой многогранники, в вершинах которых укреплены маленькие шарики. Назначение этих находок неизвестно, но кое-кто из смело мыслящих ученых, склонен считать их стилизованными моделями нашей планеты.
Позже идеи о многогранности Земли высказывали многие. Среди них в новое время следует упомянуть геолога Бомона, математика Пуанкаре, кристаллографа Шафрановского. Известный советский геолог Б. Л. Личков полагал, что некоторая угловатость Земли есть результат ее длительной эволюции. Как считают большинство современных ученых, Земля и другие планеты когда-то сформировались из огромного газово-пылевого облака, окружавшего Солнце. Естественно, что первичная, только что сконденсировавшаяся Земля не могла быть абсолютно круглой и гладкой. Геоид формировался, «утрясаясь», на протяжении миллиардов лет. В этом процессе участвовали не только гравитационные силы самой Земли. На формирующуюся планету воздействовали Солнце, разные планеты, возможно даже общее гравитационное поле Галактики. А так как Земля складывалась из различных кристаллических пород, то и сама она постепенно приобретала форму исполинского сложного кристалла.
Разумеется, нашу планету в целом нельзя рассматривать как монокристалл – однородный кристаллический многогранник. Но поверхность Земли, как и поверхность кристаллического тела, по-видимому формировалась по принципу минимума поверхностей энергии. В итоге геоид и сегодня несет на себе некоторые черты сложного многогранника.
Эту постепенно складывающуюся в веках гипотезу особенно успешно развил в двадцатых годах текущего века советский геолог С. И. Кислицын. Стараясь подобрать такие многогранники, которые больше всего походили бы на геологические детали Земли, Кислицын изготовил сорок моделей. По его мнению, примерно 400–500 млн. лет назад геосфера, состоявшая в основном из базальтов и до этого имевшая форму додекаэдра (многогранник из двенадцати пятиугольников), приобрела также черты икосаэдра (многогранник из двадцати треугольников). Совмещение этих двух многогранников наиболее полно отвечает важнейшим геологическим (да и не только геологическим) особенностям сегодняшней Земли.
Упомянутые выше сорок моделей Кислицына не только отражают постепенную эволюцию многогранной Земли. Современные ребра и вершины (узлы) земного многогранника, как заметил впервые С. И. Кислицын, указывают на местонахождение нефти, алмазов, угля, газов и многих других полезных ископаемых. Еще в 1928 г. он указал на территории СССР 12 алмазоносных центров, из которых многие открыты. Ребра и вершины земного многогранника оказались тем «силовым каркасом», в котором наиболее сильно проявляются энергетические возможности Земли. Исследования С. И. Кислицына в свое время были поддержаны В. И. Лениным, Ф. Э. Дзержинским, В. В. Куйбышевым и другими видными советскими деятелями. «Это был удивительный человек, – вспоминает о С. И. Кислицыне акад. Н. В. Белов[2]2
Н. В. Белов. Земля – кристалл? – «Известия» от 8 марта 1982 г.
[Закрыть]. – Один из тех людей, которые ускоряют наше проникновение за границы неведомого, способствуют поиску новых путей в науке». Работы С. И. Кислицына были успешно продолжены советскими исследователями – действительными членами Географического общества СССР – Н. Ф. Гончаровым, В. С. Морозовым и В. А. Макаровым. То, что им удалось открыть, поистине поразительно и заслуживает самого пристального внимания читателя.
Почти все сколько-нибудь примечательные в геологическом отношении районы Земли приурочены к полигональной поверхностной земной сети. Так, с одним из узлов совпадают залежи тюменской нефти. В Западной Африке (Габон) недавно открыли естественный атомный реактор, который действовал 1,7 млрд, лет назад. В результате случайного сочетания обстоятельств концентрация урана-235 достигла здесь критического уровня, и началась (без всякого человеческого вмешательства) цепная ядерная реакция. В некоторых узлах находятся центры зарождения ураганов и мировые центры экстремального атмосферного давления. Кстати, преимущественные направления постоянных ветров совпадают с ребрами многогранной системы. Стоит ли говорить, что с той же системой связаны океанические хребты и линии разломов земной коры?
С космических высот хорошо видны глобальные геологические структуры. Не мудрено, что космонавт В. И. Севастьянов уточнил «сверху» расположение Уральской складчатой страны и гигантского разлома Марокко – Пакистан. В уточненном виде их расположение совпало с ребрами икосаэдра. В некоторых узлах системы из космоса замечены своеобразные кольцевые геологические структуры диаметром в сотни километров.
Так как в центрах некоторых граней земного многогранник; располагаются геохимические и биохимические провинции, не удивительно, что «силовой каркас» Земли влияет и на биосферу. В одних местах в почвах не хватает тех или иных элементов, в других местах отмечается их изобилие, поэтому многие узлы системы стали центрами возникновения различных видов растений. В ряде узлов отмечаются аномалии не только растительного, но и животного мира. Таково, например, озеро Байкал, три четверти обитателей которого (растения и животные) не встречаются больше ни в одном районе планеты Замечено, что главнейшие места зимовки птиц совпадают с другими узлами системы. Любопытно, что некоторые узлы системы лежат в Бермудском треугольнике и Море Дьявола (восточнее Японии).
Стоит особо отметить, что на протяжении истории Земли узлы ее «каркаса» и энергетически не остаются неизменными. Они то становятся активными, то временно «затухают».
Вся эта удивительная «жизнь» земного «кристалла» не может не сказываться на истории и развитии культуры человечества. Социально-экономические причины, движущие эволюцию человеческого общества, не исключают, конечно, влияния на людей географической среды и ее изменений. Изучая различные особенности многогранной Земли, советские исследователи пришли к выводу, что многие древние очаги культуры лежат в узлах системы. Таковы, например, Египет, Мохенджо-Даро, Северная Монголия, Ирландия, остров Пасхи, Перу и многие, многие другие районы Земли. Среди них и Киев – матерь городов русских, – много веков украшающий нашу Родину.
Трудно, конечно, сегодня указать, какой именно природный механизм, какие физические поля и как именно стимулировали возникновение культур. Это – дело будущего, и здесь исследователям предстоит огромная работа[3]3
Гончаров Н., Макаров В., Морозов В. В лучах кристалла Земли. – «Техника молодежи», 1981, № 1, с. 40–45.
[Закрыть]. Невольно приходит на ум аналогия с биоактивными точками человека, животных и растений, которые используются в акупунктуре и которые, несомненно, служат энергетической информационной основой всякого организма.
Авторы указанной в сноске статьи предположили, что внутреннее ядро нашей планеты – растущий кристалл в форме додекаэдра, своим ростом наводящий ту же симметрию г. оболочках Земли, в том числе и в земной коре. По гипотезе советского физика С. И. Брагинского между ядром Земли и внешними ее оболочками существуют конвектизные токи, которые обусловливают возникновение магнитного поля Земли. Эти токи расходятся от растущего центрального геокристалла по радиусам и в конечном счете выходят на поверхность в виде узлов «силового каркаса». Внедряясь в земную кору по ребрам додекаэдра, вещество глубин способствует преобразованию вертикальных давлении в горизонтальные перемещения блоков коры.
Следует добавить, что следы поверхностной полигональной структуры замечены на Луне, Марсе и некоторых других небесных телах. Не исключено, что «многогранность» проявляется и в звездном мире – судя по недавним данным (1979 г.), Метагалактика имеет ячеистое строение, а по ребрам «ячеек» концентрируется до 70 % массы всех галактик. Может быть, каждый объект Вселенной представляет собой энергетический узел, а соединяющие их линии – энергетические каналы? Как ни относиться к таким головокружительным идеям, ясно одно, что мы, дети Земли, еще очень плохо знаем свою планету, ее влияние на нас и на историческую жизнь всего человечества.
НАША ПОДВИЖНАЯ ПЛАНЕТА
Столь же подвижный, как радужный шар, надутый дыханием ребенка из маленькой капли обыкновенной воды и пущенный летать по воздуху в веселых лучах Солнца, земной шар носится в пространстве, являясь настоящей игрушкой космических сил, увлекающих его, подобно вихрю, в необъятные преторы небес.
Камилл Фламмарион
Тринадцать движений Земли
Прежде чем подробно рассмотреть те движения нашей планеты, которые имеют непосредственное отношение к ее недрам, представим общую картину очень сложно движущейся Земли. Некоторые из этих движений быстры и заметны, другие, наоборот, почти неощутимо медленны. Их совокупность демонстрирует на примере Земли ту вечную изменчивость, которая свойственна всему мирозданию и является общим свойством материи. Главной силой, определяющей, все эти движения, служит гравитация – притяжение Земли другими телами космоса.
Трудно поверить, что такое огромное тело, как земной шар, весящий 6 000 000 000 000 000 000 000 тонн, одновременно участвует в самых разнообразных движениях. Однако существование этих движений твердо установлено современной наукой. Два движения Земли известны с давних времен – это вращение вокруг собственной оси и обращение около Солнца.
Известно немало доказательств вращения Земли. Например, если с высокой башни бросить камень, то при падении он отклонится к востоку, т. е. в том же направлении, в котором вращается Земля (с запада на восток). Вызвано это тем, что камень, находясь на вершине башни, дальше отстоит от оси вращения Земли и, следовательно, обладает большей линейной скоростью, чем точки у основания башни. Брошенный камень стремится но инерции сохранить свою прежнюю скорость, поэтому обгоняет движущиеся медленнее точки земной поверхности.
Вращением Земли обусловлены сплюснутость ее, размывание правых берегов рек в Северном полушарии Земли и левых – в Южном, отклонение ветров при приближении их к экватору и многие другие явления.
На вращении Земли отражаются перемещение воздушных масс в атмосфере, движение воды в реках, колебания температуры почвы, наконец, сезонные изменения растительного покрова Земли, делая его слегка порывистым, неравномерным.
Все движения в природе в той или иной степени неравномерны. Например, движение Земли вокруг Солнца. Оно совершается по эллипсу. Когда Земля проходит через перигелий – ближайшую к Солнцу точку своей орбиты, нас отделяют от Солнца почти 147 млн. километров. Через полгода расстояние от Земли до Солнца становится близким к 152 млн. километров.
Скорость движения Земли все время меняется. Вблизи Солнца она увеличивается, с удалением от него – уменьшается. В среднем же Земля летит по своей орбите в 36 раз быстрее пули – 30 км в секунду. Но эта скорость кажется огромной лишь по земным мерам расстояний. Если бы мы могли откуда-то извне с большого расстояния следить за орбитальным движением земного шара, он показался бы нам более медлительным, чем черепаха: за один час земной шар проходит путь, в девять раз превышающий его диаметр, между тем как черепаха за 1 час покрывает расстояние, равное нескольким десяткам ее поперечников.
Земной шар часто сравнивают с волчком. Такое сравнение имеет более глубокий смысл, чем кажется. Попробуйте раскрутить волчок, а потом слегка толкнуть его ось – она начнет описывать конус, причем со скоростью, значительно меньшей скорости вращения волчка (рис. 9).
Рис. 9. Прецессионное движение земной оси РР'.
Это движение называется прецессией. Оно свойственно и земному шару, являясь его третьим движением в космическом пространстве.
Что же «толкает» земную ось, что порождает прецессию земного шара? Известно, что Земля сплюснута у полюсов, а земная ось наклонена к плоскостям как земной, так и лунной орбиты. Солнце и Луна притягивают экваториальные выпуклости Земли (у полюсов ведь она сплюснута). Они стремятся «выпрямить» Землю, «толкнуть» ее ось так, чтобы она стала перпендикулярной к плоскостям лунной и земной орбит. Но это им не удается. Земля вращается вокруг своей оси. В результате вращения Земли и «выпрямляющего» действия Луны и Солнца возникает прецессия – медленное, конусообразное движение земной оси. Период прецессии очень велик.
Земная ось снова примет теперешнее свое направление только через 26 тысяч лет. Из-за прецессии меняется положение небесного полюса– той точки, вокруг которой, как нам кажется, происходит суточное вращение звезд. В настоящее время небесный полюс близок к Полярной звезде – в эту область мирового пространства направлена земная ось (рис. 10).
Рис. 10. Прецессионное движение небесного полюса (Северного полюса мира). Отрицательные числа относятся к прошлым эпохам, положительные – к будущим.
За 2700 лет до н. э. роль Полярной звезды выполняла другая звезда – Альфа Дракона, о чем записано в древних китайских летописях времен императора Гоанг-Ти. В египетских пирамидах той эпохи обнаружены галереи, прорытые под углом 27° к горизонту. Именно на такой высоте тогда и виднелась в Египте Альфа Дракона, лучи которой проникали в эти галереи.
Свою роль указателя севера современная Полярная звезда сохранит примерно до 3500-го года. В 10 000-м году полюс мира подойдет к звезде Денеб – главной в созвездии Лебедя, а в 13 600-м году полярной станет одна из ярчайших звезд неба – Вега, которая, кстати, уже выполняла эту роль для наших отдаленных предков около 13 000 лет назад. Настанет время, когда вследствие прецессии исчезнет с европейского неба яркий Сириус и, наоборот, станет доступным для наблюдения созвездие Южного Креста.
Повторится ли, однако, через 26 000 лет та картина неба, которую мы ныне наблюдаем? На этот вопрос надо дать отрицательный ответ. Как нет в природе идеально равномерного движения, так нет в ней и абсолютно точного повторения. Строго говоря, все в мире неповторимо, и вся природа в своем бесконечном движении проходит только через новые стадии развития.
Через 26 000 лет звезды, непрерывно движущиеся в мировом пространстве, сместятся и вид созвездий станет немного иным. Спустя несколько десятков оборотов небесный полюс встретит звезды, которые сейчас как будто вовсе не претендуют на роль Полярной звезды.
Луна вызывает еще одно, гораздо менее значительное четвертое движение Земли. Если даже остановить прецессию, земная ось не останется неподвижной. Из-за воздействия Луны на различные точки земного эллипсоида земная ось описывает маленький конусе периодом в 18,6 года. Благодаря этому движению, называемому нутацией, небесный полюс вычерчивает на фоне звездного неба крошечный эллипс, у которого наибольший диаметр близок к 18 секундам дуги, а наименьший составляет около 14 секунд.
Фактически прецессия и нутация происходят одновременно, поэтому небесный полюс странствует среди звезд по сложной, извилистой кривой.
Во всех учебниках географии подчеркивается, что наклон оси Земли к плоскости ее орбиты всегда остается неизменным. Это не совсем точно. Земля, хотя и крайне медленно, все же «покачивается», и наклон земной оси слегка изменяется. Впрочем, это – пятое движение Земли малоощутимо. Размах колебаний земной оси не превышает 1°37′, а за год наклон оси в среднем изменяется не более чем на полсекунды. Не остается неизменной и форма земной орбиты. Ее эллипс становится то более, то менее вытянутым. В этом заключается шестое движение земного шара.
Прямая, соединяющая ближайшую и наиболее отдаленную от Солнца точки орбиты Земли, называется линией апсид. В ее медленном повороте выражается седьмое движение Земли. Из-за этого сроки прохождения Земли через перигелий неодинаковы. В настоящую эпоху максимальное сближение Солнца и Земли приходится на 3 января. За 4000 лет до нашей эры Земля проходила через перигелий 21 сентября. Это снова повторится лишь в 17 000 году.
Все изменения земной орбиты, а также положения земной оси вызваны притяжением не только Солнца и Луны, но и планет, главным образом наиболее крупных. Выражение «Луна обращается вокруг Земли» не совсем точно. Дело в том, что Земля притягивает Луну, а Луна Землю, поэтому оба тела движутся вокруг общего центра тяжести. Если бы массы Луны и Земли были одинаковы, то этот центр находился бы посередине между ними и оба небесных тела обращались бы вокруг него по одной орбите. На самом деле Луна в 81 раз легче Земли, и центр тяжести системы Земля – Луна в 81 раз ближе к Земле, чем к Луне. Он отстоит на 4664 км от центра Земли в сторону Луны, т. е. находится внутри Земли почти в 1700 км от ее поверхности. Вот вокруг этой точки и происходит восьмое движение Земли. Благодаря ему мы то приближаемся к Солнцу, то удаляемся от него, что вызывает, правда очень незначительные, изменения видимого поперечника нашего дневного светила.
Если бы вокруг Солнца обращалась только Земли, оба тела описывали бы эллипсы вокруг общего неподвижного центра тяжести. Однако в действительности притяжение Солнца другими планетами заставляет этот центр двигаться по очень сложной кривой. Ясно, что его движение отражается и на Земле, порождая еще одно – девятое ее движение. Наконец, сама Земля весьма чутко реагирует на притяжение других планет Солнечной системы. Их общее воздействие отклоняет Землю от ее простого эллиптического пути вокруг Солнца и вызывает все те неправильности в орбитальном движении Земли, которые астрономы называют возмущениями. Движение Земли под действием притяжения планет является ее десятым движением.
Уже давно установлено, что звезды, когда-то считавшиеся неподвижными, на самом деле несутся в пространстве со скоростью в десятки, а иногда и сотни километров в секунду. Наше Солнце и в этом отношении проявляет себя как рядовая звезда. Вместе со всей Солнечной системой, в том числе и Землей, оно летит в направлении созвездия Геркулеса со скоростью около 20 км в секунду. Перемещение Земли относительно ближайших к Солнцу звезд называется одиннадцатым ее движением.
Если бы мы смогли сразу увидеть весь тот гигантский «звездный город» Галактику (рис. 11), к которому принадлежит и наше Солнце как одна из 100 млрд, ее звезд, то обнаружили бы, что путь Солнечной системы в пространстве совершается вокруг центра Галактики.
Рис. 11. Схема строения Галактики. Масштаб указан в килопарсеках (кпс). Один килопарсек равен 3260 световых лет.
Мощное скопление звезд, образующее ее ядро, заставляет своим притяжением и наше Солнце, и остальные звезды обращаться вокруг себя.
Долог путь Солнца вокруг галактического ядра. Солнечная система завершает его почти за 200 млн. лет – такова продолжительность «галактического года»! Полет Земли в пространстве вместе с Солнцем вокруг центра Галактики – двенадцатое ее движение – дополняется тринадцатым движением всей нашей звездной системы Галактики относительно совокупности ближайших к ней и известных нам других галактик.