Текст книги "Вертолет, 2003 № 03"
Автор книги: Автор Неизвестен
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 2 (всего у книги 8 страниц)
«Детские болезни» Ка-15
(к 50-летню первого полета)
Работы Н.И. Камова над автожирами в тридцатые годы прошлого столетия, по существу, позволили заложить основы отечественного вертолетостроения. От автожира до вертолета оставался один шаг. И Камов сделал этот шаг, построив в 1947 году свой первый сверхлегкий одноместный вертолет Соосной схемы Ка-8. В октябре 1948 года было создано вертолетное ОКБ, ставшее основным разработчиком винтокрылых летательных аппаратов для Военно-Морского Флота.
Новому конструкторскому бюро во главе с Н.И. Камовым, была поручена разработка корабельного вертолета Ка-10. От идеи до воплощения прошло совсем немного времени – уже 30 августа 1949 года вертолет совершил свой первый полет. Ка-10 успешно прошел летные испытания, подтвердив преимущества соосной схемы: малые габариты, высокую маневренность, простоту в управлении, большую, чем у одновинтового вертолета, тягу на единицу мощности. Опыт работы над этим вертолетом позволил более точно сформулировать тактико-технические требования на разработку для авиации ВМФ двухместного вертолета Ка-15.
Проектирование вертолета началось в 1951 году. На территории завода №82 в Тушино для этих целей была выделена база – ОКБ-4 МАП. Первый полет состоялся 14 апреля 1953 года, пилотировал машину летчик-испытатель Д.К. Ефремов. После успешных заводских и государственных испытаний, в 1956 году, на Улан-Удэнском, авиационном заводе начался серийный выпуск вертолетов. В этом же году на базе Ка-15 начали строить четырехместный вертолет Ка-18 (в пассажирском, санитарном и почтовом вариантах). Всего было выпущено 354 вертолета Ка-15 и 111 Ка-18.
Массовая эксплуатация вертолетов неожиданно «принесла» с собой ряд авиационных происшествий, причиной которых были «флаттер» несущих винтов, «земной резонанс», схлестывание лопастей в воздухе. Отмечались недостаточные энерговооруженность и устойчивость машин.
Вертолет Ка-15 начал эксплуатироваться с лопастями деревянной конструкции ЛД-10 (ЛД-10М). Н.И. Камов считал, что дерево, от природы имеющее свойство изгибаться, – наилучший материал для лопастей. Однако исследования показали, что из-за влажности воздуха центровка деревянной лопасти смещается назад что приводит к флаттеру. На деревянных лопастях стали устанавливать противофлаттерные грузы: сначала один, потом два. Ограничили максимально допустимую скорость величиной 130 кч/ч. Затем начали проектировать новые лопасти металлической, а позже – стеклопластиковой конструкции. Для борьбы с «земным резонансом» на втулке верхнего винта установили треугольник из пружинных тяг, связывающих лопасти и уменьшающих их колебания относительно вертикального шарнира. В результате «земной резонанс» стал проявляться реже и оканчивался лишь деформацией тяг. Пружинные тяги способствовали также уменьшению уровня вибраций. Проблему «земного резонанса» полностью решило новое шасси с двухкамерной амортизационной стойкой.
Вертолет Ка-15, имевший сбрасываемые гидроакустические буи, передающие на вертолет радиосигналы о движении подводных лодок, применялся на кораблях ВМФ разных типов. Однако его эффективность как противолодочного была невысока (малая грузоподъемность, малоэффективная аппаратура для поиска подводных лодок). Более эффективной оказалась гражданская модификация вертолета – Ка-15М (сельскохозяйственные работы, перевозка грузов и почты, обслуживание геологических партий, ледовая и промысловая разведка в море с базированием на судах). Причем особенно эффективным было применение Ка-15М на авиахимработах в интересах сельского хозяйства. Но и здесь не обошлось без авиационных происшествий, в основе которых было схлестывание лопастей.
Разобраться с причинами схлестывания поручили ЛИИ МАП, где была разработана методика измерения угла сближения лопастей. По этой методике на осциллографе с помощью потенциометрических датчиков отображаются углы взмаха лопастей верхнего и нижнего винтов. В местах их прохождения относительно друг друга замеряли разницу углов взмаха, умножали эту разницу на радиус винта и определяли, насколько сблизились лопасти. При этом предполагалось, что лопасти в плоскости взмаха не изгибаются. От ЛИИ ведущим летчиком испытаний был назначен В.В. Виницкий – один из самых опытных вертолетчиков страны. На методическом совете института много спорили о том, на какой высоте проводить испытания. Большинство было за высоту 800-1000 м, чтобы в случае схлестывания лопастей летчик мог воспользоваться парашютом. В.В. Виницкий настаивал на выполнении полетов в самых сложных режимах на высоте не более 3-5 м, и методический совет согласился с его доводами (фактически он выполнял эти полеты на высоте до 1 м).
Первые же измерения угла сближения лопастей на установившихся режимах полета показали, что их максимальное сближение отмечается при скоростях 40-60 км/ч (на этих скоростях как раз и выполнялись сельхозработы). Как выяснилось позже, причиной явления стало неравномерное индуктивное поле по диску винта. Очередные испытательные полеты проводились с учетом, информации предшествующих летных экспериментов. Анализ полученных данных позволил сделать вывод о том, что схлестывания лопастей следовало ожидать на режиме энергичного торможения с проваливанием. оборотов несущего винта (обусловленного недостаточной энерговооруженностью вертолета), при резком, перемещении ручки и правой педали. Для предотвращения неблагоприятных последствий таких действий в системе продольного и поперечного управления установили пневмодемпферы, которые усложнили пилотирование. В итоге летчики стали быстрее уставать.
Небольшое отступление. Одну десятую расстояния между втулками соосных винтов испытатели между собой называли «кам» и характеризовали сближение словами типа: «3 кама», «5 камов» и т.д. Схлестывание происходило при 10 камах. Когда начальник вертолетной лаборатории ЛИИ С.Б. Брен рассказал об этом. Камову, лично контролировавшему испытания, тот ответил, что 10 камов нужно называть уже «брен», так как звук, который возникает при схлестывании, напоминает звучание его фамилии. Николаю Ильичу даже в самые трудные периоды никогда не изменяло чувство юмора.
Вертолет Ка-15М на палубе корабля
…Случаи схлестывания лопастей отмечались и при испытаниях в ОКБ Камова. Первый случай произошел у летчика Д.К. Ефремова на режиме «вихревого кольца». Этот режим, был основательно обследован Д.К. Ефремовым и Т.В. Руссиян еще в 1957 году. Было установлено, что режим «вихревого кольца» начинается на малых скоростях полета при вертикальной скорости снижения 2-3 м/с, а заканчивается при вертикальной скорости 7-8 м/с. В начале режима имеет место вибрация большой частоты и ощущаются рывки ручки управления. При вертикальной скорости 3-7 м/с машина имеет плохую управляемость и кренится то в одном, то в другом направлении. При вертикальной скорости 7-8 м/с управляемость восстанавливается. Для выхода из режима вихревого кольца достаточно увеличить скорость плавным отклонением ручки от себя. При увеличении скорости до 50 км/ч поведение машины становится нормальным. Результаты исследований позволили выработать рекомендации для экстренного снижения, вошедшие в РЛЭ.
Второй случай схлестывания лопастей в полете произошел у летчика В.В. Громова. При этом лопасть нижнего винта отрубило примерно на 900 мм, лопасть верхнего – примерно на 700 мм. Возник дисбаланс около 500 кг на каждом винте. Таких больших дисбалансов при схлестываниях в эксплуатации не было, Громову, перегонявшему вертолет из Рязани в Москву, удалось выполнить посадку на обочине шоссе. Точно причину схлестывания не установили (противофлаттерный груз не нашли: возможно, он отлетел еще до схлестывания, по другой версии – имело место энергичное пилотирование).
В августе 1962 года на испытаниях вертолета Ка-15 с колонкой соосных винтов четвертой серии произошла катастрофа, в результате которой погибли оба члена экипажа – летчик-испытатель А. Елсуков и ведущий инженер В. Кузовлев. Катастрофы можно было избежать, если бы были обработаны и проанализированы результаты предыдущего полета. Сказалось и то, что испытания проводили на недоработанной колонке и на высоте около 50 м, а не 3-5 м, как рекомендовал В.В. Виницкий.
Проведенный в 1960 году автором данной статьи анализ причин сближения лопастей Ка-18 по материалам летных исследований показал, что случаи схлестывания происходили вовсе не по причине резких перемещений ручки управления, а в результате несоответствия угла опережения управления выбранному у ту регулятора взмаха. Как известно, для исключения боковых завалов винта при продольном, отклонении ручки необходимо, чтобы сумма углов регулятора взмаха и опережения управления составляла 90°. На Ка-15 эта сумма составляла 72°. Угол опережения управления при этом, был на 18° меньше необходимого. После того, как на ОКБ Камова разобрались с истинными причинами схлестывания, пневмодемпферы с вертолетов сняли, к большой радости летчиков эксплуатирующих организаций.
На одновинтовых вертолетах приведение опережения управления в соответствие с регулятором взмаха осуществляется соответствующим. расположением осей поворота автомата перекоса. На соосном, вертолете автоматы перекоса обоих винтов должны быть параллельны и отклоняться одновременно относительно одних и тех же осей. Мы предложили ввести в цепи управления между автоматами перекоса и лопастью треугольную качалку. Начальник бригады несущей системы А.И. Власенко вместо треугольной качалки сделал двурогую, которая сняла проблему схлестывания лопастей на вертолетах Ка-15, Ка-18, Ка-25 и Ка-26. Для Ка-15 это новшество было реализовано на колонке пятой серии, испытания которой намечались в ЛИИ.
В связи с необходимостью принятия решения по колонке Ка-25 Николай Ильич Камов потребовал подтверждения положительных результатов по исключению сближения лопастей на вертолете Ка-15 и отвел на это всего один день. Когда команда в составе М.А. Купфера, Д.К. Ефремова, В.Б. Альперовича (начальник ЛИС), Л.А. Поташника (начальник бригады аэродинамики), Т.В. Руссиян (ведущий инженер по летным испытаниям) и автора этой статьи по заданию Камова приехала в ЛИИ, выяснилось, что проводить испытания невозможно: с вертолета сняты лопасти, капоты и т.д. По словам начальника 4 отряда Ю.Н. Геращенко, на приведение вертолета в рабочее состояние понадобится не менее двух месяцев. Нас этот срок категорически не устраивал. И благодаря энергичным, усилиям М.А. Купфера примерно за час до наступления сумерек вертолет был готов, начались полеты на малой высоте. Их результаты показали, что опасное сближение лопастей значительно уменьшилось, что двурогие качалки на Ка-15 сделали свое дело. Камова это известие успокоило, и он принял соответствующее решение по вертолету Ка-25.
Наряду с деревянными и металлическими лопастями в 1963 году впервые в мире на фирме Камова для вертолетов Ка-15 и Ка-18 были созданы стеклопластиковые лопасти Б-7. Лопасть Б-7 ушешно прошла летные испытания на сближение и показала высокое аэродинамическое качество и большой ресурс (5000 часов). В дальнейшем лопасти такой конструкции стали применяться на всех камовских вертолетах (кроме Ка-25). На вертолете Ка-15 с лопастями Б-7 не было ни одного летного происшествия по причине схлестывания лопастей.
Вертолм Ка-15 в аэродинамическон трубе Т-101 ЦАГИ
Вертолет Ка-15 на кромке берегового припая
Вертолеты Ка-15 и Ка-18, по отзывам летчиков, имели продольную и боковую колебательную неустойчивость, то есть имел место так называемый «голландский шаг». На государственных испытаниях Ка-18 в ГосНИИ ГА летчик-испытатель В. Дробышевский предложил для улучшения путевой угтойчивости установить кили под углом (носиками друг к другу). Кроме того, в носовой части Ка-18 вблизи нижнего края лобового остекления был установлен интерцептор, выполненный из дюралевого уголка высотой примерно 30 мм. Однако его наличие не улучшало устойчивость вертолета, так как пограничный слой в этом месте превышает высоту уголка более чем в пять раз. Испытания по определению характеристик устойчивости Ка-15, проведенные в ЛИИ А.А. Докучаевым, подтвердили наличие продольной и боковой неустойчивости. Докучаев, понимая серьезность вопроса, обратился в ОКБ Камова с просьбой прислать специалистов для ознакомления с материалами испытаний. С этими материалами доверили ознакомиться и мне, тогда совсем, молодому инженеру.
Из отчетов ЛИИ следовало, что вертолет в путевом отношении неустойчив. Однако испытания на моделях в трубах ЦАГИ показывали, что его путевая устойчивость достаточна. По моему заданию на ЛИС завода рули направления Ка-18 отсоединили от педалей, заклинили их струбцинами. Летчик Ефремов в полете зафиксировал достаточную путевую устойчивость, наличие которой привело к боковой устойчивости вертолета. Стало ясно, что шарнирные моменты рулей направления вертикального оперения были велики из-за отсутствия у них аэродинамической компенсации и тросовая проводка, ведущая к рулям, позволяла рулям при зажатых педалях отклоняться под воздействием увеличивающегося скольжения. Этот дефект мог быть легко устранен заменой тросовой проводки на жесткую.
Решить вопрос с продольной устойчивостью было проще. Вертолет Ка-15 поступил в эксплуатацию с углом установки стабилизатора +6°. В дальнейшем для увеличения запасов продольного управления «от себя» угол установки был увеличен до +8°, что отрицагельно сказалось на продольной устойчивости. По предложению автора статьи были проведены испытания по определению влияния угла установки стабилизатора на продольную устойчивость. Испытания проводили летчик-испытатель Н.П. Бездетнов и ведущий инженер И.Д. Фурсов. Было выяснено, что оптимальный угол установки стабилизатора +2°. Запасы управления обеспечили, наклонив автомат перекоса при нейтральной ручке вперед. По мнению летчика, при выбранном угле установки стабилизатора улучшилась и путевая устойчивость. Перестановку угла и замену лопастей ЛД-10М на Б-7 проводили одновременно в эксплуатации, и летчики связывали улучшение устойчивости с новыми лопастями.
Вертолеты Ка-15 и Ка-18 имели недостаточную энерговооруженность. Для устранения этого недостатка двигатель АИ-14В мощностью 260 л.с. был заменен на двигатель АИ-14Ф мощностью 280 л.с. Двигатель большей мощности М-14Ф позволил значительно улучшить летно-технические характеристики.
… Николай Ильич очень любил вертолеты Ка-15 и Ка-18, называл их «русский сувенир». Он сравнивал вертолет соосной схемы с лодкой с двууя веслами, а одновинтовой схемы с одновесельной. Вертолет Ка-15 как корабельный в сравнительных испытаниях с Ми-1 «выиграл». На всемирной выставке в Брюсселе в 1958 году за оригинальность конструкции вертолет Ка-18 был удостоен золотой медали и диплома первой степени. За внедрение вертолетов в народное хозяйство в 1960 году Н.И. Камов был награжден большой золотой медалью ВДНХ. На вертолете Ка-15 в 1958 и 1959 годах В.В. Виницкий установил два мировых рекорда скорости.
Вертолет Ка-18
На первом плане – вертолет Ка-18, на втором – Ка-15
Вертолет Ка-18 успешно демонстрировался на выставке советской науки, техники и культуры в Гаване, где за 10 дней выполнил более 120 полетов, подняв в воздух более 250 человек (смог «полетать» каждый пятисотый посетитель выставки). Вертолет Ка-18 участвовал в съемках фильма «Русский сувенир», в котором Д.К. Ефремов сажал вертолет со знаменитой киноактрисой Любовью Орловой на палубу речного теплохода.
Много сил и энергии вложили в доводку вертолетов Ка-15 и Ка-18 заместители главного конструктора М.А. Купфер и В.Н. Иванов. С эксплуатирующими организациями тесные контакты поддерживали работники бригады эксплуатации, руководителем которой был А.И. Берлин. Особенно много для обеспечения нормальной эксплуатации делал Б.С. Кац.
Вертолеты Ка-15 и Ка-18 широко использовались в народном хозяйстве (вели ледовую разведку в составе китобойной флотилии «Слава», ледоколов «Красин» и «Ленин», оказывали помощь охотникам и рыбакам, перевозили больных, патрулировали линии электропередачи и газопроводов и т.п.). Эти машины могли бы долго и успешно работать в народном хозяйстве, но их посчитали морально устаревшими и с производства сняли.
На смену Ка-15 и Ка-18 должен был прийти вертолет с газотурбинным двигателем. Ка-19, разработка которого велась под руководством И.А. Эрлиха – заместителя Н.И. Камова. На этом вертолете хвостовое оперение крепилось на двух балках. Эта особенность конструкции впоследствии была использована при разработке вертолета Ка-26. Однако отсутствие двигателя привело к тому, что дальше технического предложения дело не пошло.
В настоящее время разрабатывается вертолет Ка-115, который придет на смену вертолетам Ка-15 и Ка-18.
Иван Григорьев, ЛИИ им. М. М. Громова
ЭКСПЛУАТАЦИЯ
Риск можно исключить
МИ-8МТБ
Вертолетный монтаж – один из самых сложных и самых зрелищных видов авиационных работ. Где еще можно увидеть, как гигантский летающий кран за считанные минуты собирает мачту сотовой связи или устанавливает многотонный купол храма? Выполняя строительно-монтажные работы (СМР), вертолет в прямом смысле поднимает технологию строительства на самый высокий уровень. В данном случае вертолет «выступает», с одной стороны, как высокомобильный летательный аппарат, с другой – как строитель. На экипаж вертолета ложится особая ответственность, специалисты хорошо знают, насколько эта работа опасна. Предугадать все, что может произойти на монтаже, производящемся с помощью вертолета, невозможно. В начале августа 2002 года, например, в Кронштадте во время установки креста на купол храма (работал вертолет Ми-8 «Балтийских авиалиний») оборвался трос, и семиметровый крест рухнул на землю. Только по счастливой случайности обошлось без человеческих жертв.
Однако риск при выполнении СМР с воздуха все же можно исключить или, по крайней мере, максимально снизить его степень. Свое мнение по этому поводу высказывает старший бортинженер-испытатель НПК «ПАНХ» Сергей ПАРШЕНЦЕВ.
Свести к минимуму риск, предусмотреть вероятные ошибки пилотирования, а значит, повысить эффективность применения вертолета на СМР – вот главная задача всех специалистов, занимающихся этим видом работ. Время монтажного цикла обычно составляет не более 10-15 мин. Это обусловлено тем, что для достижения наибольшей эффективности выполнения работ экипаж рассчитывает полетную массу вертолета таким образом, чтобы в момент зависания над монтажной площадкой иметь максимально возможный запас мощности двигателей. Это одно из основных условий успешного выполнения СМР.
Однако при проведении монтажа выполнения только этого условия недостаточно. Существенную роль играет и человеческий фактор. Воздушный монтаж требует от летчика особого внимания при управлении, что создает дополнительные психофизиологические нагрузки, кардинально отличающиеся от нагрузок, переносимых им в обычном полете. Неслучайно на СМР всегда существует вероятность ошибочных действий со стороны пилота– монтажника, особенно при выполнении работы на высотных объектах (от 50 м и выше). При таком монтаже, как правило, отсутствуют естественные ориентиры, относительно которых с высокой степенью точности можно удерживать вертолет на режиме висения. Пилотирование вертолета при этом осуществляется по командам бортопера тора внешней подвески.
Летчик, наблюдая за воздушной обстановкой в обычном полете, воспринимает всю информацию о выполняемой работе в привычном ракурсе, поэтому испытывает меньшие нагрузки, что снижает вероятность ошибок при пилотировании. Но как только высота, на которой производится монтаж, увеличивается, связь с выбранными ориентирами нарушается, нагрузка на летчика заметно возрастает. Следовательно, точность выдерживания режима висения над объектом монтажа намного ухудшается. Заметно разгрузить летчика и освободить его от функций автостабилизатора углового положения вертолета позволяет дифференциальное включение автопилота в основную проводку управления. Однако в целом, как показывает практика, управление вертолетом на режиме висения и при малых перемещениях на монтаже остается достаточно сложным процессом. Ведь при существующей у нас технологии СМР на характер и амплитуду перемещения рычагов управления влияю?: качество и полнота информации о выполняемой работе, получаемой пилотом, от бортоператора внешней подвески или бортовой телекамеры; интенсивность воздействующих на вертолет ветровых возмущений. Немаловажную роль играет и манера пилотирования летчика.
Существующие бортовые системы автоматического управления вертолетом, на режиме висения над заданной точкой монтажа пока еще не в полной мере отвечают необходимому для этого вида работ уровню точности. Поэтому их применение на отечественных вертолетах при выполнении CMP без совершенствования принятой у нас системы управления (бортоператор-пилот) не может считаться эффективным.
В 90-х годах в НПК «ПАНХ» были проведены поисковые исследования по выявлению приоритетных направлений совершенствования систем автоматического управления для их использования на отечественных вертолетах при выполнении строительно-монтажных и других работ, требующих высокой точности висения вертолета над выбранным объектом. Был предложен вариант усовершенствования автопилота АП-34Б в части ввода двух новых контуров управления: «вертолет– бортоператор-пилот» и «вертолет-борт– оператор-автопилот», а также разработан целый, ряд радиотехнических, оптических и других средств, устройств и приспособлений, позволяющих повысить эффективность применения вертолетов на СМР и значительно снизить нагрузки на пилота.
Из всего многообразия специального оборудования и технических средств, разработанных в ОАО НПК «ПАНХ» и рекомендуемых в настоящее время для проведения вертолетного монтажа, можно выделить несколько наиболее важных. Прежде всего, это различные системы азимутальной ориентации и стабилизации грузов на внешней подвеске вертолетов (САО), исключающие необходимость ручного ориентирования монтируемых конструкций в момент их установки в проектное положение. Сама идея создания таких систем для вертолетов, выполняющих СМР, не нова.
Первые САО использовались как устройства, позволяющие фиксировать положение груза на внешней подвеске в плоскости, параллельной плоскости вращения несущего винта, под наиболее удобным, углом к месту монтажного стыка. При этом вертолет был ориентирован над монтажной площадкой против ветра, а монтируемая конструкция еще перед взлетом фиксировалась на подвеске в необходимом для монтажа положении. Еще в середине 80-х годов в НПК «ПАНХ» для вертолета Ми-10К была разработана первая САО, заменившая на монтажных работах штатную одноканатную внешнюю подвеску. Установка этой системы позволила экипажу значительно повысить точность работ на высотном монтаже и существенно сократить время монтажного цикла. С ее помощью долгое время успешно выполнялись самые разные монтажные работы, в том числе и работы, связанные с возведением мачт телепередачи высотой до 360 у.
Современные САО – это «рецепт» успеха на СМР. Они разработаны у нас для всех типов отечественных вертолетов, выполняющих монтажные работы. САО не только позволяют фиксировать положение груза на внешней подвеске, но и дают возможность разворачивать его в полете на необходимый угол, компенсируя возможные отклонения вертолета по курсу в момент его висения над монтажным стыком. Эта же система позволяет экипажу при необходимости ориентировать на внешней подвеске длинномерный или парусный груз вдоль продольной оси вертолета, что обеспечивает его минимальное аэродинамическое сопротивление и существенно увеличивает скорость транспортировки в обычном полете.
Результаты проведенных в НПК «ПАНХ» летных исследований показали, что применение САО на таком вертолете, как Ка-32, успешно обеспечивает азимутальное ориентирование груза массой до 5 тонн с моментом инерции 9000 кгм. 2с угловой скоростью до 1 град/с и сокращает время на проведение монтажа не менее чем. на 10%. При этом полностью исключается необходимость присутствия людей в опасной зоне монтажа на земле и значительно облегчается пилотирование вертолета на режиме висения.
Монтаж мачты сотовой связи высотой 70 м. Краснодарский край, 2002 г.
Не менее важным фактором, повышающим эффективность применения вертолетов на СМР, является использование различных по назначению и конструкции направляющих приспособлений (ловителей), фиксаторов, выносных ориентиров видимости, индикаторов монтажной оси, позволяющих экипажу существенно повысить точность установки монтируемой конструкции и сократить затраты летного времени. Их описание, а также основные характеристики и виды выполняемых у нас строительно-монтажных работ изложены в «Руководстве по выполнению СМР с применением вертолетов», разработанном ОАО НПК «ПАНХ» и принятом в гражданской авиации в 1990 году.
В западных авиакомпаниях, которые длительное в:рем.я занимаются выполнением. СМР и перевозкой грузов на внешней подвеске, принята другая технология пилотирования: визуальный контроль пилотом положения груза относительно вертолета и земли (монтажного стыка). В этом случае летчик контролирует угловое положение вертолета и его скорость боковым зрением, свесившись в выпуклый блистер кабины пилотов. Функция второго пилота при этом сводится к контролю работы силовой установки, состояния воздушной обстановки в зоне выполнения работ и ведению радиосвязи с наземным руководителем, полетов. Однако при такой технологии пилотирование на режиме висения и в диапазоне малых скоростей представляет собой более сложную задачу, чем в обычном полете, и требует хорошей натренированности летчика. Эта методика с успехом освоена у нас на вертолетах Ка-32, оборудованных выпуклым блистером, и специальным подлокотником на рабочем, месте командира вертолета. Вместе с тем, широкое внедрение этой методики сдерживается конструктивными особенностями кабин отечественных вертолетов, в которых кресло пилота значительно удалено от выпуклого блистера.
При таком визуальном, контроле, однако, летчик способен контролировать положение только видимой ему из блистера части груза. При условии, что груз малогабаритный или имеет решетчатую конструкцию, не затеняющую собой место установки, а длина тросов внешней подвески составляет не менее 50-40 м, пилот-монтажник имеет устойчивую визуальную связь с монтируемой конструкцией и зоной монтажа. Но как только размеры конструкции превышают размеры монтажного стыка (например, в случае установки крупногабаритных металлических резервуаров на ствол водонапорной башни), а длина тросов внешней подвески уменьшается до 5-10 м, работа становится малопроизводительной, небезопасной, а в ряде случаев просто невыполнимой. В этом случае пилот-монтажник теряет контакт с перевозимым грузом и местом, его установки на объекте из-за недостаточного обзора монтажной зоны из кабины пилотов. Вместе с тем, использование тросов внешней подвески длиннее 10-15 м увеличивает вероятность раскачки груза, снижает точность его установки на монтажном объекте и требует дополнительного запаса мощности двигателей. Это же обстоятельство исключает возможность эффективного применения на монтаже и систем, азимутальной ориентации груза ввиду возникновения высоких моментов инерции конструкций, перевозимых на длинной подвеске вертолета.
Пилотировать вертолет на СМР по командам бортоператора, при недостаточном обзоре через боковой блистер кабины пилотов довольно сложно, особенно сложно выдерживать точное положение машины на режиме висения над заданной точкой. Управление местоположением вертолета на СМР всегда сопряжено с дополнительными нагрузками, вызванными необходимостью преодоления тенденции к раскачке вертолета и груза на внешней подвеске. В таких ситуациях остро возникает необходимость устойчивой визуальной связи командира вертолета с монтируемым. объектом.
Наиболее удачным решением, этой проблемы, на мой взгляд, является использование на СМР вертолета, оборудованного дополнительной кабиной. К сожалению, в настоящее время парк вертолетов, оснащенных дополнительными кабинами для пилота-монтажника, в России представлен более чем скромно. В основном это вертолеты Ми-ЮК, уже практически отработавшие свой ресурс, и не так давно появившиеся экспериментальные образцы Ми-26К и Ка-32К, которые так и не дошли до своего потребителя.
Блистер Ка-32
Опытный образец системы азимутальной ориентации груза
Еще в 1992 году в НПК «ПАНХ» были завершены приемочные летные испытания вертолета Ка-32К, оборудованного полувыдвижной дополнительной кабиной пилота-оператора с электродистанционным четырехканальным управлением, двухстроповой внешней подвеской, встроенной системой стабилизации вертолета по тросу внешней подвески и рядом других систем, повышающих точность висения вертолета над монтажным объектом. Он был впервые продемонстрирован на авиационно-космической выставке в Берлине в 1992 году.
На этом вертолете выполнен целый ряд исследовательских полетов по проверке возможностей вертолета в реальных производственных условиях. На нем отработана технология свободного монтажа телевизионных мачт высотой до 70 м. в горах, на высоте до 2000 м над уровнем моря. Изучалась возможность выполнения летчиком, сидящим в дополнительной кабине, монтажных операций с использованием системы автоматической стабилизации вертолета. В ходе испытаний вертолет хорошо показал себя в условиях высоких температур наружного воздуха и высокогорья. Однако он так и не был допущен к выполнению производственных полетов по причине несовершенства электродистанционного управления из дополнительной кабины, а работы по его модернизации были неоправданно свернуты.
Для выполнения аналогичных работ Крымской ассоциацией «Авиамонтаж» (г. Симферополь) совместно с КБ им. Миля (г. Москва) и при участии специалистов НПК «ПАНХ» был разработан уникальный вертолет-кран Ми-8МТВ-1К, оборудованный дополнительной кабиной пилота, легко устанавливаемой вместо задних грузовых створок. Вертолет оснащен системой азимутальной ориентации груза на внешней подвеске и двумя дополнительными нижними электрозамками (ДГ-63), позволяющими производить автоматическую отцепку установленных конструкций после выполненного монтажа. Это обеспечивает дополнительную безопасность выполняемых работ и существенно сокращает время технологического цикла.
В июле 2001 года с помощью вертолета Ми-8МТВ-1К и вертолета-крана Ми-ЮК НПО «Взлет» (г. Москва) был произведен демонтаж высотного крана БК-473 в жилом комплексе «Алые паруса» в районе станции метро «Щукинская». Этим вертолетом, в 1992 году в Москве успешно выполнены работы по установке систем кондиционирования воздуха на крыше Государственного исторического музея, в 2002 году – работы по строительству канатно-кресельнои дороги в Ивано-Франковской области Украины. Вместе с тем, широкое внедрение этого вертолета в эксплуатацию сдерживается малым ресурсом, установленным изготовителями, на оборудование и систему управления вертолетом в дополнительной кабине.