Текст книги "Техника и вооружение 2009 05"
Автор книги: Автор Неизвестен
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 6 (всего у книги 9 страниц)
Экранопланы Прошлое, настоящее, будущее
Экранопланостроение на Североамериканском континенте
Павел Качур
Продолжение. Начало см. в «ТиВ» № 11/2007 г., № 1,3/2008 г., № 3/2009 г.
Самый большой в мире экраноплан – корабль-макет КМ (СССР, 1970-е гг.). Фото А. Беляева.
Великая ложь ЦРУ
Итак, к концу 1980-х гг. в США стало ясно, что ни один, даже сверхоригинальный проект не может наверстать упущений науки и промышленности. Находившиеся в эксплуатации российские тяжелые транспортно-боевые экранопланы специального назначения типа КМ, «Орленок» и «Лунь» давно привлекали внимание зарубежных специалистов с точки зрения использования подобных боевых средств в военных целях, поскольку позволяли решить ряд проблем, связанных с оперативностью реагирования на кризисные ситуации. Интерес к экранопланам проявило также Транспортное командование ВС США (авиабаза Скотт, штат Иллинойс), а в Военно– морском колледже в Ньюпорте была проведена военная игра, которая наглядно продемонстрировала преимущества тяжелых экранопланов. По расчетам Центрального командования ВС США, два тяжелых экраноплана могли за один рейс доставить в район кризиса целую пехотную бригаду. Рассматривалась возможность использования подобных трансокеанских экранопланов транспортной авиацией ВМС для перевозки войск, грузов и развертывания экспедиционных сил. Однако ни опыта исследования, ни практики промышленного производства подобных транспортных средств в США не имелось.
Известно, что в 1970-х гг. США отставали от России в области экранопланостроения на 20–30 лет, а по финансовым затратам – на многие миллионы долларов. Эта амбициозная страна с развитой экономикой не могла смириться с положением догоняющей, и для разведывания российских военных секретов была придумана некая провокационная игра.
В 1989 г. в Арлингтоне (штат Вирджиния) была создана компания «Аэрокон» во главе с бывшим сотрудником Министерства обороны США С. Хукером. Тем самым офицером, который еще в 1960-х гг. разглядел на снимках с разведывательного спутника экраноплан КМ на Каспийском море и тщательно отслеживал все успехи СССР в этой области. Вот этому человеку ЦРУ и доверило сыграть главную роль в своем спектакле про шпионов.
Официально компания «Аэрокон» предназначалась для исследования гражданского использования экранопланов. Однако в действительности она активно проводила изучение военного применения таких аппаратов, в частности, для ВМС в качестве десантных и транспортных средств, поскольку финансировалась Министерством обороны США и работала по контракту с Управлением перспективных исследований. Одной из задач, которые ставились перед ней, было восприятие передовых российских технологий в области экранопланостроения. Так началось нелегальное изучение концептуальных замыслов секретных советских КБ Р.Е. Алексеева и А.Н. Панченкова. При существовавшем в СССР режиме ограничения информации это было непросто.
Как ни странно, успеху этого мероприятия содействовало руководство Советского Союза. В период перестройки работы над экранопланами в России вдруг перестали быть тайной за семью печатями. Американцы стали приглашать российских конструкторов, чтобы те поделились своими достижениями. Первым в компании «Аэрокон» побывал главный конструктор ЦКБ по СПК Б.В. Чубиков, чей доклад и демонстрация технического фильма об экранопланах имели большой успех. Более того, уже в начале 1992 г. было достигнуто соглашение о совместных разработках грузовых трансатлантических летательных аппаратов массой 5000 т, использующих эффект экрана.
Тогда же по предложению американской стороны было решено создать новое совместное предприятие под названием «Американо-Российский инженерно-производственный и исследовательский центр» с базовыми точками в г. Хэмптон (штат Виргиния, США) и Нижнем Новгороде (Россия) для трансформирования концепций российских ученых и инженеров в американские технические решения. Косвенно подтвердив отставание американских разработок от российских, Хукер сказал: «Мы убедили российских ученых начать совместные работы над проектом. Мы нуждаемся в российских разработках концепции экраноплана, чтобы вместе плодотворно работать. Мы будем оплачивать затраты России на оборудование, используемое в испытаниях. Мы ведем переговоры с фирмами «Lockheed» и «General Dynamics» об оказании помощи в разработке конструкции планера, а с фирмами «Pratt amp; Whitney» и «General Electric» – об оснащении двигателями».
В результате переговоров был подписан протокол о взаимодействии двух названных российских КБ с компанией «Аэрокон». Американцы обещали оплатить технику для использования при испытаниях.
Экраноплан-ракетоносец «Лунь» (СССР, 1980-е гг.). Фото А. Беляева.
Главный конструктор ЦКБ по СПК в 1980-х гг. В.Б.Чубиков.
Проект экраноплана С. Хукера.
Проектэкраноплана А.Н.Панченкова, понравившийся С. Хукеру.
Замысел Хукера состоял в том, чтобы создать па базе грузового экраноплана аппарат той же массы для пассажирских перевозок. Большой знаток аэрогидродинамики, он рассуждал так: «При конструировании коммерческих самолетов главное – снизить затраты на грузоподъемность и дальность полета. Поэтому стараются cmpoimu, все более крупные машины. Но в какой– то момент возникают неразрешимые противоречия. Скажем, для обеспечения хорошей аэродинамики требуется настолько длинное и тонкое крыло, что уже трудно сделать его прочным. А если объединить крыло и фюзеляж функционально? Говорят, тогда ухудшатся аэродинамические свойства конструкции. Но это верно лишь, если не использовать эффект экрана…».
Для океанских пассажирских перевозок он предложил создать экраноплан длиной 150 м и взлетным весом 4,5 тыс. т. В аэрогидродинамической схеме здесь явно видны идеи Р.Е. Алексеева: схема «составное крыло», расположение двигателей в носовой части аппарата для поддува под крыло, задний стабилизатор V-образной форме для обеспечения устойчивости в режиме полета. Такая громадина может «ловить экран» в нескольких десятков метров над морем и становится практически независимой от его волнения. Хукер надеялся, что его пассажирские «крылатые корабли» понизят цену на билет из Америки в Европу до 75-100 долл., имея вместе с тем комфортабельность, как у старинных океанских лайнеров. По времени же перелета экраноплан мало уступит авиации: Хукер рассчитывал на скорость около 950 км/ч; дальность хода составила бы более 18000 км.
Параллельно конструктор предложил проект военного экраноплана длиной 170 м, массой 5000 т, оснащенный 20 большими ТРДД, который должен был брать на борт 2000 человек и нести полезный груз в 1200 т со скоростью 740 км/ч. По предварительным расчетам, стоимость разработок должна была составить 15 млрд. долл. США, а стоимость одного такого экраноплана – 400 млн. долл. (в масштабах цен 1990-х гг.).
Россия же планировала использовать экраноплан как транспортный аппарат в районах Крайнего Севера. Конструкции, разработанные коллективом А.Н. Панченкова и названные в честь одного из первых исследователей эффекта экрана «Бартини», выглядели более подходящими для передвижения над тундрой. Чтобы доказать свои добрые намерения, российская сторона пригласила американских специалистов ознакомиться с достижениями в области экранопланостроения.
В 1992 г. на базе в Каспийске ожидали американских гостей, в основном конструкторов и специалистов компании «Аэрокон». Предполагалось показать иностранным посетителям все разновидности экранопланов, находящихся в составе военно-морской авиации на Каспии. Вместе со специалистами один из зарубежных журналов, «Naval Forces», получил привилегию проникнуть в подробности программ по разработке экранопланов, которая в течение длительного времени держалась в СССР, а затем и в России в секрете. Так на производственной и испытательной базах ЦКБ по СПК им. Р.Е. Алексеева вместе с американскими журналистами побывали сотрудники разведывательных органов из-за океана.
Перед показательными полетами руководство базы решило провести несколько тренировочных вылетов, ведь товар надо было показать лицом фирме. Во время полета 28 августа 1992 г. экраноплан «Орленок» потерпел крушение. Условия полета были благоприятными: день, видимость 10 км, температура наружного воздуха 25 °C, скорость ветра 6 м/с. Бортовая система автоматического управления включена не была. На пятой минуте после вылета примерно в 15 милях от берега при выполнении достаточно крутого разворота на высоте 4 м и скорости 370 км/ч пилот А.В. Коробкин почувствовал, что аппарат клюнул носовой частью – «провалился». Опытный летчик, в прошлом управлявший гидросамолетами, инстинктивно сделал то, что делают в такой ситуации пилоты самолетов, т. е. взял ручку на себя, попытавшись увести носовую часть от воды. Экраноплан круто взмыл вверх, достигнув высоты 40–45 м. При этом он потерял скорость, произошел срыв потока воздуха на крыльях и от этого резко упала подъемная сила. Аппарат стал падать… На скорости более 350 км/ч экраноплан ударился о поверхность воды, подскочил до высоты 20–25 м, ударился еще раз хвостовой частью и развернулся на 180°. От удара отломился стабилизатор, разрушилась обшивка хвостовой части, получила повреждения носовая оконечность. Через незагерметизированные люки главной палубы-днища внутрь корпуса стала поступать вода.
Из десяти человек, участвовавших в полете, в кабине пилота в то время находилось девять, в том числе командир части, офицеры подразделения и двое гражданских лиц. Десятый – бортмеханик старший прапорщик Баматов – был в хвостовом отсеке. Он погиб под рухнувшим сверху самолетным двигателем. Все находившиеся в кабине пилота, в том числе главный конструктор экраноплана В.В. Соколов и главный менеджер ДИКО «Проммаркет» С.П. Волков, получили травмы средней тяжести – ранения, ушибы и переломы, но остались живы. Пока шло спасение и оказание медицинской помощи поврежденный аппарат ветром унесло далеко в море на расстояние более 100 км, где впоследствии он был взорван и затоплен, поскольку, дрейфуя, он мешал судоходству. Экраноплан МДЭ-150 (заводской номер С-21) был принят в состав ВМФ 20 октября 1979 г. Наработка с начала эксплуатации составила 279 ч 35 мин (средний годовой налет 21 ч), 140 взлетов/посадок, 33 амфибийных выхода. Срок работы после последнего ремонта 5 ч 35 мин.
Этот случай вызывает много вопросов: почему произошла катастрофа – из-за ошибки в проекте, производственных недоработок или нетребовательности заказчика, и можно ли было ее избежать? Надо сказать, что экранопланы, находящиеся в эксплуатации, сделаны надежно, добротно и качественно, ведь они были в свое время приняты дотошными военными представителями, прошли этап опытной эксплуатации. Не было причин для беспокойства. В составе Военно– морского флота для этих аппаратов был создан режим максимального благоприятствования.
Экраноплан типа «Орленок» демонстрирует свои возможности американским гостям.
По мнению представителей промышленности, большинство аварий и катастроф с экранопланами происходили из-за решения руководства ВМФ передать эти «летающие корабли» морской авиации. Там отнеслись к экранопланам настороженно. Затем обострились проблемы экономики, было сокращено снабжение, в том числе и поставки горючего. Вылеты и тренировки сократились до минимума. Летный состав стал терять квалификацию и навыки управления…
Таким образом, в ВМФ России осталось два экраноплана проекта 904 и один проекта 903. Примечательно, что раздосадованный потерей боевой единицы во время подготовки к демонстрационным полетам перед иностранцами Главком ВМФ резко сократил финансирование базы, еще больше урезал штаты.
После случившегося представители компании «Аэрокон» все же посетили российские конструкторские бюро: помимо ЦКБ по СПК, им удалось побывать в иркутской лаборатории, возглавлявшейся профессором А.Н. Панчепковым. Результаты этих поездок были тщательно проанализированы в США. Летом 1993 г. Конгресс США направил в Россию делегацию – около тридцати видных ученых, конструкторов и военных специалистов, объединенных в так называемую «Группу технической оценки экранопланов» во главе с вице-адмиралом М. Френсисом. Перед группой были поставлены три задачи:
– определить перспективность создания океанского экраноплана массой несколько тысяч тонн для использования его, в частности, в корпусе быстрого реагирования;
Транспортный океанский экраноплан «Пеликан» фирмы «Боинг» (проект, 2002 г.).
– оценить уровень российской науки и техники в области экранопланостроения;
– доложить Конгрессу о возможности, целесообразности и масштабах российско-американского сотрудничества по программе экранопланостроения.
Американская делегация посетила Нижний Новгород, познакомилась с ЦКБ по СПК, заслушала основательные доклады ведущих сотрудников, провела беседы по различным техническим проблемам. Достижения российских ученых произвели на членов делегации сильное впечатление. Затем делегация посетила базу экранопланов в Каспийске, ознакомилась с экранопланом «Орленок». Для гостей был продемонстрирован полет подготовленного «Орленка»: пилот И.Г. Добровольский показал все, па что способен российский экраноплан.
Возвратившись домой, члены делегации засели за отчеты по результатам поездки в Россию. Выводы выглядели неутешительными для США: обнаружилось отставание американской промышленности, связанное с необходимостью срочного наверстывания пробелов, колоссальными затратами средств и времени. Поэтому решено было убедить российскую сторону в том, что экранопланостроение не представляет интереса для американских коллег. Однако работы в этой области здесь прекращены не были, напротив, стали более интенсивными, но засекреченными. И вскоре, в сентябре 2002 г., стало известно, что компания «Боинг» занимается проектом гигантского транспортного экраноплана – летательного аппарата, напоминающего самолет, но движущегося всего в нескольких метрах над поверхностью.
Предполагается, что аппарат, названный Pelican Ultra Large Transport Aircraft (ULTRA), будет иметь 152 м в длину, а размах его крыльев достигнет 106 м. Площадь крыла при этом составит более 4000 м². По своим внешним размерам двухпалубный «Пеликан» вдвое превосходит самый крупный в мире транспортный самолет Ан-225. ULTRA будет двигаться в б м над поверхностью океана и сможет перевозить за один рейс до 1400 т груза на расстояние в 16000 км. Над землей аппарат будет двигаться на более привычной для самолетов высоте около 6000 м.
Дж. Скорупа, ведущий менеджер стратегических разработок департамента перспективных работ компании Boeing, заявил, что проект «Пеликан» будет воплощен в металле к 2020 г. Благодаря таким транспортным средствам, по его мнению, можно будет передислоцировать одну дивизию Министерства обороны США за пять дней, а пять дивизий – за 30 дней в любое место земного шара. Площадь верхней (пассажирской) палубы составит 2800 м², нижняя палуба – грузовая, для перевозки техники. Перевозимый десант разместится на верхней и нижней палубах, а также в крыльях в месте установки двигателей. Предполагается, что первоначально «Пеликан» будет работать на углеводородном горючем, затем – на водородном.
Наш вывод однозначен: США не располагает к настоящему времени ни одним действующим экранопланом. Найдется ли у них конструктор, одержимый идеей экранопланостроения как наш Р.Е. Алексеев, способный поднять в воздух «Пеликан»? Доживем до 2020 г. – увидим.
Схема катера-экраноплана Д. Коксиджа (Канада, 1953 г.).
Схема экраноплана Д.Коксиджа (проект, 1965 г.).
Схема многоцелевого КВП-экраноплана (проект, 1974 г.).
Канадские экранопланы
От своего соседа постаралась не отстать и Канада.
В 1963 г. канадским специалистом Д. Коксиджем был построен двухместный катер массой 360 кг. По принципу движения и общей компоновке этот аппарат больше относился к судам на воздушной подушке, чем к экранопланам, но условно его можно отнести к последним.
Корпус катера длиной 4,2 м и шириной 2 м был выполнен в виде хорошо обтекаемого тримарана с кабиной, установленной на три поплавка.
Пространство под днищем между поплавками спереди и в корме ограждалось управляемыми из кабины щитками. В носовой части корпуса перед кабиной располагался двигатель мощностью 25л.с., приводящий в движение наклонно расположенный вентилятор. Специальные дефлекторы направляли отбрасываемый вентилятором воздух под днище катера. Для управления по курсу на аппарате применялись водяные рули. Во время испытаний катер развил скорость 37 км/ч. Однако полного отрыва от воды не произошло – катер продолжал глиссировать. Установили, что мощность 20 л.с. использовалась на образование воздушной подушки и только около 5 л.с. – на поступательное движение аппарата. Неудачи объяснялись неправильной компоновкой, малой площадью несущей поверхности, недостаточной мощностью двигателя и др.
В середине 1960-х гг. Коксидж разработал модификацию своего небольшого катера, весьма теперь напоминающую экраноплан. Несмотря на то, что аппарат был выполнен по самолетной схеме, в нем повторялись ранее использованные решения: тримаранный корпус, скеговая схема выхода аппарата на расчетный режим, закрылки. В качестве органов стабилизации и у правления предлагались самолетное хвостовое оперение и элероны.
Военно-морским научно-исследовательским центром Канады в 1972–1974 гг. разрабатывался проект многоцелевого корабля-экраноплана, предназначенного для действия, главным образом, в северных арктических районах. Он мог использоваться как транспортное средство, в десантных операциях, в системе противолодочной и противокорабельной обороны, для траления, в поисково-спасательных операциях и др.
Корабль был выполнен в виде катамарана с двумя корпусами, снабженными гибким ограждением. Корпуса соединялись развитым мостом арочной формы, на котором устанавливалась боевая рубка. В ней размещались посты управления вооружением и техническими средствами корабля. В качестве энергетической установки использовались две газовые турбины, работающие на воздушные винты, находящиеся в кольцевых насадках на пилонах, и нагнетатели, подающие воздух в полость воздушной подушки. Вооружение корабля рекомендовалось выбирать в зависимости от его назначения; в качестве оружия самообороны предлагались ЗРК и автоматические пушки.
Применение катамаранной конструкции, по мнению авторов проекта, решало сложную проблему остойчивости корабля и существенно повышало его ходовые и мореходные качества благодаря снижению лобового сопротивления. Последнее обеспечивалось тем, что в отличие от корпусов обычных кораблей на воздушной подушке с двойным удлинением корпус катамарана имел удлинение 7. Кроме того, повышению эквивалентного аэродинамического качества способствовало участие в создании подъемной силы крыловидного соединительного моста катамарана при движении в расчетном режиме и в зоне влияния экрана. Оба корпуса корабля выполняли функции концевых шайб.
На основании расчетов боевой и транспортной эффективности корабля было установлено, что дальность его хода при скорости 140–150 км/ч на 23–25 % больше, чем у кораблей на воздушной подушке, а лобовое сопротивление – меньше на 2–5%.
Отечественные бронированные машины 1945–1965 гг
М. В. Павлов, кандидат технических наук, старший научный сотрудник И. В. Павлов, ведущий конструктор.
Продолжение.
Начало см. в «ТиВ» № 5–9,11,12/2008 г., № 1–4/2009 г.
Подвижность
Подвижность танка объединяет ряд важнейших ее показателей: быстроходность, маневренность, проходимость, плавучесть и запас хода. В обеспечении высокой подвижности наряду с величиной удельной мощности танка и количеством возимого топлива важнейшую роль играет совершенство выполнения конструкций узлов и агрегатов трансмиссии, органов управления и ходовой части. Самый простой способ повышения скорости танка – это увеличение его удельной мощности или за счет увеличения мощности двигателя, или за счет уменьшения боевой массы танка. Однако в реальных условиях этот способ малопригоден, особенно для тяжелых танков. Увеличение мощности двигателя требует значительного увеличения объема, отводимого для размещения силовой установки, и как следствие – ведет к увеличению боевой массы танка. При неизменной мощности двигателя увеличение удельной мощности танка требует значительного уменьшения его боевой массы. Так, например, мощность дизелей тяжелых танков за два послевоенных десятилетия не изменилась и для танков ИС-4 и Т-10М осталась на уровне 551 кВт (750 л.с.). Увеличение удельной мощности с 9,2 кВт/т (12,5 л.с./т) до 10,7 кВт/т (14,6 л.с./т) было достигнуто за счет уменьшения боевой массы танка с 60 до 51,5 т.
Поэтому основные усилия специальных научно-исследовательских организаций и конструкторских бюро после войны были сосредоточены не только на исследовании основных направлений повышения подвижности танков, но и на реализации новых конструкторских и компоновочных решений и мероприятий по совершенствованию агрегатов, узлов и систем силовой установки, трансмиссии и ходовой части. Для проведения этих исследований в Академии бронетанковых войск, на НИИБТ полигоне и в некоторых научно-исследовательских организациях были созданы новые научно-исследовательские лаборатории, оснащенные уникальным стендовым оборудованием и современной специальной аппаратурой. К решению этой задачи также был привлечен Центральный экспериментальный завод (ЦЭЗ № 1) Министерства обороны.
Основным показателем уровня быстроходности и маневренности танка является величина средней скорости движения. Для танков первого послевоенного периода она составляла 22–25 км/ч, несмотря на увеличение боевой массы танков на 3–4 т по сравнению с боевой массой однотипных танков периода Великой Отечественной войны. Это стало возможным в результате того, что в послевоенные годы были достигнуты значительные успехи в разработке теории движения танка и методов расчета конструкций агрегатов и систем трансмиссии, узлов ходовой части танка, способствовавших созданию их более совершенных конструкций для повышения подвижности танка. Так, например, если в годы Великой Отечественной войны на советских танках в качестве механизма поворота применялись бортовые фрикционы (кроме тяжелых танков серии ИС, где устанавливались двухступенчатые ПМП), то на серийных танках послевоенного периода бортовые фрикционы сохранились только на легком танке ПТ-76 (ПТ-76Б). Для улучшения маневренности и повышения быстроходности танка двухступенчатые ПМП стали использоваться на средних танках, а для тяжелых танков был создан не имевший аналога за рубежом механизм поворота нового (третьего) типа – типа «ЗК». Все эти механизмы поворота обеспечивали устойчивое прямолинейное движение танка.
На тяжелых танках ИС-4, Т-10 и Т-10М вместо простых трехвальных коробок передач стали применяться планетарные коробки передач, объединенные с механизмом поворота в одном картере. В простых двухвальных коробках передач средних танков Т-54, Т-55 и Т-62 устанавливались конусные инерционные синхронизаторы для облегчения переключения передач и сокращения времени на выполнение этой операции. В конце первого послевоенного периода на средних и тяжелых танках стали применяться комбинированные двухрядные бортовые редукторы. Тяговые и скоростные характеристики создаваемых танков рассчитывались в соответствии с предъявляемыми требованиями к быстроходности и маневренности машины. Диапазон изменения передаточных чисел механических трансмиссий составлял от 7 до 10. В то же время велись НИР по созданию для танков однопоточных и особенно двухпоточных гидромеханических трансмиссий, позволявших осуществить разворот танка на месте вокруг центра масс при противоположном вращении гусениц.
На всех отечественных танках стали устанавливаться индивидуальные торсионные подвески различных конструкций – одновальные на средних и легких танках и пучковые на тяжелых танках. Блокированные подвески на создаваемых танках больше не применялись. Таким образом, окончательно был решен вопрос о рациональном типе танковой подвески в пользу индивидуальной (независимой) подвески. В первом послевоенном периоде широко проводилась работа по усовершенствованию технологии изготовления и улучшению термообработки торсионных валов. Были введены заневоливание торсионных валов для увеличения в них максимально допустимых касательных напряжений, что позволило увеличить динамический ход опорных катков с целью улучшения плавности хода танка, а также дробеструйная (вместо пескоструйной) обработка и накатка валов роликами для упрочнения их поверхностей.
Высокие скорости движения на местности зачастую ограничивались полученными значениями характеристик узлов системы подрессоривания танка. Для устранения раскачивания корпуса, которое приводило к частым и сильным ударам балансиров в ограничители их хода («пробою» подвески), приходилось или снижать скорость движения танка, или вводить в систему подрессоривания амортизаторы. Наилучшими показателями эффективности работы амортизатора обладали рычажно-поршневые гидроамортизаторы легкого танка ПТ-76. Первые рычажно-лопастные гидроамортизаторы, установленные на танке Т-54, были малоэффективными из-за конструктивных недостатков (большие зазоры между лопастями и корпусом, ненадежные уплотнения) и, как выяснилось впоследствии, неудачного выбора рабочей жидкости. Рычажно-поршневые гидроамортизаторы, используемые на тяжелом танке Т-10, также оказались недостаточно эффективными. Одновременно с разработкой торсионных подвесок велись НИР по созданию систем подрессоривания с пневматическими и гидравлическими подвесками для всех типов танков.
В первом послевоенном периоде большое внимание уделялось совершенствованию водоходных движителей. На легких плавающих танках испытывались различные типы водоходных движителей. Гребные винты устанавливались на опытном танке К-90, гусеничный водоходный движитель – на опытном танке «Объект 906Б» и водометы – на танках ПТ-76, ПТ-76Б, «Объект 906» и «Объект 911 Б». На серийных танках ПТ-76 и ПТ-76Б применялся гидрореактивный водометный движитель с двумя пропеллерными (осевыми) насосами. По сравнению с другими типами водоходного движителя водометы обеспечивали лучшую маневренность машины на плаву, но занимали внутри броневого корпуса значительный объем.
Преодоление водной преграды танком К-90.
Один из двух гребных винтов танка К-90.
Преодоление водной преграды танком ПТ-76.
Водометный движитель танка ПТ-76.
Преодоление водной преграды танком «Объект 906».
Танк Т-55 с установленным оборудованием для подводного вождения.
Танк Т-62 с установленным оборудованием для подводного вождения.
С 1947 г. велись работы по установке на танки оборудования для подводного вождения (ОПВТ), предназначавшегося для преодоления водных преград (рек) глубиной до 6 м. Первоначально было создано съемное ОПВТ, перевозившееся на машинах обеспечения и устанавливавшееся на танках перед преодолением водных преград. В ходе последующей работы появилось ОПВТ, перевозимое непосредственно на танке и состоявшее из двух частей – постоянно установленной на нем и съемной, монтировавшейся непосредственно перед преодолением водной преграды. Это оборудование устанавливалось на средних танках Т-54А, Т-55, Т-62 и тяжелых танках Т-10М и позволяло им самостоятельно преодолевать водные преграды глубиной до 5 м и шириной до 1000 м.
В середине 1950-1960-х гг. для преодоления танками Т-54, Т-55 и Т-10 водных преград глубиной свыше 5 м и значительной протяженности были разработаны и приняты на вооружение (для средних танков Т-54 и Т-55) индивидуальные навесные плавсредства ПСТ-54 и ПСТ-63.
В целях повышения проходимости гусеничных машин НИОКР проводились по двум направлениям. Работы по первому направлению предусматривали совершенствование конструкции трансмиссии и ходовой части и были связаны со снижением среднего давления на грунт (увеличение опорной поверхности гусениц и равномерное распределение давления по площади), с увеличением клиренса машины и плавной передачей крутящего момента двигателя на ведущие колеса за счет применения гидромеханических трансмиссий.
Второе направление касалось создания машин на воздушной подушке. Идея создания аппаратов, двигающихся на воздушной подушке (АВП), была предложена К.Э. Циолковским в 1927 г. До появления в 1959 г. сведений о разработке за рубежом транспортных средств на воздушной подушке работы в этой области в нашей стране проводились лишь эпизодически. В частности, в 1958 г. над созданием танка на воздушной подушке трудились в проектно-конструкторском бюро ЦЭЗ № 1. Была изготовлена опытная машина – платформа «на воздушной подушке», предназначавшаяся для проверки режимов движения, управляемости и маневренности, а также отработки соответствующих органов управления. Опытная машина, выполненная в габаритах танка (длина -6 м, ширина – 3 м, высота – 1,5 м), имела массу 2000 кг. Корпус изготавливался из легких металлических конструкций со слегка скошенными лобовым и бортовыми листами. В передней части платформы находилось отделение управления, в котором размещались два человека. В центральной части, ближе к корме, располагался подъемный воздушный винт с приводом от двигателя В-2 мощностью 368 кВт (500 л.с.), по бокам в корме – два маршевых воздушных винта. Зона повышенного давления воздуха под корпусом помимо подъемного воздушного винта обеспечивалась с помощью ограждения из гибких материалов. Высота полета над поверхностью земли составляла 150 мм. Кроме того, при неработающем подъемном воздушном винте платформа могла передвигаться по ровной поверхности на колесах диаметром 150 мм, установленных по периметру днища. Летом 1959 г. машина проходила испытания на НИИБТ полигоне, но не смогла преодолеть косогор, и дальнейшие работы по ней прекратили.
ТанкТ-10М с установленным оборудованием для подводного вождения.
Танк Т-54 с навесными плавсредствами ПСТ-54 преодолевает водную преграду.
Ходовой макет машины на воздушной подушке СМ-1.
Продольный разрез ходового макета СМ-1.
Испытания ходового макета СМ-1.
В соответствии с постановлением правительства в августе 1959 г. к созданию машин на воздушной подушке были привлечены ЦАГИ, ЦИАМ, НИИД, ОКБ ГКАТ, СТЗ и ЧКЗ. На ВНИИ-100 возлагались теоретическая и экспериментальная отработка нового принципа движения, обоснование ТТТ на разработку специальной боевой машины, а также координация работ по теме в целом. В результате проведенной в 1959–1963 гг. работы были получены теоретические, методические и конструкторские основы создания аппаратов на воздушной подушке.