Текст книги "C++"
Автор книги: Мюррей Хилл
Соавторы: Бьярн Страустрап
Жанр:
Программирование
сообщить о нарушении
Текущая страница: 4 (всего у книги 26 страниц) [доступный отрывок для чтения: 10 страниц]
1.10 Конструкторы
Определение ostream как класса сделало члены данные зарытыми. Только функция член имеет доступ к закрытым членам, поэтому надо предусмотреть функцию для инициализации. Такая функция называется конструктором и отличается тем, что имеет то же имя, что и ее класс:
class ostream (* //... ostream(streambuf*); ostream(int size, char* s); *);
Здесь задано два конструктора. Один получает вышеупомянутый streambuf для реального вывода, другой получает размер и указатель на символ для форматирования строки. В описании необходимый для конструктора список параметров присоединяется к имени. Теперь вы можете, например, описать такие потоки:
ostream my_out( amp;some_stream_buffer); char xx[256]; ostream xx_stream(256,xx);
Описание my_out не только задает соответствующий объем памяти где-то в другом месте, оно также вызывает конструктор ostream::ostream(streambuf*), чтобы инициализировать его параметром amp;some_stream_buffer, предположительно указателем на подходящий объект класса streambuf. Описание конструкторов для класса не только дает способ инициализации объектов, но также обеспечивает то, что все объекты этого класса будут проинициализированы. Если для класса были описаны конструкторы, то невозможно описать переменную этого класса так, чтобы конструктор не был вызван. Если класс имеет конструктор, не получающий параметров, то этот конструктор будет вызываться в том случае, если в описании нет ни одного параметра.
1.11 Вектора
Встроенное в С++ понятие вектора было разработано так, чтобы обеспечить максимальную эффективность выполнения при минимальном расходе памяти. Оно также (особенно когда используется совместно с указателями) является весьма универсальным инструментом для построения средств более высокого уровня. Вы могли бы, конечно, возразить, что размер вектора должен задаваться как константа, что нет проверки выхода за границы вектора и т.д. Ответ на подобные возражения таков: «Вы можете запрограммировать это сами.» Давайте посмотрим, действительно ли оправдан такой ответ. Другими словами, проверим средства абстракции языка С++, попытавшись реализовать эти возможности для векторных типов, которые мы создадим сами, и посмотрим, какие с этим связаны трудности, каких это требует затрат, и насколько получившиеся векторные типы удобны в обращении. class vector (* int* v; int sz; public: vector(int); // конструктор ~vector(); // деструктор int size() (* return sz; *) void set_size(int); int amp; operator[](int); int amp; elem(int i) (* return v[i]; *) *); Функция size возвращает число элементов вектора, таким образом индексы должны лежать в диапазоне 0 ... size()-1. Функция set_size сделана для изменения этого размера, elem обеспечивает доступ к элементам без проверки индекса, а operator[] дает доступ с проверкой границ.
Идея состоит в том, чтобы класс сам был структурой фиксированного размера, управляющей доступом к фактической памяти вектора, которая выделяется конструктором вектора с помощью распределителя свободной памяти new:
vector::vector(int s) (* if (s«=0) error(„bad vector size“); // плохой размер вектора sz = s; v = new int[s]; *)
Теперь вы можете описывать вектора типа vector почти столь же элегантно, как и вектора, встроенные в сам язык:
vector v1(100); vector v2(nelem*2-4);
Операцию доступа можно определить как
int amp; vector::operator[](int i) (* if(i«0 !! sz„=i) error(«vector index out of range“); // индекс выходит за границы вектора return v[i]; *)
Операция !! (ИЛИИЛИ) – это логическая операция ИЛИ. Ее правый операнд вычисляется только тогда, когда это необходимо, то есть если вычисление левого операнда дало ноль. Возращение ссылки обеспечивает то, что запись [] может использоваться с любой стороны операции присваивания:
v1[x] = v2[y];
Функция со странным именем ~vector – это деструктор, то есть функция, описанная для того, чтобы она неявно вызывалась, когда объект класса выходит из области видимости. Деструктор класса C имеет имя ~C. Если его определить как
vector::~vector() (* delete v; *)
то он будет, с помощью операции delete, освобождать пространство, выделенное конструктором, поэтому когда vector выходит из области видимости, все его пространство возвращается обратно в память для дальнейшего использования.
1.12 Inline-подстановка
Если часто повторяется обращение к очень маленькой функции, то вы можете начать беспокоиться о стоимости вызова функции. Обращение к функции члену не дороже обращения к функции не члену с тем же числом параметров (надо помнить, что функция член всегда имеет хотя бы один параметр), и вызовы в функций в С++ примерно столь же эффективны, сколь и в любом языке. Однако для слишком маленьких функций может встать вопрос о накладных расходах на обращение. В этом случае можно рассмотреть возможность спецификации функции как inline-подставляемой. Если вы поступите таким образом, то компилятор сгенерирует для функции соответствующий код в мете ее вызова. Семантика вызова не изменяется. Если, например, size и elem inline-подставляемые, то
vector s(100); //... i = s.size(); x = elem(i-1);
порождает код, эквивалентный
//... i = 100; x = s.v[i-1];
С++ компилятор обычно достаточно разумен, чтобы генерировать настолько хороший код, насколько вы можете получить в результате прямого макрорасширения. Разумеется, компилятор иногда вынужден использовать временные переменные и другие уловки, чтобы сохранить семантику.
Вы можете указать, что вы хотите, чтобы функция была inline-подставляемой, поставив ключевое слово inline, или, для функции члена, просто включив определение функции в описание класса, как это сделано в предыдущем примере для size() и elem().
При хорошем использовании inline-функции резко повышают скорость выполнения и уменьшают размер объектного кода. Однако, inline функции запутывают описания и могут замедлить компиляцию, поэтому, если они не необходимы, то их желательно избегать. Чтобы inline функция давала существенный выигрыш по сравнению с обычной функцией, она должна быть очень маленькой.
1.13 Производные классы
Теперь давайте определим вектор, для которого пользователь может задавать границы изменения индекса.
class vec: public vector (* int low, high; public: vec(int,int);
int amp; elem(int); int amp; operator[](int); *);
Определение vec как :public vector
означает, в первую очередь, что vec – это vector. То есть, тип vec имеет (наследует) все свойства типа vector дополнительно к тем, что описаны специально для него. Говорят, что vector является базовым классом для vec, а о vec говорится, что он производный класс от vector. Класс vec модифицирует класс vector тем, что в нем задается другой конструктор, который требует от пользователя указывать две границы изменения индекса, а не длину, и имеются свои собственные функции доступа elem(int) и operator[](int). Функция elem() класса vec легко выражается через elem() класса vector: int amp; vec::elem(int i) (* return vector::elem(i-low); *)
Операция разрешения области видимости :: используется для того, чтобы не было бесконечной рекурсии обращения к vec::elem() из нее самой. с помощью унарной операции :: можно ссылаться на нелокальные имена. Было бы разумно описать vec:: elem() как inline, поскольку, скорее всего, эффективность существенна, но необязательно, неразумно и невозможно написать ее так, чтобы она непосредственно использовала закрытый член v класса vector. Функции производного класса не имеют специального доступа к закрытым членам его базового класса.
Конструктор можно написать так:
vec::vec(int lb, int hb) : (hb-lb+1) (* if (hb-lb«0) hb = lb; low = lb; high = hb; *)
Запись: (hb-lb+1) используется для определения списка параметров конструктора базового класса vector::vector(). Этот конструктор вызывается перед телом vec::vec(). Вот небольшой пример, который можно запустить, если скомпилировать его вместе с остальными описаниями vector:
#include «streams.h»
void error(char* p) (* cerr «„ p «« «n“; // cerr – выходной поток сообщений об ошибках exit(1); *)
void vector::set_size(int) (* /* пустышка */ *)
int amp; vec::operator[](int i) (* if (i«low !! high„i) error(«vec index out of range“); // индекс vec за границами return elem(i); *)
main() (* vector a(10); for (int i=0; i«a.size(); i++) (* a[i] = i; cout „„ a[i] «« " "; *) cout «« «n“; vec b(10,19); for (i=0; i«b.size(); i++) b[i+10] = a[i]; for (i=0; i«b.size(); i++) cout «« b[i+10] «« " "; cout «« «n“; *)
Он выдает 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Это направление развития векторного типа можно разрабатывать дальше. Довольно просто сделать многомерные массивы, массивы, в которых число размерностей задается как параметр конструктора, массивы в стиле Фортрана, к которым можно одновременно обращаться и как к имеющим две размерности, и как к имеющим три, и т.д.
Так класс управляет доступом к некоторым данным. Поскольку весь доступ осуществляется через интерфейс, обеспеченный открытой частью класса, то можно использовать представление данных в соответствие с нуждами разработчика. Например, тривиально можно было бы поменять представление вектора на связанный список. Другая сторона этого состоит в том, что при заданной реализации можно обеспечить любой удобный интерфейс.
1.14 Еще об операциях
Другое направление развития – снабдить вектора операциями:
class Vec : public vector (* public: Vec(int s) : (s) (**) Vec(Vec amp;); ~Vec() (**) void operator=(Vec amp;); void operator*=(Vec amp;); void operator*=(int); //... *);
Обратите внимание на способ определения конструктора производного класса, Vec::Vec(), когда он передает свой параметр конструктору базового класса vector::vector() и больше не делает ничего. Это полезная парадигма. Операция присваивания перегружена, ее можно определить так:
void Vec::operator=(Vec amp; a) (* int s = size(); if (s!=a.size()) error(«bad vector size for =»); // плохой размер вектора для = for (int i = 0; i«s; i++) elem(i) = a.elem(i); *)
Присваивание объектов класса Vec теперь действительно копирует элементы, в то время как присваивание объектов vector просто копирует структуру, управляющую доступом к элментам. Последнее, однако, происходит и тогда, когда vector копируется без явного использования операции присваивания: (1) когда vector передается как параметр и (3) когда vector передается как значение, возвращаемое функцией. Чтобы обрабатывать эти случаи для векторов Vec, вы определяете конструктор Vec(Vec amp;): Vec::Vec(Vec amp; a) : (a.size()) (* int sz = a.size(); for (int i = 0; i«sz; i++) elem(i) = a.elem(i); *) Этот конструктор инициализирует Vec как копию другого Vec, и будет вызываться в отмеченных выше случаях. Выражение в левой части таких операций, как = и +=, безусловно определено, поэтому кажется вполне естественным реализовать их как операции над объектом, который обозначается (денотируется) этим выражением. В частности, тогда они смогут изменять значение своего первого операнда. Левый операнд таких операций, как + и – не требует особого внимания. Вы могли бы, например, передавать оба аргумента по значению и все рано получить правильную реализацию векторного сложения. Однако вектора могут оказаться большими, поэтому чтобы избежать ненужного копирования операнды операции + передаются в operator +() по ссылке:
Vec operator+(Vec amp; a,Vec amp;b) (* int s = a.size(); if (s != b.size()) error(«bad vector size for +»); // плохой размер вектора для + Vec sum(s); for (int i=0; i«s; i++) sum.elem(i) = a.elem(i) + b.elem(i); return sum; *)
Вот пример небольшой программы, которую можно выполнить, если скомпилировать ее вместе с ранее приведенными описаниями vector:
#include «stream.h»
void error(char* p) (* cerr «„ p «« «n“; exit(1); *)
void vector::set_size(int) (* /*...*/ *)
int amp; vec::operator[](int i) (* /*...*/ *)
main() (* Vec a(10); Vec b(10); for (int i=0; i«a.size(); i++) a[i] = i; b = a; Vec c = a+b; for (i=0; i„c.size(); i++) cout «« c[i] «« «n“; *)
1.15 Друзья (friend)
Функция operator+() не воздействует непосредственно на представление вектора. Действительно, она не может этого делать, поскольку не является членом. Однако иногда желательно дать функциям не членам возможность доступа к закрытой части класса. Например, если бы не было функции «доступа без проверки» vector::elem(), вам пришлось бы проверять индекс i на соответствие границам три раза за каждый проход цикла. Здесь мы избежали этой сложности, но она довольно типична, поэтому у класса есть механизм предоставления права доступа к своей закрытой части функциям не членам. Просто в класс помещается описание функции, перед которым стоит ключевое слово friend. Например, если имеется
class Vec; // Vec – имя класса class vector (* friend Vec operator+(Vec, Vec); //... *);
То вы можете написать Vec operator+(Vec a, Vec b) (* int s = a.size(); if (s != b.size()) error(«bad vector size for +»); // плохой размер вектора для + Vec amp; sum = *new Vec(s); int* sp = sum.v; int* ap = a.v; int* bp = b.v; while (s–) *sp++ = *ap++ + *bp++; return sum; *)
Одним из особенно полезных аспектов механизма friend является то, что функция может быть другом двух и более классов. Чтобы увидеть это, рассмотрим определение vector и matrix, а затем определение функции умножения (см. #с.8.8).
1.16 Обобщенные вектора
«Пока все хорошо,» – можете сказать вы, – «но я хочу, чтобы один из этих векторов был типа matrix, который я только что определил.» К сожалению, в С++ не предусмотрены средства для определения класса векторов с типом элемента в качестве параметра. Один из способов – продублировать описание и класса, и его функций членов. Это не идеальный способ, но зачатую вполне приемлемый.
Вы можете воспользоваться препроцессором (#4.7), чтобы механизировать работу. Например, класс vector – упрощенный вариант класса, который можно найти в стандартном заголовочном файле. Вы могли бы написать:
#include «vector.h»
declare(vector,int);
main() (* vector(int) vv(10); vv[2] = 3; vv[10] = 4; // ошибка: выход за границы *)
Файл vector.h таким образом определяет макросы, чтобы макрос declare(vector,int) после расширения превращался в описание класса vector, очень похожий на тот, который был определен выше, а макрос implement(vector,int) расширялся в определение функций этого класса. Поскольку макрос implement(vector,int) в результате расширения превращается в определение функций, его можно использовать в программе только один раз, в то время как declare(vector,int) должно использоваться по одному разу в каждом файле, работающем с этим типом целых векторов.
declare(vector,char); //... implement(vector,char);
даст вам отдельный тип «вектор символов». Пример реализации обобщенных классов с помощью макросов приведен в #7.3.5.
1.17 Полиморфные вектора
У вас есть другая возможность – определить ваш векторный и другие вмещающие классы через указатели на объекты некоторого класса: class common (* //... *); class vector (* common** v; //... public: cvector(int); common* amp; elem(int); common* amp; operator[](int); //... *);
Заметьте, что поскольку в таких векторах хранятся указатели, а не сами объекты, объект может быть "в" нескольких таких векторах одновременно. Это очень полезное свойство подобных вмещающих классов, таких, как вектора, связанные списки, множества и т.д. Кроме того, можно присваивать указатель на производный класс указателю на его базовый класс, поэтому можно использовать приведенный выше cvector для хранения указателей на объекты всех производных от common классов. Например:
class apple : public common (* /*...*/ *) class orange : public common (* /*...*/ *) class apple_vector : public cvector (* public:
cvector fruitbowl(100); //... apple aa; orange oo; //... fruitbowl[0] = amp;aa; fruitbowl[1] = amp;oo; *)
Однако, точный тип объекта, вошедшего в такой вмещающий класс, больше компилятору не известен. Например, в предыдущем примере вы знаете, что элемент вектора является common, но является он apple или orange? Обычно точный тип должен впоследствии быть восстановлен, чтобы обеспечить правильное использование объекта. Для этого нужно или в какой-то форме хранить информацию о типе в самом объекте, или обеспечить, чтобы во вмещающий класс помещались только объекты данного типа. Последнее легко достигается с помощью производного класса. Вы можете, например, создать вектор указателей на apple:
class apple_vector : public cvector (* public: apple* amp; elem(int i) (* return (apple* amp;) cvector::elem(i); *) //... *);
используя запись приведения к типу (тип)выражение, чтобы преобразовать common* amp; (ссылку на указатель на common), которую возвращает cvector::elem, в apple* amp;. Такое применение производных классов создает альтернативу обобщенным классам. Писать его немного труднее (если не использовать макросы таким образом, чтобы производные классы фактически реализовывали обобщенные классы, см. #7.3.5), но оно имеет то преимущество, что все производные классы совместно используют единственную копию функции базового класса. В случае обобщенных классов, таких, как vector(type), для каждого нового используемого типа должна создаваться (с помощью implement()) новая копия таких функций. Другой способ, хранение идентификации типа в каждом объекте, приводит нас к стилю программирования, который часто называют объекто-основанным или объектно-ориентированным.
1.18 Виртуальные функции
Предположим, что мы пишем программу для изображения фигур на экране. Общие атрибуты фигуры представлены классом shape, а специальные атрибуты – специальными классами:
class shape (* point center; color col; //... public: void move(point to) (* center=to; draw(); *) point where() (* return center; *) virtual void draw(); virtual void rotate(int); //... *);
Функции, которые можно определить не зная точно определенной фигуры (например, move и where, то есть, «передвинуть» и «где»), можно описать как обычно. Остальные функции описываются как virtual, то есть такие, которые должны определяться в производном классе. Например:
class circle: public shape (* int radius; public: void draw(); void rotatte(int i) (**) //... *);
Теперь, если shape_vec – вектор фигур, то можно написать:
for (int i = 0; i«no_of_shapes; i++) shape_vec[i].rotate(45);
чтобы повернуть все фигуры на 45 градусов (и заново нарисовать)
Такой стиль особенно полезен в интерактивных программах, когда объекты разных типов одинаково обрабатываются основным программным обеспечением. Ведь по сути дела, типичное действие пользователя – это ткнуть в какой-нибудь объект и сказать Кто ты? Что ты такое? и Делай, что надо! не давая никакой информации о типе. Программа может и должна уяснить это для себя сама.
Глава 2
Описания и константы
Совершенство достигается только к моменту краха.
С.Н. Паркинсон
В этой главе описаны основные типы (char, int, float и т.д.) и основные способы построения из них новых типов (функций, векторов, указателей и т.д.). Имя вводится в программе посредством описания, которое задает его тип и, возможно, начальное значение. Даны понятия описания, определения, области видимости имен, времени жизни объектов и типов. Описываются способы записи констант в С++, а также способы определения символических констант. Примеры просто демонстрируют характерные черты языка. Более развернутый и реалистичный пример приводится в следующей главе для знакомства с выражениями и операторами языка С++. Механизмы задания типов, определяемых пользователем, с присоединенными операциями представлены в Главах 4, 5 и 6 и здесь не упоминаются.
2.1 Описания
Прежде чем имя (идентификатор) может быть использовано в С++ программе, он должно быть описано. Это значит, что надо задать его тип, чтобы сообщить компилятору, к какого вида сущностям относится имя. Вот несколько примеров, иллюстрирующих разнообразие описаний:
char ch; int count = 1; char* name = «Bjarne»; struct complex (* float re, im; *); complex cvar; extern complex sqrt(complex); extern int error_number; typedef complex point; float real(complex* p) (* return p-»re; *); const double pi = 3.1415926535897932385; struct user;
Как можно видеть из этих примеров, описание может делать больше чем просто ассоциировать тип с именем. Большинство описаний являются также определениями то есть они также определяют для имени сущность, к которой оно относится. Для ch, count и cvar этой сущностью является соответствующий объем памяти, который должен использоваться как переменная – эта память будет выделена. Для real это заданная функция. Для constant pi это значение 3.1415926535897932385. Для complex этой сущностью является новый тип. Для point это тип complex, поэтому point становится синонимом complex. Только описания
extern complex sqrt(complex); extern int error_number; struct user;
не являются одновременно определениями. Это означает, что объект, к которому они относятся, должен быть определен где-то еще. Код (тело) функции sqrt должен задаваться неким другим описанием, память для переменной error_number типа int должна выделяться неким другим описанием, и какое-то другое описание типа user должно определять, что он из себя представляет. В С++ программе всегда должно быть только одно определение каждого имени, но описаний может быть много, и все описания должны согласовываться с типом объекта, к которому они относятся, поэтому в этом фрагменте есть две ошибки:
int count; int count; // ошибка: переопределение extern int error_number; extern int error_number; // ошибка: несоответствие типов
а в этом – ни одной (об использовании extern см. #4.2):
extern int error_number; extern int error_number;
Некоторые описания задают «значение» для сущностей, которые они определяют:
struct complex (* float re, im; *); typedef complex point; float real(complex* p) (* return p-»re *); const double pi = 3.1415926535897932385;
Для типов, функций и констант «значение» неизменно. Для неконстантных типов данных начальное значение может впоследствии изменяться:
int count = 1; char* name = «Bjarne»; //... count = 2; name = «Marian»;
Из всех определений только
char ch;
не задает значение. Всякое описание, задающее значение, является определением.